Fluctuations Mitigation of Variable Speed Wind Turbine through Optimized Centralized Controller

Ali Mohammadi, Sajjad Farajianpour, Saeed Tavakoli, S. Masoud Barakati

Abstract


A wind energy conversion system (WECS) including a variable wind turbine in grid-connected mode is considered to control. In this paper, each component of WECS model is systematically presented and then the integrated overall model is validated.Regarding to nonlinear nature of WECS and the complex system structure as multiple-input multiple-output (MIMO), it is difficult to find a proper control strategy. To simplify the control design, a centralized controller, which is compatible with systematic modelling, is employed. In addition, to enhance the centralized controller performance, an optimization based on genetic algorithm (GA) is accomplished. Simulation results demonstate the effectivesness of the proposed control startegy to mitigation fluctuations.

Full Text:

PDF

References


Mathew S. Wind Energy Fundamentals Resource Analysis and Economics. Springer-Verlag Berlin Heidelberg. 2006.

Haque M. E., Negnevitsky M. and Muttaqi K. M. A Novel Control Strategy for a Variable-Speed Wind Turbine With a Permanent-Magnet Synchronous Generator. IEEE Trans. on Industry Applications. 2010; 46(1).

Hu J., Nian H., Hu B., He Y. and Zhu Z. Q. Direct Active and Reactive Power Regulation of DFIG Using Sliding-Mode Control Approach. IEEE Trans. on Energy Conversion. 2010; 25(4).

Tan K. and Islam S. Optimum Control Strategies in Energy Conversion of PMSG Wind Turbine System Without Mechanical Sensors. IEEE Trans. Energy Conversion. 2004; 19(2).

Abedini A. and Nikkhajoei H. Dynamic Model and Control of a Wind-turbine Generator with Energy Storage. IET Renew. Power Gener. 2011; 5(1): 67–78.

Yang L., Yang G.Y., Xu Z., Dong Z.Y., Wong K.P. and Ma X. Optimal Controller Design of a Doubly-fed Induction Generator Wind Turbine System for Small Signal Stability Enhancement. IET Gener., Transm. & Dist. 2010; 4(5): 579-597.

Hu Ji., Nian H., Hu B., He Y. and Zhu Z.Q. Direct Active and Reactive Power Regulation of DFIG using Sliding-mode Control Approach. IEEE Trans. Energy Convers. 2010; 25(4): 1028-1039.

Akhmatov V. Variable-speed Wind Turbines with Doubly-fed Induction Generators. Part I. Modelling in Dynamic Simulation Tools, Wind Engineering. 2002; 26(2): 85–108.

Ackermann T. Wind Power in Power Systems. John Wiley & Sons, Ltd. Chichester. 2005: 536–546.

Papathanassiou S. A. and Papadopoulos M. P. Mechanical Stress in Fixed Speed Wind Turbines due to Network Disturbance. IEEE Transactions on Energy Conversion. 16(4): 361–363.

Anderson P. M. and Bose A. Stability Simulation of Wind Turbine Systems. Power Apparatus and Systems. 1983; 102(12): 3791-3795.

Nichita C., Luca D., Dakyo B. and Ceanga E. Large Band Simulation of the Wind Speed for Real Time Eind Turbine Simulators. IEEE Trans. on Energy Conversion. 2002; 17(4): 523 – 529.

Burton T., Sharpe D., Jenkins N. and Bossanyi E. Wind Wnergy Handbook. John Wiley & Sons, New-York. 2001.

Munteanu. I., Bratcu A. I., Cutululis N. A, Ceanga E. Optimal Control of Wind Energy Systems: Towards a Global Approach. Advances in Industrial Control. Springer–Verlag London. 2008.

Wu J., Dong P., Yang J.M. and Chen Y.R. A Novel Model of Wind Energy Conversion System. in Proc. DRPT2004. IEEE International Conf. on Electric Utility Deregulation and Power Technologies. April 2000.

Slootweg J.G., Polinder H., and Kling W.L. Representing Wind Turbine Electrical Generating Systems in Fundamental Frequency Simulations. IEEE Trans. on Energy Conversion. 2003; 18(4): 516-524.

Bianchi F. D., Battista H. D. and Mantz R. J. Wind Turbine Control Systems. Advances in Industrial Control.Springer–Verlag London. 2007.

Krause P. C., Wasynczuk O. and Sudhoff S. D. Analysis of Electric Machinery. IEEE Press. 1994.

Anaya-Lara O., Jenkins N., Ekanayake J., Cartwright P. and Hughes M. Wind Energy Generation Modelling and Control. John Wiley & Sons. 2009.

Nikkhajoei, H., Iravani, R. Dynamic Model and Control of AC-DC-AC Voltage-Sourced Converter System for Distributed Resources. IEEE Trans. Power Deliv. 2007: 22(2): 1169–1178.

Deb K. Multi-objective Optimization using Evolutionary Algorithms. Wiley, New York. 2001.




DOI: http://doi.org/10.12928/telkomnika.v10i4.859

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats