Fundamental Review to Ozone Gas Sensing Using Optical Fibre Sensors

Michael David, Mohd Haniff Ibrahim, Sevia Mahdaliza Idrus, Tay Ching En Marcus

Abstract


The manuscript is a review of basic essentials to ozone gas sensing with optical methods. Optical methods are employed to monitor optical absorption, emission, reflectance and scattering of gas samples at specific wavelengths of light spectrum. In the light of their importance in numerous disciplines in analytical sciences, necessary integral information that serves both as a basis and reference material for intending researchers and others in the field is inevitable. This review provides insight into necessary essentials to gas sensing with optical fibre sensors. Ozone gas is chosen as a reference gas. Simulation results for ozone gas absorption cross section in the ultraviolet (UV) region of the spectrum using spectralcalc.com simulation have also been included.

Keywords


Absorption spectroscopy, Beer Lamberts Law, optical fibre, optical method, ozone gas, sensors

Full Text:

PDF

References


Otto SW. Fibre Optic Chemical Sensors and Biosensors Volume I. Boston London: CRC Press Boca Raton Ann. 1991:2,26.

Department of Chemistry. Beer-Lambert Law. The University of Adelaide Australia http://wwwchemistryadelaideeduau/external/soc-rel/content/beerslawhtm Accessed online on 12th February, 2013.

Ebdon L, Evans EH. An introduction to analytical atomic spectrometry: John Wiley & Sons; 1998.

Fifield F, Kealey D. Analytical Chemistry: Principles and Practice. Fifth Edition. Malden, MA: Blackwell Science, Ltd. 2000: 270.

Janssen C, Simone D, Guinet M. Preparation and accurate measurement of pure ozone. Review of Scientific Instruments. 2011;82(3):034102.

Von Sonntag C, Von Gunten U. Chemistry of Ozone in Water and Wastewater Treatment. First Edition. London: IWA Publishing. 2012:1.

Rubin MB. The history of ozone. The Schönbein period, 1839–1868. Bull Hist Chem. 2001;26(1):40-56.

Brimblecombe P. Interest in air pollution among early Fellows of the Royal Society. Notes and records of the Royal Society of London. 1978;32(2):123-9.

Roscoe HK, Clemitshaw KC. Measurement techniques in gas-phase tropospheric chemistry: A selective view of the past, present, and future. Science. 1997;276(5315):1065-72.

Chang R. Chemistry: Chapter 17 – Chemistry in the Atmosphere. 10th Edition. New York, NY 10020: McGraw-Hill Companies, Inc, 1221 Avenue Americas,. 2010:789.

David M, Ibrahim MH, Idrus SM, Azmi AI, Ngajikin NH, Marcus TCE, Yaacob, M Salim, M R, Aziz, A A. Progress in Ozone Sensors Performance: A Review. Jurnal Teknologi. 2015;73(6):23-29.

David M, Marcus TCE, Yaacob M, Salim MR, Hussin N, Ibrahim MH, Ibrahim MH, Idrus SM, Azmi AI, Ngajikin NH. A New Ozone Concentration Regulator. TELKOMNIKA Indonesian Journal of Electrical Engineering. 2015;13(2):329-336.

Facta M, Salam Z, Buntat Z. A New Type of Planar Chamber for High Frequency Ozone Generator System. Advanced Materials Research. 2014;896:726-9.

Facta M, Sutikno T, Salam Z. The Application of FPGA in PWM Controlled Resonant Converter for an Ozone Generator. International Journal of Power Electronics and Drive Systems (IJPEDS). 2013;3(3):336-43.

Cole J, Su S, Blakeley R, Koonath P, Hecht A. Radiolytic yield of ozone in air for low dose neutron and x-ray/gamma-ray radiation. Radiation Physics and Chemistry. 2015;106:95-8.

Kumharn W, Sudhibrabha S. Study of ozone and sulfur dioxide using Thailand based Brewer Spectrophotometers. Advances in Space Research. 2014;53(5):802-9.

Li YL. Experimental Investigation on Ozone Mass Transfer Coefficient Enhanced by Electric Field in Liquid Phase. Advanced Materials Research. 2014;864:2139-44.

Costagliola MA, Murena F, Prati MV. Exhaust emissions of volatile organic compounds of powered two-wheelers: Effect of cold start and vehicle speed. Contribution to greenhouse effect and tropospheric ozone formation. Science of The Total Environment. 2014;468:1043-9.

Lefohn AS, Emery C, Shadwick D, Wernli H, Jung J, Oltmans SJ. Estimates of background surface ozone concentrations in the United States based on model-derived source apportionment. Atmospheric Environment. 2014;84:275-88.

Guo W-Q, Yin R-L, Zhou X-J, Du J-S, Cao H-O, Yang S-S, Ren N-Q. Sulfamethoxazole degradation by ultrasound/ozone oxidation process in water: Kinetics, mechanisms, and pathways. Ultrasonics sonochemistry. 2015;22:182-7.

López-Higuera JM. Optical sensors: Ed. Universidad de Cantabria; 1998.

Mulrooney J, Clifford J, Fitzpatrick C, Chambers P, Lewis E. Detection of carbon dioxide emissions from a land transport vehicle using a mid-infrared optical fiber based sensor. International Society for Optics and Photonics. Boston MA. 2006;

O'Keeffe S, Dooly G, Fitzpatrick C, Lewis E. Optical fibre sensor for the measurement of ozone. Journal of Physics: Conference Series. 2005;15(1):213.

Arshak K, Hickey G, Forde E, Harris J. Development of novel room temperature ozone sensors for health and safety applications. Electronics Technology, International Spring Seminar. Cluj-Napoca. 2007;30,248-253.

Degner M, Damaschke N, Ewald H, Lewis E. High resolution LED-spectroscopy for sensor application in harsh environment. IEEE International Instrumentation and Measurement Technology Conference, I2MTC 2010. Austin, TX, United states. 2009.

Reynolds CS. Measuring black hole spin using x-ray reflection spectroscopy. The Physics of Accretion onto Black Holes: Springer; 2015. p. 277-94.

Garcia JA, Dauser T, Steiner JF, McClintock JE, Keck ML, Wilms J. On Estimating the High-Energy Cutoff in the X-ray Spectra of Black Holes via Reflection Spectroscopy. arXiv preprint arXiv:150503616. 2015.

Cavalli E, Angiuli F, Belletti A, Boutinaud P. Luminescence spectroscopy of YVO 4: Ln 3+, Bi 3+(Ln 3+= Eu 3+, Sm 3+, Dy 3+) phosphors. Optical Materials. 2014;36(10):1642-8.

Coda S, Thompson AJ, Kennedy GT, Roche KL, Ayaru L, Bansi DS, Stamp, GW, Thillainayagam, AV, French, PMW, Dunsby C. Fluorescence lifetime spectroscopy of tissue autofluorescence in normal and diseased colon measured ex vivo using a fiber-optic probe. Biomedical optics express. 2014;5(2):515-38.

Zarzana KJ, Cappa CD, Tolbert MA. Sensitivity of Aerosol Refractive Index Retrievals Using Optical Spectroscopy. Aerosol Science and Technology. 2014;48(11):1133-44.

Del Rosso T, Sánchez J, Carvalho R, Pandoli O, Cremona M. Accurate and simultaneous measurement of thickness and refractive index of thermally evaporated thin organic films by surface plasmon resonance spectroscopy. Optics express. 2014;22(16):18914-23.

Darby SB, Smith PD, Venables DS. Cavity-enhanced absorption using an atomic line source: application to deep-UV measurements. Analyst. 2012;137(10):2318-21.

Gomez A, Rosen E. Fast response cavity enhanced ozone monitor. Atmospheric Measurement Techniques Discussions. 2012;5(5):7223-41.

Washenfelder R, Wagner N, Dube W, Brown S. Measurement of atmospheric ozone by cavity ring-down spectroscopy. Environmental science & technology. 2011;45(7):2938-44.

Ermel M, Oswald R, Mayer JC, Moravek A, Song G, Beck M, Meixner F X, Trebs I. Preparation methods to optimize the performance of sensor discs for fast chemiluminescence ozone analyzers. Environmental Science and Technology. 2013;47(4):1930-6.

Zahn A, Weppner J, Widmann H, Schlote-Holubek K, Burger B, Kühner T, Franke H. A fast and precise chemiluminescence ozone detector for eddy flux and airborne application. Atmospheric Measurement Techniques. 2012;5(2):363-75.

Eastman JA, Stedman DH. A fast response sensor for ozone eddy-correlation flux measurements. Atmospheric Environment (1967). 1977;11(12):1209-11.

Bottger S, Kohring M, Willer U, Schade W. Off-beam quartz-enhanced photoacoustic spectroscopy with LEDs. Applied Physics B: Lasers and Optics. 2013;113(2):227-32.

Gondal MA, Dastageer A, Yamani ZH. Laser-induced photoacoustic detection of ozone at 266 nm using resonant cells of different configuration. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering. 2009;44(13):1457-64.

Chien FS-S, Wang C-R, Chan Y-L, Lin H-L, Chen M-H, Wu R-J. Fast-response ozone sensor with ZnO nanorods grown by chemical vapor deposition. Sensors and Actuators, B: Chemical. 2010;144(1):120-5.

Mastelaro VR, Zílio SC, da Silva LF, Pelissari PI, Bernardi MI, Guerin J, Aguir K. Ozone gas sensor based on nanocrystalline SrTi 1− x Fe x O 3 thin films." Sensors and Actuators B: Chemical. 2013: 919-924.

Gao R, Ballard J, Watts L, Thornberry T, Ciciora S, McLaughlin R, Fahey DW. A compact, fast UV photometer for measurement of ozone from research aircraft. Atmospheric Measurement Techniques. 2012;5(9):2201-10.

Diemeer M, Trommel E. Fiber-optic microbend sensors: sensitivity as a function of distortion wavelength. Optics letters. 1984;9(6):260-2.

Kohring M, Willer U, Bottger S, Pohlkotter A, Schade W. Fiber-coupled ozone sensor based on tuning fork-enhanced interferometric photoacoustic spectroscopy. IEEE Journal on Selected Topics in Quantum Electronics. 2012;18(5):1566-72.

Mao X, Zhou X, Zhai L, Yu Q. Dissolved Gas-in-Oil Analysis in Transformers Based on Near-Infrared Photoacoustic Spectroscopy. International Journal of Thermophysics. 2014:1-7.

Wu R-J, Chiu Y-C, Wu C-H, Su Y-J. Application of Au/TiO 2–WO 3 material in visible light photoreductive ozone sensors. Thin Solid Films. 2015;574:156-61.

Chen M-H, Lu C-S, Wu R-J. Novel Pt/TiO 2–WO 3 materials irradiated by visible light used in a photoreductive ozone sensor. Journal of the Taiwan Institute of Chemical Engineers. 2014;45(3):1043-8.

Wang Z, Qiu X, Tang R, Oiler J, Zhu J, Huang H, Wang, J S, and Yu, H. Ozone senosr using ZnO based film bulk acoustic resonator. International Solid-State Sensors, Actuators and Microsystems Conference, TRANSDUCERS. Beijing. 2011; 16.

Wang CY, Becker R, Passow T, Pletschen W, Köhler K, Cimalla V, et al. Photon stimulated sensor based on indium oxide nanoparticles I: wide-concentration-range ozone monitoring in air. Sensors and Actuators B: Chemical. 2011;152(2):235-40.

Dakin JP, Chambers P. Review of methods of optical gas detection by direct optical spectroscopy, with emphasis on correlation spectroscopy. Optical Chemical Sensors: Springer; 2006. p. 457-77.

Da Silva LF, Catto AC, Avansi Jr W, Cavalcante LS, Andres J, Aguir K, Mastelaro VR, Longo E. A novel ozone gas sensor based on one dimensional (1D) α-Ag 2 WO 4 nanostructures. Nanoscale. 2014.

Yu JH, Yang HJ, Mo HS, Kim TS, Jeong TS, Youn CJ, Hong KJ. Sensing mechanism and behavior of sputtered ZnCdO ozone sensors enhanced by photons for room- temperature operation. Journal of Electronic Materials. 2013;42(4):720-5.

