
TELKOMNIKA Telecommunication Computing Electronics and Control

Vol. 22, No. 4, August 2024, pp. 995~1004

ISSN: 1693-6930, DOI: 10.12928/TELKOMNIKA.v22i4.25706  995

Journal homepage: http://telkomnika.uad.ac.id

Enhancing object detection for humanoid robot soccer:

comparative analysis of three models

Handaru Jati1, Nur Alif Ilyasa1, Yuniar Indrihapsari1, Ariadhie Chandra2, Dhanapal Durai Dominic3
1Department of Electronics and Informatics Engineering Education, Faculty of Engineering, University Negeri Yogyakarta, Special

District of Yogyakarta, Indonesia
2Department of Electrical Engineering Education, Faculty of Engineering, University Negeri Yogyakarta, Special District of Yogyakarta,

Indonesia
3Departement of Computer and Information Science, University Technology Petronas, Bandar Seri Begawan, Malaysia

Article Info ABSTRACT

Article history:

Received Dec 6, 2023

Revised Mar 14, 2024

Accepted Mar 29, 2024

 The humanoid robot soccer system encounters a notable challenge in object

detection, primarily concentrating on identifying the ball and often neglecting

crucial elements like opposing robots and goals, resulting in on-field

collisions and imprecise ball shooting. This study comparatively evaluates

three you only look once (YOLO) real-time object detection system variants:

YOLOv8, YOLOv7, and YOLO-NAS. A dataset of 2104 annotated images,

covering classes such as ball, goalpost, and robot, was curated from Roboflow

and robot-captured images. The dataset was partitioned into training,

validation, and testing sets, and each YOLO model underwent extensive fine-

tuning over 100 epochs on this custom dataset, leveraging the pre-trained

common objects in context (COCO) model. Evaluation metrics, including

mean average precision (mAP) and inference speed, assessed performance.

YOLOv8 achieved the highest accuracy with a mAP of 0.92, while YOLOv7

showed the fastest inference speed of 24 ms on the Jetson Nano platform.

Balancing accuracy and speed, YOLO-NAS emerged as the optimal choice.

Thus, YOLO-NAS is recommended for object detection for humanoid soccer

robots, regardless of team affiliation. Future research should focus on

enhancing object detection through advanced training techniques, model

architectures, and sensor fusion for improved performance in dynamic

environments, potentially optimizing through scenario-specific fine-tuning.

Keywords:

Humanoid robot soccer

Object detection

YOLO-NAS

YOLOv7

YOLOv8

This is an open access article under the CC BY-SA license.

Corresponding Author:

Handaru Jati

Department of Electronics and Informatics Engineering Education, Faculty of Engineering

University Negeri Yogyakarta

Depok, Sleman, Daerah Istimewa Yogyakarta 55281, Indonesia

Email: handaru@uny.ac.id

1. INTRODUCTION

Robot soccer, also known as the RoboCup humanoid league, presents an intriguing and demanding

domain within robotics, aiming to advance the development of self-governing humanoid robots capable of

engaging in soccer matches. This field not only serves as a proving ground for state-of-the-art artificial

intelligence, computer vision, motion planning, and control algorithms but also propels progress in both

robotics and artificial intelligence, all while offering an enjoyable and interactive platform to showcase the

capabilities of autonomous humanoid machines.

In humanoid robot soccer, one pivotal challenge pertains to the object detection system. The system’s

capability is limited to identifying the soccer ball, failing to recognize other critical elements such as opponent

robots and the goalposts. The system relies on outdated techniques like basic segmentation and Hough circle

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 22, No. 4, August 2024: 995-1004

996

methods, which have become less effective since the ball’s color mark was replaced with white color and spot

patterns under current RoboCup regulations. This modification has significantly increased the difficulty of ball

detection, resulting in frequent false positives due to the prevalence of white objects in the soccer environment.

Furthermore, the absence of awareness regarding other robots and the goal often leads to collisions with other

robots and challenges in aligning shots toward the goal.

From 2020 to 2023, many studies in humanoid robot soccer have delved into object detection systems,

as detailed in Table 1. A notable portion of these investigations has incorporated the you only look once

(YOLO) algorithm, revolutionizing computer vision with its ability to swiftly and accurately identify multiple

objects in images and videos in real-time [1]. Unlike conventional methods that rely on multi-stage processes,

YOLO’s innovative design enables it to process the entire image simultaneously, rendering it exceptionally

rapid and efficient [2]. The data in Table 1 highlights the widespread adoption of YOLO, bolstered by many

researchers who attest to its robust performance.

Table 1. Publication papers related to humanoid robot soccer object detection publication paper

method/model
Publication Paper Method/Model

[3]-[5] CNN

[6], [7] YOLOv3

[8]-[10], [11] YOLO
[12] XNOR-YOLO

[11] MobileNet
[13] YOLOv4

[14] ROBO

[15] YOLOv2
[16] YOLOv4-Tiny

[15] Faster RCNN

[17] YOLOv7
[18] YOLOv8

[19] NimbroNet

[20] Unet
[10] SSD

Object detection has seen a proliferation of YOLO variants, showcasing their adaptability and

versatility [21]. However, subsequence versions of YOLO have developed [22]. A comprehensive evaluation

of each YOLO variant’s strengths and limitations and robust benchmarking on a relevant dataset are crucial

for making an informed decision. This ensures that the selected YOLO model significantly improves object

detection capabilities in humanoid robot soccer, regardless of team affiliation or specific application.

This study focuses on three prominent YOLO variants: YOLOv8, YOLOv7, and YOLO-NAS, chosen

for their significance and relevance in object detection [23]. Each variant represents a distinct evolution of the

YOLO algorithm, incorporating specific enhancements and optimizations [22]. YOLOv8 is known for its

exceptional accuracy [24], [25], making it an excellent choice for applications where precision is crucial.

Conversely, YOLOv7 is praised for its impressive speed, vital for real-time object detection scenarios [26].

Finally, YOLO-NAS is designed with an architecture that prioritizes efficiency, striking a balance between

accuracy and speed, rendering it a notable contender across various applications [23].

However, a systematic comparison is currently lacking, impeding the ability to make an informed

decision that could enhance object detection capabilities in humanoid robot soccer, regardless of team

affiliation or specific application [27]. Therefore, this study aimed to comprehensively evaluate these three

YOLO variants, considering the diverse requirements of object detection in humanoid robot soccer. The goal

is to determine which YOLO variant is best suited for optimizing object detection in this context. This approach

ensures that the selected YOLO model aligns seamlessly with the sport’s unique demands, accounting for

computational resources, real-time performance, accuracy, and the types of objects commonly encountered in

the soccer environment.

2. METHOD

Based on the literature study explained in the previous section, YOLO is proposed as a new detection

approach. A YOLO was a convolutional neural network (CNN) model and an end-to-end machine learning

workflow procedure was performed in this research. The procedure consists of the data engineering stage,

model engineering stage, and code engineering stage as shown in Figure 1 [28].

TELKOMNIKA Telecommun Comput El Control 

Enhancing object detection for humanoid robot soccer: comparative analysis of … (Handaru Jati)

997

Figure 1. Machine learning model development procedure

2.1. Data engineering

Data in this context is data to train the model. Data engineering or data preparation stages involve a

subsequence process to prepare a dataset to train the model. This involves data collection, cleaning, annotation,

splitting, exploratory data analysis (EDA), and data augmentation [28]. Data preparation for YOLO training

involves accumulating and refining a dataset of labeled images from humanoid robot soccer matches,

supplemented by custom data from scripts on robots. Ensuring dataset quality requires cleansing to remove any

irrelevant or redundant images. YOLO needs images and representative annotations to train the model [29].

Annotations, defined by bounding boxes, contain class, location, and size information. Labeling software is

used for manual annotation, after which datasets are divided into training, validation, and test sets. Data

augmentation techniques, informed by EDA, enhance dataset diversity.

2.2. Model engineering

The model engineering stage consists of modelling, model training, optimization, and evaluation [28].

A Python script notebook organizes training code, setting hyperparameters like batch size and learning rate for

optimal training. Model optimization involves simplifying the model to reduce complexity and latency while

maintaining detection performance. Upon completion of the model training, the next step is evaluation, which

is conducted using a dedicated test dataset excluded from the training process. This dataset consists of unseen

data, facilitating an unbiased evaluation of the model’s generalization capabilities. Metrics such as mean

average precision (mAP) and average precision (AP) are utilized to quantify the model’s detection accuracy [30].

To compare the performance of trained object detection models, it is important to understand the metrics

commonly used to analyze them. The evaluation metrics are calculated using the values of true positives (TP),

false positives (FP), and false negatives (FN). In object detection, true negatives are not used, as the background

does not need a bounding box prediction. To determine whether the model’s bounding box prediction is correct,

the intersection over the union (IoU) area is measured [31]. IoU gauges the accuracy of the predicted bounding

box by assessing its overlap with the ground-truth bounding box for a particular object in the image. It

quantifies the extent of the Intersection between the predicted and ground-truth bounding boxes [31].

The IoU is calculated by finding the area of the Intersection between the two bounding boxes and

dividing it by the area of the union of the two bounding boxes [30]. The calculating IoU is as in (1):

𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
 (1)

In object detection, a threshold value for IoU is often defined to determine whether a predicted

bounding box is considered a true positive detection. The detection is classified as a true positive if the IoU

between the predicted bounding box and the ground-truth bounding box exceeds the threshold. Otherwise, it is

considered a FP.

AP measures how well the model localizes and identifies objects in an image, considering both

precision and recall [18]. Precision quantifies the model’s accuracy in identifying positive detections, with high

values suggesting precise object detection and low values indicating frequent false positives [18]. To calculate

the precision, the written as in (2). Recall assesses the model’s ability to identify actual objects, with high recall

reflecting the detection of most objects and low recall signaling many undetected objects [18]. Recall can be

written as in (3).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3)

First, the model’s predictions are sorted based on their confidence scores to compute AP. Then,

a precision-recall curve is generated by varying the confidence score threshold for considering a prediction as

a positive detection. For each threshold, precision and recall values are computed. The precision values are

interpolated to obtain a smooth precision-recall curve for increasing recall values. AP is computed as the area

  ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 22, No. 4, August 2024: 995-1004

998

under the precision-recall curve. It summarizes the overall performance of the model across all confidence

score thresholds. AP can be expressed as in (4), where 𝑝(𝑟) is the precision at a given recall value R, and 𝑑𝑟

is the differential notation representing an infinitesimally small change in the recall. In object detection tasks,

multiple object classes are often present. To evaluate the model’s performance across all classes, the AP for

each class is calculated, and the mean of these AP values is computed to obtain mAP. MAP can be expressed

as in (5), where 𝑄 is the number of queries in the set and 𝐴𝑃(𝑞) is the AP for a given query, 𝑞.

𝐴𝑃 = ∫ 𝑝(𝑟)𝑑𝑟
1

0
 (4)

𝑚𝐴𝑃 =
∑ 𝐴𝑃(𝑞)

𝑄
𝑞=1

𝑄
 (5)

A higher AP or mAP indicates better object detection performance, signifying more accurate

localization and identification of objects in the images [32]. The evaluation of object detection models involves

using Python notebooks, deep learning libraries, and custom scripts to calculate metrics like mAP on validation

datasets, with visualization tools assisting in analysis.

2.3. Code engineering

In the code engineering phase, the trained model is integrated with the system, linking model inference

to the detection workflow. Compatibility with the robot’s hardware and software is crucial. Post-deployment

testing evaluates the model’s detection efficacy from 1 to 10 meters, using automated tools to identify

performance bottlenecks, supported by embedded logging for data collection.

3. RESULT AND DISCUSSION

3.1. Data engineering

3.1.1. Dataset collection

A total of 5,910 raw images were gathered from Roboflow and robot-operated field recordings. These

images featured varied lighting and scenarios, including balls, robots, and goalposts. Additionally, they

included elements such as potential blurring, distance, and obstruction.

3.1.2. Dataset cleaning

The dataset cleaning identified duplicates and irrelevant images, which were subsequently removed

to maintain model accuracy. As a result, 2,104 images were retained post-cleaning. This careful curation

ensured the quality and relevance of the dataset for training and testing the model.

3.1.3. Dataset annotation

For dataset annotation, LabelImg was used to label the images. The annotations were saved as text

files in YOLO format, including the class index and bounding box coordinates. Figure 2 shows the images with

the drawn bounding box annotations.

Figure 2. Samples of annotated images

3.1.4. Dataset splitting

The total dataset, consisting of 2054 images, is partitioned into training, validation, and test subsets

using an 80:10:10% ratio. This results in 1644 images for training, 205 for validation, and 205 for testing. This

distribution strategy aims to strike a balance between facilitating a comprehensive learning process and

enabling a rigorous evaluation of the model, ensuring exposure to a diverse set of data while retaining a

significant subset for performance assessment.

TELKOMNIKA Telecommun Comput El Control 

Enhancing object detection for humanoid robot soccer: comparative analysis of … (Handaru Jati)

999

3.1.5. Exploratory data analysis

EDA is an analytical technique employed to evaluate the quality and suitability of datasets prior to

training. In this phase, the focus is on examining the distribution of classes and generating heatmaps of the

bounding boxes within each frame. These analyses confirm that the dataset is adequately prepared and ideal

for subsequent model training. The complete dataset comprises 4106 bounding boxes, divided into 2010 for

balls, 1293 for goalposts, and 803 for robots. The provided graph in Figure 3 visually represents the distribution

of bounding boxes across these three classes.

Figure 3. Each class bounding boxes count

From the graph presented above, it is evident that the dataset is imbalanced. The class ‘Ball’ has the

highest number of bounding boxes, followed by ‘Goalposts’ and ‘Robots.’ This disparity in class representation

could potentially lead to lower detection metrics for classes that appear less frequently in the dataset.

Subsequently, the researcher analyzes the spatial distribution of bounding boxes for each class within the frame.

The distribution map in Figure 4 illustrates that the placement of bounding boxes varies across different classes.

Specifically, the distribution of bounding boxes for the ‘Ball’ class is not uniform across the frame.

Figure 4. Each class bounding boxes distribution heatmap on a frame

3.1.6. Data augmentation

In response to the observed imbalance and uneven distribution of bounding boxes in the dataset, data

augmentation, specifically mosaic techniques, is proposed as a solution. Figure 5 shows the results of applying

mosaic augmentation to our dataset. Mosaic data augmentation, which combines multiple images into a single

training example, increases the diversity and complexity of the data.

Figure 5. Mosaic augmented datasets

  ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 22, No. 4, August 2024: 995-1004

1000

3.2. Modelling

3.2.1. Training YOLO model

Our object detection model was trained using fine-tuning on a pre-trained network to expedite

convergence on our dataset rather than starting from scratch. Our framework’s limitation necessitates this

method only to support fine-tuning. Training began with a 100-epoch baseline, extendable if metrics were

unstable, with batch sizes tailored to our hardware limitations. We trained three YOLO variants using their

respective frameworks: YOLOv7 with Wongkinyiu’s, YOLOv8 with Ultralytics, and YOLO-NAS with

Supergradients, using Python notebooks for efficiency. Each model achieved convergence by 100 epochs, as

further training showed negligible gains, supported by the graph of the mAP progression provided in Figure 6.

Figure 6. Each YOLO variants training performance

3.2.2. Model optimization

It is automatically simplified to reduce the complexity model using open neural network exchange

(ONNX). Furthermore, the model’s precision is decreased from floating point 32 (FP32) to floating point 16

(FP16), enhancing performance. Following these modifications, TensorRT is employed to compile the ONNX

model. This compilation process incorporates techniques such as layer fusing and tensor fusing, all of which

contribute to optimizing the model’s inference performance. Nevertheless, it is essential to acknowledge that these

optimization approaches may slightly compromise mAP metrics in exchange for enhanced inference speed.

3.2.3. Model evaluation

The performance metrics of the model were assessed on both the training device and the target

deployment device, employing the test split dataset for evaluation. The primary metrics utilized to evaluate our

trained YOLO models were mean mAP and inference speed. Comparisons were also conducted between the

raw trained model and the TensorRT compiled model to provide comprehensive insight into the performance

enhancements achieved through model optimization. Table 2 shows the results of the evaluation in terms of

speed and mAP. The pipeline duration in milliseconds (ms) shown in Table 2 represents the total time taken

from input preprocessing to postprocessing, including model inference.

Table 2. The comparative performance of YOLOv7, YOLOv8, and YOLO-NAS in terms of speed and mAP

Model variant Device Engine
Speed mAP@0.5

Inference (ms) Pipeline (ms) FPS Ball Goalpost Robot Total

YOLOv7
RTX3060

Pytorch 1.8 5.2 192.31 0.986 0.966 0.896 0.949

TensorRT 0.8 1.7 588.24 0.959 0.811 0.623 0.798

Jetson Nano TensorRT 24.8 34.6 28.90 0.959 0.811 0.623 0.798

YOLOv8
RTX3060

Pytorch 3.6 6.8 147.06 0.995 0.972 0.935 0.967

TensorRT 1.4 2.7 370.37 0.990 0.922 0.866 0.926

Jetson Nano TensorRT 61.1 75.2 13.30 0.990 0.922 0.866 0.926

YOLO-NAS
RTX3060

Pytorch 3.2 5 200.00 0.995 0.972 0.935 0.965

TensorRT 1.2 2 500.00 0.979 0.892 0.820 0.897

Jetson Nano TensorRT 48.2 57.1 17.51 0.979 0.892 0.820 0.897

To compare YOLO object detection metrics, researchers visualize the result in the graph in Figure 7.

The square point represents the compiled model’s performance. The circle point represents the raw trained

model’s performance. We can see the performance drop of the mAP as well as the increase of FPS between

compiled and raw-trained model. The line between square and circle points represents the performance gap

between the compiled and raw trained model. To compare the raw-trained model with the compiled model.

These comparisons result from the measurement of the training device (Nvidia RTX 3060 12 GB).

mailto:mAP@0.5

TELKOMNIKA Telecommun Comput El Control 

Enhancing object detection for humanoid robot soccer: comparative analysis of … (Handaru Jati)

1001

Figure 7. Comparison of each model performance on FPS and mAP trade-off

Blue represents YOLOv7, orange is YOLOv8, and green is YOLO-NAS. Circle points represent a

raw-trained model. Square points represent the compiled model. YOLOv7 records the lowest mAP at 0.79 and

performs least well in robot detection. YOLOv8 leads with an mAP of 0.92, with YOLO-NAS at 0.89.

YOLOv7 is fastest with a 24 ms inference speed on Jetson Nano, YOLO-NAS follows at 48 ms, and YOLOv8

at 61 ms. YOLOv7 experiences the most significant performance drop after optimization, while YOLOv8 has

the least. YOLO-NAS offers a balance between speed and precision, making it the most suitable compiled

model overall.

3.3. Code engineering

The Python-based detection pipeline consists of streamlined preprocessing, inference, and post-

processing, with image normalization in YOLO-NAS and integrated NMS in TensorRT enhancing efficiency.

The pipeline, as shown in Figure 8, initially processes the image using OpenCV, converting it from RGB to

the BGR color space and normalizing pixel values to a 0-1 range. These preprocessed inputs are then fed into

the GPU for inference, producing outputs including detection count, bounding box coordinates, class indices,

and confidence scores via EfficientNMS TRT. To validate model performance, a range test assesses object

detection capabilities across distances. Success is determined by the accurate depiction of bounding boxes on

live video feeds; failures are marked by their absence. The models consistently detected all object classes, with

performance varying by distance, as detailed in Figure 9’s depiction of detection success rates

Figure 8. Object detection pipeline

Figure 9. Result of deployment sanitation test against various distances

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

S
u

cc
es

s
R

at
e

Distance

YOLOv7

YOLOv8

YOLO-NAS

  ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 22, No. 4, August 2024: 995-1004

1002

Compared to Szemenyei and Estivill-Castro [33] using the ROBO object detection system, which

gained 84.5 mAP in accuracy and 13 FPS in speed. We can conclude that we have a similar result but a slightly

better performance using YOLO-NAS. Szemenyei and Estivill-Castro [33] have a 200% increase in speed

when introduced on pruning, while in our research, we have a 243% speed increase when introduced upon the

implementation of quantization.

4. CONCLUSION

This study indicates that YOLO-NAS outperforms its counterparts by achieving a balance between

inference speed (17.496 FPS on Nvidia Jetson Nano) and accuracy (mAP of 0.8968 at 0.5 IoU). Despite a 7%

drop in mAP for a 243% gain in speed upon compilation, YOLO-NAS maintains robust detection from

distances of 1 to 7 meters, although performance metrics are contingent on the specific test datasets used.

Teams are advised to implement YOLO-NAS for their detection systems. The study highlights a notable gap

in the form of a dedicated theoretical framework for YOLO application in this field, suggesting an opportunity

for future research to develop a targeted approach. Recommendations for future research include considering

hardware upgrades capable of int8 quantization for faster processing and exploring C++ implementation for

more efficient GPU utilization, which could potentially increase frame rates over the current Python-based

methods.

ACKNOWLEDGEMENTS

The completion of this research was made possible through the utilization of the Universitas Negeri

Yogyakarta’s Humanoid Robot Soccer.

REFERENCES
[1] S.-S. Park, V.-T. Tran, and D.-E. Lee, “Application of Various YOLO Models for Computer Vision-Based Real-Time Pothole

Detection,” Applied Sciences, vol. 11, no. 23, p. 11229, Nov. 2021, doi: 10.3390/app112311229.

[2] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified, Real-Time Object Detection,” in 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA: IEEE, Jun. 2016, pp. 779–788, doi:

10.1109/CVPR.2016.91.

[3] S. A. Irfan and N. S. Widodo, “Application of Deep Learning Convolution Neural Network Method on KRSBI Humanoid R-
SCUAD Robot,” Buletin Ilmiah Sarjana Teknik Elektro, vol. 2, no. 1, pp. 40-50, May 2020, doi: 10.12928/biste.v2i1.985.

[4] D. Zhou, G. Chen, and F. Xu, “Application of Deep Learning Technology in Strength Training of Football Players and Field Line

Detection of Football Robots,” Frontiers in Neurorobotics, vol. 16, p. 867028, Jun. 2022, doi: 10.3389/fnbot.2022.867028.
[5] F. Leiva, N. Cruz, I. Bugueño, and J. Ruiz-del-Solar, “Playing Soccer without Colors in the SPL: A Convolutional Neural Network

Approach.” arXiv, Nov. 29, 2018. doi: 10.48550/arXiv.1811.12493.

[6] A. C. Nugraha, M. L. Hakim, S. Yatmono, and M. Khairudin, “Development of Ball Detection System with YOLOv3 in a Humanoid
Soccer Robot,” Journal of Physics: Conference Series, vol. 2111, no. 1, p. 012055, Nov. 2021, doi: 10.1088/1742-

6596/2111/1/012055.

[7] S. Chatterjee, F. H. Zunjani, and G. C. Nandi, “Real-Time Object Detection and Recognition on Low-Compute Humanoid Robots
using Deep Learning,” in 2020 6th International Conference on Control, Automation and Robotics (ICCAR), Singapore, Apr. 2020,

pp. 202–208. doi: 10.1109/ICCAR49639.2020.9108054.

[8] J. Hu, B. Yan, J. Wang, and P. Sun, “Humanoid Soccer Robot Target Detection and Localization,” in Proceedings of the 2023
International Joint Conference on Robotics and Artificial Intelligence, Shanghai China: ACM, Jul. 2023, pp. 65–69. doi:

10.1145/3632971.3632992.

[9] Y. Hayashibara et al., “RoboCup2022 KidSize League Winner CIT Brains: Open Platform Hardware SUSTAINA-OP and
Software,” in RoboCup 2022: Robot World Cup XXV, vol. 13561, pp. 215–227, 2023, doi: 10.1007/978-3-031-28469-4_18.

[10] S. K. Narayanaswami et al., “Towards a Real-Time, Low-Resource, End-to-End Object Detection Pipeline for Robot Soccer,” in

RoboCup 2022: Robot World Cup XXV, Berlin, Heidelberg: Springer-Verlag, vol 13561, pp. 62–74, Mar. 2023, doi: 10.1007/978-
3-031-28469-4_6.

[11] D. D. R. Meneghetti, T. P. D. Homem, J. H. R. De Oliveira, I. J. D. Silva, D. H. Perico, and R. A. D. C. Bianchi, “Detecting Soccer

Balls with Reduced Neural Networks: A Comparison of Multiple Architectures Under Constrained Hardware Scenarios,” Journal
of Intelligent & Robotic Systems, vol. 101, no. 3, p. 53, Mar. 2021, doi: 10.1007/s10846-021-01336-y.

[12] S. Susanto, F. A. Putra, and R. Analia, “XNOR-YOLO: The High Precision of The Ball and Goal Detecting on The Barelang-FC

Robot Soccer,” in 2020 3rd International Conference on Applied Engineering (ICAE), Batam, Indonesia, pp. 1–5, Oct. 2020, doi:
10.1109/ICAE50557.2020.9350386.

[13] J. Hagge, “Deep Active Learning for Object Detection in RoboCup Soccer,” University of Hamburg, Hamburg, Jerman, 2021.

[14] M. Szemenyei and V. Estivill-Castro, “Fully neural object detection solutions for robot soccer,” Neural Computing and
Applications, vol. 34, no. 24, pp. 21419–21432, Dec. 2022, doi: 10.1007/s00521-021-05972-1.

[15] C. O. Yinka-Banjo, O. A. Ugot, and E. Ehiorobo, “Object detection for robot coordination in robotics soccer,” Nigerian Journal of

Technological Development, vol. 19, no. 2, pp. 136–142, Aug. 2022, doi: 10.4314/njtd.v19i2.5.
[16] M. Bestmann et al., “TORSO-21 Dataset: Typical Objects in RoboCup Soccer 2021,” in RoboCup 2021: Robot World Cup XXIV,

vol. 13132, pp. 65–77, 2022, doi: 10.1007/978-3-030-98682-7_6.

[17] E. R. Jamzuri et al., “Barelang FC - Team Description Paper Humanoid Kid-Size League RoboCup 2023 France,” 2023, doi:
10.13140/RG.2.2.30653.23527.

TELKOMNIKA Telecommun Comput El Control 

Enhancing object detection for humanoid robot soccer: comparative analysis of … (Handaru Jati)

1003

[18] T. Werner, “Exploring the Effectiveness of Object Detection Training in Virtual Environments,” Bachelor Informatica University
of Amsterdam, Jun. 2023.

[19] D. Pavlichenko et al., “RoboCup 2022 AdultSize Winner NimbRo: Upgraded Perception, Capture Steps Gait and Phase-Based In-

Walk Kicks,” in RoboCup 2022: Robot World Cup XXV, vol. 13561, pp. 240–252, 2023, doi: 10.1007/978-3-031-28469-4_20.
[20] D. Rodriguez et al., “RoboCup 2019 AdultSize Winner NimbRo: Deep Learning Perception, In-Walk Kick, Push Recovery, and

Team Play Capabilities,” RoboCup 2019, Robot World Cup XXIII, vol. 11531, pp. 631-645, 2019, doi: 10.1007/978-3-030-35699-6.

[21] A. Tripathi, M. K. Gupta, C. Srivastava, P. Dixit, and S. K. Pandey, “Object Detection using YOLO: A Survey,” in 2022 5th
International Conference on Contemporary Computing and Informatics (IC3I), Uttar Pradesh, India, pp. 747–752, 2022, doi:

10.1109/IC3I56241.2022.10073281.

[22] M. Hussain, “YOLO-v1 to YOLO-v8, the Rise of YOLO and Its Complementary Nature toward Digital Manufacturing and
Industrial Defect Detection,” Machines, vol. 11, no. 7, p. 677, 2023, doi: 10.3390/machines11070677.

[23] J. Terven, D.-M. Córdova-Esparza, and J.-A. Romero-González, “A Comprehensive Review of YOLO Architectures in Computer

Vision: From YOLOv1 to YOLOv8 and YOLO-NAS,” Machine Learning and Knowledge Extraction, vol. 5, no. 4, pp. 1680–1716,
2023, doi: 10.3390/make5040083.

[24] Z. Xiong, “A Design of Bare Printed Circuit Board Defect Detection System Based on YOLOv8,” Highlights in Science,

Engineering and Technology, vol. 57, pp. 203–209, 2023, doi: 10.54097/hset.v57i.10002.
[25] F. Xu, B. Li, and S. Xu, “Accurate and Rapid Localization of Tea Bud Leaf Picking Point Based on YOLOv8,” in Big Data and

Social Computing, vol. 1846, pp. 261–274, 2023, doi: 10.1007/978-981-99-3925-1_17.

[26] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time
Object Detectors,” in 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada,

pp. 7464–7475, 2023, doi: 10.1109/CVPR52729.2023.00721.

[27] Susanto, E. Rudiawan, R. Analia, P. Daniel Sutopo, and H. Soebakti, “The deep learning development for real-time ball and goal
detection of barelang-FC,” in 2017 International Electronics Symposium on Engineering Technology and Applications (IES-ETA),

Surabaya, pp. 146–151, 2017, doi: 10.1109/ELECSYM.2017.8240393.

[28] F. Zhengxin et al., “MLOps Spanning Whole Machine Learning Life Cycle: A Survey.” arXiv, 2023. doi:
10.48550/arXiv.2304.07296.

[29] Z. Xiao, Y. Zhu, Y. Chen, B. Y. Zhao, J. Jiang, and H. Zheng, “Addressing Training Bias via Automated Image Annotation.” arXiv,

2018, doi: 10.48550/arXiv.1809.10242.
[30] J. Tian, Q. Jin, Y. Wang, J. Yang, S. Zhang, and D. Sun, “Performance analysis of deep learning-based object detection algorithms

on COCO benchmark: a comparative study,” Journal of Engineering and Applied Science, vol. 71, no. 1, p. 76, 2024, doi:

10.1186/s44147-024-00411-z.
[31] P. Števuliáková and P. Hurtik, “Intersection over Union with smoothing for bounding box regression.” arXiv, 2023, doi:

10.48550/arXiv.2303.15067.

[32] T. Shehzadi, K. A. Hashmi, D. Stricker, M. Liwicki, and M. Z. Afzal, “Bridging the Performance Gap between DETR and R-CNN
for Graphical Object Detection in Document Images,” arXiv, 2023, doi: 10.48550/arXiv.2306.13526.

[33] M. Szemenyei and V. Estivill-Castro, “ROBO: Robust, Fully Neural Object Detection for Robot Soccer,” in RoboCup 2019: Robot

World Cup XXIII, vol. 11531, pp. 309–322, 2019, doi: 10.1007/978-3-030-35699-6_24.

BIOGRAPHIES OF AUTHORS

Handaru Jati received the Ph.D. degree in Departement of Computer and

Information Science from Universiti Teknologi Petronas, Malaysia. He is currently a Assoc.

Professor at Universitas negeri Yogyakarta, Department of Electronic and Informatics

Engineering Education. His current research interests include machine learning, artificial

intelligent, decision support system, data mining, software development, and vocational

education. He can be contacted at email: handaru@uny.ac.id.

Nur Alif Ilyasa a graduate of the Bachelor of Information Technology program

at Universitas Negeri Yogyakarta, distinguishes himself as a proficient software engineer

with a fervent interest in artificial intelligence, computer vision, and robotics. A dedicated

member of the Al-’Aadiyaat Humanoid Robot Soccer Team, he has contributed his skills and

expertise to the UNY robotics team’s humanoid robot soccer software for an impressive three

years. He can be contacted at email: parasyst@gmail.com.

https://orcid.org/0000-0002-0509-8460
https://scholar.google.com/citations?user=tFKBYJ8AAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=25825016500
https://www.webofscience.com/wos/author/record/39544
https://orcid.org/0009-0005-3074-8807
https://scholar.google.co.id/citations?user=nqzOg7YAAAAJ&hl=en
https://www.webofscience.com/wos/author/record/KEE-8378-2024

  ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 22, No. 4, August 2024: 995-1004

1004

Yuniar Indrihapsari is currently working as a teacher at Universitas Negeri

Yogyakarta, Indonesia and a Ph.D. student at National Taiwan University of Science and

Technology, Taiwan. Her research interests include social network analysis, e-learning, and

human-computer interaction. She can be contacted at email: yuniar@uny.ac.id.

Ariadie Chandra is a lecturer in the Department of Electrical Engineering

Education at Universitas Negeri Yogyakarta. Renowned as an expert in learning media and

robotics, he further extends his influence as a supervisor for the UNY robotics team. With an

illustrious career spanning five years, he has been actively engaged in impactful research,

particularly focusing on the humanoid robot soccer initiatives undertaken by the UNY

robotics team. He can be contacted at email: ariadie@uny.ac.id.

Dhanapal Durai Dominic works as a Assoc. Prof. at Universiti Teknologi

PETRONAS, Department of Computer and Information Sciences. His research interest is

management information system, management information systems, decision support system,

e-Business, and data analytics. He can be contacted at email: dhanapal_d@utp.edu.my.

https://orcid.org/0000-0002-0950-6513
https://scholar.google.co.id/citations?user=tOr0BxIAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57215538946
https://www.webofscience.com/wos/author/record/KOD-3452-2024
https://orcid.org/0000-0002-5184-3951
https://scholar.google.co.id/citations?user=3TIaGmAAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57203836399
https://www.webofscience.com/wos/author/record/IAN-3264-2023
https://orcid.org/0000-0002-2496-1311
https://scholar.google.com/citations?hl=en&user=In0QqJUAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=25824770400
https://www.webofscience.com/wos/author/record/3500698

