Image Fuzzy Enhancement Based on Self-Adaptive Bee Colony Algorithm

Meng Lei, Yao Fan


In the image acquisition or transmission, the image may be damaged and distorted due to various reasons; therefore, in order to satisfy people’s visual effects, these images with degrading quality must be processed to meet practical needs. Integrating artificial bee colony algorithm and fuzzy set, this paper introduces fuzzy entropy into the self-adaptive fuzzy enhancement of image so as to realize the self-adaptive parameter selection. In the meanwhile, based on the exponential properties of information increase, it proposes a new definition of fuzzy entropy and uses artificial bee colony algorithm to realize the self-adaptive contrast enhancement under the maximum entropy criterion. The experimental result shows that the method proposed in this paper can increase the dynamic range compression of the image, enhance the visual effects of the image, enhance the image details, have some color fidelity capacity and effectively overcome the deficiencies of traditional image enhancement methods.

Full Text:




  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604