Thirumalairajan S, Mastelaro VR, Escanhoela Jr CA. In-Depth Understanding of the Relation between CuAlO2 Particle Size and Morphology for Ozone Gas Sensor Detection at a Nanoscale Level. ACS applied materials & interfaces. 2014;6(23):21739-49.

Korotcenkov G, Cho B. Ozone measuring: What can limit application of SnO 2-based conductometric gas sensors? Sensors and Actuators B: Chemical. 2012;161(1):28-44.

Chambers P. A study of a correlation spectroscopy gas detection method. University of Southampton; 2005.

Gomez A, Rosen E. Fast response cavity enhanced ozone monitor. Atmospheric Measurement Techniques. 2013;6(2).

Gaddari A, Berger F, Amjoud M, Sanchez J, Lahcini M, Rhouta B, et al. A novel way for the synthesis of tin dioxide sol–gel derived thin films: Application to O 3 detection at ambient temperature. Sensors and Actuators B: Chemical. 2013;176:811-7.

Yu M. Fiber Optic Sensor Technology. Sensors and Actuators Laboratory, Department of Mechanical Engineering, University of Maryland, USA https://wwwgooglecom/#q=Fiber+Optic+Sensor+Technology+Miao+Yu. 2008.

Tracey PM. Intrinsic fiber-optic sensors. Industry Applications, IEEE Transactions on. 1991;27(1):96-8.

O’Keeffe S, Fitzpatrick C, Lewis E. An optical fibre based ultra violet and visible absorption spectroscopy system for ozone concentration monitoring. Sensors and Actuators B: Chemical. 2007;125(2):372-8.

Fein H, Liu S-Y. Chemical sensing techniques employing liquid-core optical fibers. Google Patents; 2000.

Zhao Y, Bai L, Zhang Y-N, Hou W, Wang Q. Review On Structures And Principles Of Gas Cells In The Absorption Spectrum–Based Optical Fiber Gas Sensor Systems. Instrumentation Science & Technology. 2012;40(5):385-401.

Hardiman R, Mckee D, Kimmerle K. Qualitative Comparison of Cavity Ring-Down vs. Direct Measurement Absorption Spectroscopy of Determining ppb Moisture Levels in UHP Gases. Gases and Technology. 2004;3(3).

Singh D, Deshwal B, Kumar VS. The absorption laws and measurement of absorption intensity. Comprehensive Engineering Chemistry. IKInternational Publishing House, New Delhi 2008:259.

Denney RC. Dictionary of spectroscopy. Willey 2nd Edition. 1982:119-20.

En Marcus TC, David M, Yaacob M, Salim MR, Ibrahim MH, Ngajikin NH, Azmi A I, Idrus SM, Buntat Z. Absorption Cross Section Simulation: a Preliminary Study of Ultraviolet Absorption Spectroscopy for Ozone Gas Measurement. Jurnal Teknologi. 2013;64(3):95-98.

Larsen ML, Clark AS. On the link between particle size and deviations from the Beer–Lambert–Bouguer law for direct transmission. Journal of Quantitative Spectroscopy and Radiative Transfer. 2014;133:646-51.

Köhring M, Willer U, Böttger S, Pohlkötter A, Schade W. Fiber-Coupled Ozone Sensor Based on Tuning Fork-Enhanced Interferometric Photoacoustic Spectroscopy. Selected Topics in Quantum Electronics, IEEE Journal of. 2012;18(5):1566-72.

Murata I, Sato K, Okano S, Tomikawa Y. Measurements of stratospheric ozone with a balloon-borne optical ozone sensor. International Journal of Remote Sensing. 2009;30(15-16):3961-6.

Campell IM. Energy and the Atmosphere: A Physical-chemical Approach. Wiley; 1986.

Burrows J, Richter A, Dehn A, Deters B, Himmelmann S, Voigt S, et al. Atmospheric Remote-Sensing Reference Data From Gome—2. Temperature-Dependent Absorption Cross Sections Of O< Sub> 3 In The 231–794nm Range. Journal of quantitative spectroscopy and radiative transfer. 1999;61(4):509-17.

Griggs M. Absorption coefficients of ozone in the ultraviolet and visible regions. The Journal of Chemical Physics. 1968;49:857-9.

Inn EC, Tanaka Y. Absorption coefficient of ozone in the ultraviolet and visible regions. JOSA. 1953;43(10):870-2.

Vigroux E. Contribution à l'étude expérimentale de l'absorption de l'ozone, par Ernest Vigroux: Masson; 1953.

Brion J, Chakir A, Daumont D, Malicet J, Parisse C. High-resolution laboratory absorption cross section of O< sub> 3. Temperature effect. Chemical physics letters. 1993;213(5):610-2.

Solutions O. Material Compatibility with Ozone. http://wwwozoneapplicationscom

/info/ozone_compatible_materialshtm. 2015.

Marcus TCE, David M, Yaacob M, Salim MR, Ibrahim MH, Ngajikin NH, Azmi A I, Idrus SM, Buntat Z. Interchangeable Range of Ozone Concentration Simulation for Low Cost Reconfigurable Brass Gas Cell. Jurnal Teknologi. 2014;69(8).

Yu J, Yang H, Mo H, Kim T, Jeong T, Youn C, et al. Sensing Mechanism and Behavior of Sputtered ZnCdO Ozone Sensors Enhanced by Photons for Room-Temperature Operation. Journal of electronic materials. 2013;42(4):720-5.

Acuautla Mn, Bernardini S, Bendahan M. Ozone Sensor on Flexible Substrate by ZnO Nanoparticles. Key Engineering Materials. 2014;605:163-6.

Marcus TC, David M, Yaacob M, Salim MR, Hussin N, Ibrahim MH, Ngajikin NH, Azmi A I, Idrus SM, Buntat Z. Alternative wavelength for linearity preservation of Beer–Lambert Law in ozone concentration measurement. Microwave and Optical Technology Letters. 2015;57(4):1013-6.

Teranishi K, Shimada Y, Shimomura N, Itoh H. Investigation of Ozone Concentration Measurement by Visible Photo Absorption Method. Ozone: Science & Engineering. 2013;35(3):229-39.

Kondo T, Sakai K, Watanabe T, Einaga Y, Yuasa M. Electrochemical detection of lipophilic antioxidants with high sensitivity at boron-doped diamond electrode. Electrochimica Acta. 2013;95:205-11.

Proffitt MH, McLaughlin RJ. Fast‐response dual‐beam UV‐absorption ozone photometer suitable for use on stratospheric balloons. Review of scientific instruments. 1983;54(12):1719-28.

Jadsadapattarakul D, Thanachayanont C, Nukeaw J, Sooknoi T. Improved selectivity, response time and recovery time by [010] highly preferred-orientation silicalite-1 layer coated on SnO< sub> 2 thin film sensor for selective ethylene gas detection. Sensors and Actuators B: Chemical. 2010;144(1):73-80.

Sarfraz J, Ihalainen P, Määttänen A, Gulin T, Koskela J, Wilén C-E, Kilpelä A, Peltonen J. A printed H2S sensor with electro-optical response.. Sensors and Actuators B: Chemical. 2014;191:821-7.

Tsitron J, Kreller CR, Sekhar PK, Mukundan R, Garzon FH, Brosha EL, Morozov A V. Bayesian decoding of the ammonia response of a zirconia-based mixed-potential sensor in the presence of hydrocarbon interference. Sensors and Actuators B: Chemical. 2014;192:283-93.

Liu H, Li M, Voznyy O, Hu L, Fu Q, Zhou D, et al. Physically Flexible, Rapid‐Response Gas Sensor Based on Colloidal Quantum Dot Solids. Advanced Materials. 2014.

Burgess LW. Absorption-based sensors. Sensors and Actuators B: Chemical. 1995;29(1):10-5.

Fang J, Park SC, Schlag L, Stauden T, Pezoldt J, Jacobs HO. Localized Collection of Airborne Analytes: A Transport Driven Approach to Improve the Response Time of Existing Gas Sensor Designs. Advanced Functional Materials. 2014.

Colindres SC, Aguir K, Cervantes Sodi F, Vargas LV, Salazar JAM, Febles VG. Ozone Sensing Based on Palladium Decorated Carbon Nanotubes. Sensors. 2014;14(4):6806-18.




DOI: http://doi.org/10.12928/telkomnika.v13i4.2047

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats