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 The humanoid robot soccer system encounters a notable challenge in object 

detection, primarily concentrating on identifying the ball and often neglecting 

crucial elements like opposing robots and goals, resulting in on-field 

collisions and imprecise ball shooting. This study comparatively evaluates 

three you only look once (YOLO) real-time object detection system variants: 

YOLOv8, YOLOv7, and YOLO-NAS. A dataset of 2104 annotated images, 

covering classes such as ball, goalpost, and robot, was curated from Roboflow 

and robot-captured images. The dataset was partitioned into training, 

validation, and testing sets, and each YOLO model underwent extensive fine-

tuning over 100 epochs on this custom dataset, leveraging the pre-trained 

common objects in context (COCO) model. Evaluation metrics, including 

mean average precision (mAP) and inference speed, assessed performance. 

YOLOv8 achieved the highest accuracy with a mAP of 0.92, while YOLOv7 

showed the fastest inference speed of 24 ms on the Jetson Nano platform. 

Balancing accuracy and speed, YOLO-NAS emerged as the optimal choice. 

Thus, YOLO-NAS is recommended for object detection for humanoid soccer 

robots, regardless of team affiliation. Future research should focus on 

enhancing object detection through advanced training techniques, model 

architectures, and sensor fusion for improved performance in dynamic 

environments, potentially optimizing through scenario-specific fine-tuning. 
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1. INTRODUCTION 

Robot soccer, also known as the RoboCup humanoid league, presents an intriguing and demanding 

domain within robotics, aiming to advance the development of self-governing humanoid robots capable of 

engaging in soccer matches. This field not only serves as a proving ground for state-of-the-art artificial 

intelligence, computer vision, motion planning, and control algorithms but also propels progress in both 

robotics and artificial intelligence, all while offering an enjoyable and interactive platform to showcase the 

capabilities of autonomous humanoid machines. 

In humanoid robot soccer, one pivotal challenge pertains to the object detection system. The system’s 

capability is limited to identifying the soccer ball, failing to recognize other critical elements such as opponent 

robots and the goalposts. The system relies on outdated techniques like basic segmentation and Hough circle 

https://creativecommons.org/licenses/by-sa/4.0/
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methods, which have become less effective since the ball’s color mark was replaced with white color and spot 

patterns under current RoboCup regulations. This modification has significantly increased the difficulty of ball 

detection, resulting in frequent false positives due to the prevalence of white objects in the soccer environment. 

Furthermore, the absence of awareness regarding other robots and the goal often leads to collisions with other 

robots and challenges in aligning shots toward the goal. 

From 2020 to 2023, many studies in humanoid robot soccer have delved into object detection systems, 

as detailed in Table 1. A notable portion of these investigations has incorporated the you only look once 

(YOLO) algorithm, revolutionizing computer vision with its ability to swiftly and accurately identify multiple 

objects in images and videos in real-time [1]. Unlike conventional methods that rely on multi-stage processes, 

YOLO’s innovative design enables it to process the entire image simultaneously, rendering it exceptionally 

rapid and efficient [2]. The data in Table 1 highlights the widespread adoption of YOLO, bolstered by many 

researchers who attest to its robust performance. 

 

 

Table 1. Publication papers related to humanoid robot soccer object detection publication paper 

method/model 
Publication Paper Method/Model 

[3]-[5] CNN 

[6], [7] YOLOv3 

[8]-[10], [11] YOLO 
[12] XNOR-YOLO 

[11] MobileNet 
[13] YOLOv4 

[14] ROBO 

[15] YOLOv2 
[16] YOLOv4-Tiny 

[15] Faster RCNN 

[17] YOLOv7 
[18] YOLOv8 

[19] NimbroNet 

[20] Unet 
[10] SSD 

 

 

Object detection has seen a proliferation of YOLO variants, showcasing their adaptability and 

versatility [21]. However, subsequence versions of YOLO have developed [22]. A comprehensive evaluation 

of each YOLO variant’s strengths and limitations and robust benchmarking on a relevant dataset are crucial 

for making an informed decision. This ensures that the selected YOLO model significantly improves object 

detection capabilities in humanoid robot soccer, regardless of team affiliation or specific application. 

This study focuses on three prominent YOLO variants: YOLOv8, YOLOv7, and YOLO-NAS, chosen 

for their significance and relevance in object detection [23]. Each variant represents a distinct evolution of the 

YOLO algorithm, incorporating specific enhancements and optimizations [22]. YOLOv8 is known for its 

exceptional accuracy [24], [25], making it an excellent choice for applications where precision is crucial. 

Conversely, YOLOv7 is praised for its impressive speed, vital for real-time object detection scenarios [26]. 

Finally, YOLO-NAS is designed with an architecture that prioritizes efficiency, striking a balance between 

accuracy and speed, rendering it a notable contender across various applications [23]. 

However, a systematic comparison is currently lacking, impeding the ability to make an informed 

decision that could enhance object detection capabilities in humanoid robot soccer, regardless of team 

affiliation or specific application [27]. Therefore, this study aimed to comprehensively evaluate these three 

YOLO variants, considering the diverse requirements of object detection in humanoid robot soccer. The goal 

is to determine which YOLO variant is best suited for optimizing object detection in this context. This approach 

ensures that the selected YOLO model aligns seamlessly with the sport’s unique demands, accounting for 

computational resources, real-time performance, accuracy, and the types of objects commonly encountered in 

the soccer environment. 

 

 

2. METHOD 

Based on the literature study explained in the previous section, YOLO is proposed as a new detection 

approach. A YOLO was a convolutional neural network (CNN) model and an end-to-end machine learning 

workflow procedure was performed in this research. The procedure consists of the data engineering stage, 

model engineering stage, and code engineering stage as shown in Figure 1 [28].  
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Figure 1. Machine learning model development procedure 

 

 

2.1.  Data engineering 

Data in this context is data to train the model. Data engineering or data preparation stages involve a 

subsequence process to prepare a dataset to train the model. This involves data collection, cleaning, annotation, 

splitting, exploratory data analysis (EDA), and data augmentation [28]. Data preparation for YOLO training 

involves accumulating and refining a dataset of labeled images from humanoid robot soccer matches, 

supplemented by custom data from scripts on robots. Ensuring dataset quality requires cleansing to remove any 

irrelevant or redundant images. YOLO needs images and representative annotations to train the model [29]. 

Annotations, defined by bounding boxes, contain class, location, and size information. Labeling software is 

used for manual annotation, after which datasets are divided into training, validation, and test sets. Data 

augmentation techniques, informed by EDA, enhance dataset diversity. 

 

2.2.  Model engineering 

The model engineering stage consists of modelling, model training, optimization, and evaluation [28]. 

A Python script notebook organizes training code, setting hyperparameters like batch size and learning rate for 

optimal training. Model optimization involves simplifying the model to reduce complexity and latency while 

maintaining detection performance. Upon completion of the model training, the next step is evaluation, which 

is conducted using a dedicated test dataset excluded from the training process. This dataset consists of unseen 

data, facilitating an unbiased evaluation of the model’s generalization capabilities. Metrics such as mean 

average precision (mAP) and average precision (AP) are utilized to quantify the model’s detection accuracy [30]. 

To compare the performance of trained object detection models, it is important to understand the metrics 

commonly used to analyze them. The evaluation metrics are calculated using the values of true positives (TP), 

false positives (FP), and false negatives (FN). In object detection, true negatives are not used, as the background 

does not need a bounding box prediction. To determine whether the model’s bounding box prediction is correct, 

the intersection over the union (IoU) area is measured [31]. IoU gauges the accuracy of the predicted bounding 

box by assessing its overlap with the ground-truth bounding box for a particular object in the image. It 

quantifies the extent of the Intersection between the predicted and ground-truth bounding boxes [31]. 

The IoU is calculated by finding the area of the Intersection between the two bounding boxes and 

dividing it by the area of the union of the two bounding boxes [30]. The calculating IoU is as in (1): 

 

𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
 (1) 

 

In object detection, a threshold value for IoU is often defined to determine whether a predicted 

bounding box is considered a true positive detection. The detection is classified as a true positive if the IoU 

between the predicted bounding box and the ground-truth bounding box exceeds the threshold. Otherwise, it is 

considered a FP. 

AP measures how well the model localizes and identifies objects in an image, considering both 

precision and recall [18]. Precision quantifies the model’s accuracy in identifying positive detections, with high 

values suggesting precise object detection and low values indicating frequent false positives [18]. To calculate 

the precision, the written as in (2). Recall assesses the model’s ability to identify actual objects, with high recall 

reflecting the detection of most objects and low recall signaling many undetected objects [18]. Recall can be 

written as in (3). 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (3) 

 

First, the model’s predictions are sorted based on their confidence scores to compute AP. Then,  

a precision-recall curve is generated by varying the confidence score threshold for considering a prediction as 

a positive detection. For each threshold, precision and recall values are computed. The precision values are 

interpolated to obtain a smooth precision-recall curve for increasing recall values. AP is computed as the area 
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under the precision-recall curve. It summarizes the overall performance of the model across all confidence 

score thresholds. AP can be expressed as in (4), where 𝑝(𝑟) is the precision at a given recall value R, and 𝑑𝑟 

is the differential notation representing an infinitesimally small change in the recall. In object detection tasks, 

multiple object classes are often present. To evaluate the model’s performance across all classes, the AP for 

each class is calculated, and the mean of these AP values is computed to obtain mAP. MAP can be expressed 

as in (5), where 𝑄 is the number of queries in the set and 𝐴𝑃(𝑞) is the AP for a given query, 𝑞. 

 

𝐴𝑃 = ∫ 𝑝(𝑟)𝑑𝑟
1

0
 (4) 

 

𝑚𝐴𝑃 =
∑ 𝐴𝑃(𝑞)

𝑄
𝑞=1

𝑄
 (5) 

 

A higher AP or mAP indicates better object detection performance, signifying more accurate 

localization and identification of objects in the images [32]. The evaluation of object detection models involves 

using Python notebooks, deep learning libraries, and custom scripts to calculate metrics like mAP on validation 

datasets, with visualization tools assisting in analysis. 

 

2.3.  Code engineering 

In the code engineering phase, the trained model is integrated with the system, linking model inference 

to the detection workflow. Compatibility with the robot’s hardware and software is crucial. Post-deployment 

testing evaluates the model’s detection efficacy from 1 to 10 meters, using automated tools to identify 

performance bottlenecks, supported by embedded logging for data collection. 

 

 

3. RESULT AND DISCUSSION 

3.1.  Data engineering 

3.1.1. Dataset collection 

A total of 5,910 raw images were gathered from Roboflow and robot-operated field recordings. These 

images featured varied lighting and scenarios, including balls, robots, and goalposts. Additionally, they 

included elements such as potential blurring, distance, and obstruction. 

 

3.1.2. Dataset cleaning 

The dataset cleaning identified duplicates and irrelevant images, which were subsequently removed 

to maintain model accuracy. As a result, 2,104 images were retained post-cleaning. This careful curation 

ensured the quality and relevance of the dataset for training and testing the model. 

 

3.1.3. Dataset annotation 

For dataset annotation, LabelImg was used to label the images. The annotations were saved as text 

files in YOLO format, including the class index and bounding box coordinates. Figure 2 shows the images with 

the drawn bounding box annotations. 

 

 

 
 

Figure 2. Samples of annotated images 

 

 

3.1.4. Dataset splitting 

The total dataset, consisting of 2054 images, is partitioned into training, validation, and test subsets 

using an 80:10:10% ratio. This results in 1644 images for training, 205 for validation, and 205 for testing. This 

distribution strategy aims to strike a balance between facilitating a comprehensive learning process and 

enabling a rigorous evaluation of the model, ensuring exposure to a diverse set of data while retaining a 

significant subset for performance assessment. 
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3.1.5. Exploratory data analysis 

EDA is an analytical technique employed to evaluate the quality and suitability of datasets prior to 

training. In this phase, the focus is on examining the distribution of classes and generating heatmaps of the 

bounding boxes within each frame. These analyses confirm that the dataset is adequately prepared and ideal 

for subsequent model training. The complete dataset comprises 4106 bounding boxes, divided into 2010 for 

balls, 1293 for goalposts, and 803 for robots. The provided graph in Figure 3 visually represents the distribution 

of bounding boxes across these three classes. 

 

 

 
 

Figure 3. Each class bounding boxes count 

 

 

From the graph presented above, it is evident that the dataset is imbalanced. The class ‘Ball’ has the 

highest number of bounding boxes, followed by ‘Goalposts’ and ‘Robots.’ This disparity in class representation 

could potentially lead to lower detection metrics for classes that appear less frequently in the dataset. 

Subsequently, the researcher analyzes the spatial distribution of bounding boxes for each class within the frame. 

The distribution map in Figure 4 illustrates that the placement of bounding boxes varies across different classes. 

Specifically, the distribution of bounding boxes for the ‘Ball’ class is not uniform across the frame. 

 

 

 
 

Figure 4. Each class bounding boxes distribution heatmap on a frame 

 

 

3.1.6. Data augmentation 

In response to the observed imbalance and uneven distribution of bounding boxes in the dataset, data 

augmentation, specifically mosaic techniques, is proposed as a solution. Figure 5 shows the results of applying 

mosaic augmentation to our dataset. Mosaic data augmentation, which combines multiple images into a single 

training example, increases the diversity and complexity of the data. 

 

 

 
 

Figure 5. Mosaic augmented datasets 



                ISSN: 1693-6930 

TELKOMNIKA Telecommun Comput El Control, Vol. 22, No. 4, August 2024: 995-1004 

1000 

3.2.  Modelling 

3.2.1. Training YOLO model 

Our object detection model was trained using fine-tuning on a pre-trained network to expedite 

convergence on our dataset rather than starting from scratch. Our framework’s limitation necessitates this 

method only to support fine-tuning. Training began with a 100-epoch baseline, extendable if metrics were 

unstable, with batch sizes tailored to our hardware limitations. We trained three YOLO variants using their 

respective frameworks: YOLOv7 with Wongkinyiu’s, YOLOv8 with Ultralytics, and YOLO-NAS with 

Supergradients, using Python notebooks for efficiency. Each model achieved convergence by 100 epochs, as 

further training showed negligible gains, supported by the graph of the mAP progression provided in Figure 6. 
 

 

 
 

Figure 6. Each YOLO variants training performance 

 

 

3.2.2. Model optimization 

It is automatically simplified to reduce the complexity model using open neural network exchange 

(ONNX). Furthermore, the model’s precision is decreased from floating point 32 (FP32) to floating point 16 

(FP16), enhancing performance. Following these modifications, TensorRT is employed to compile the ONNX 

model. This compilation process incorporates techniques such as layer fusing and tensor fusing, all of which 

contribute to optimizing the model’s inference performance. Nevertheless, it is essential to acknowledge that these 

optimization approaches may slightly compromise mAP metrics in exchange for enhanced inference speed. 

 

3.2.3. Model evaluation 

The performance metrics of the model were assessed on both the training device and the target 

deployment device, employing the test split dataset for evaluation. The primary metrics utilized to evaluate our 

trained YOLO models were mean mAP and inference speed. Comparisons were also conducted between the 

raw trained model and the TensorRT compiled model to provide comprehensive insight into the performance 

enhancements achieved through model optimization. Table 2 shows the results of the evaluation in terms of 

speed and mAP. The pipeline duration in milliseconds (ms) shown in Table 2 represents the total time taken 

from input preprocessing to postprocessing, including model inference. 
 

 

Table 2. The comparative performance of YOLOv7, YOLOv8, and YOLO-NAS in terms of speed and mAP 

Model variant Device Engine 
Speed mAP@0.5 

Inference (ms) Pipeline (ms) FPS Ball Goalpost Robot Total 

YOLOv7 
RTX3060 

Pytorch 1.8 5.2 192.31 0.986 0.966 0.896 0.949 

TensorRT 0.8 1.7 588.24 0.959 0.811 0.623 0.798 

Jetson Nano TensorRT 24.8 34.6 28.90 0.959 0.811 0.623 0.798 

YOLOv8 
RTX3060 

Pytorch 3.6 6.8 147.06 0.995 0.972 0.935 0.967 

TensorRT 1.4 2.7 370.37 0.990 0.922 0.866 0.926 

Jetson Nano TensorRT 61.1 75.2 13.30 0.990 0.922 0.866 0.926 

YOLO-NAS 
RTX3060 

Pytorch 3.2 5 200.00 0.995 0.972 0.935 0.965 

TensorRT 1.2 2 500.00 0.979 0.892 0.820 0.897 

Jetson Nano TensorRT 48.2 57.1 17.51 0.979 0.892 0.820 0.897 

 

 

To compare YOLO object detection metrics, researchers visualize the result in the graph in Figure 7. 

The square point represents the compiled model’s performance. The circle point represents the raw trained 

model’s performance. We can see the performance drop of the mAP as well as the increase of FPS between 

compiled and raw-trained model. The line between square and circle points represents the performance gap 

between the compiled and raw trained model. To compare the raw-trained model with the compiled model. 

These comparisons result from the measurement of the training device (Nvidia RTX 3060 12 GB). 

mailto:mAP@0.5
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Figure 7. Comparison of each model performance on FPS and mAP trade-off 

 

 

Blue represents YOLOv7, orange is YOLOv8, and green is YOLO-NAS. Circle points represent a 

raw-trained model. Square points represent the compiled model. YOLOv7 records the lowest mAP at 0.79 and 

performs least well in robot detection. YOLOv8 leads with an mAP of 0.92, with YOLO-NAS at 0.89. 

YOLOv7 is fastest with a 24 ms inference speed on Jetson Nano, YOLO-NAS follows at 48 ms, and YOLOv8 

at 61 ms. YOLOv7 experiences the most significant performance drop after optimization, while YOLOv8 has 

the least. YOLO-NAS offers a balance between speed and precision, making it the most suitable compiled 

model overall. 

 

3.3.  Code engineering 

The Python-based detection pipeline consists of streamlined preprocessing, inference, and post-

processing, with image normalization in YOLO-NAS and integrated NMS in TensorRT enhancing efficiency. 

The pipeline, as shown in Figure 8, initially processes the image using OpenCV, converting it from RGB to 

the BGR color space and normalizing pixel values to a 0-1 range. These preprocessed inputs are then fed into 

the GPU for inference, producing outputs including detection count, bounding box coordinates, class indices, 

and confidence scores via EfficientNMS TRT. To validate model performance, a range test assesses object 

detection capabilities across distances. Success is determined by the accurate depiction of bounding boxes on 

live video feeds; failures are marked by their absence. The models consistently detected all object classes, with 

performance varying by distance, as detailed in Figure 9’s depiction of detection success rates 

 

 

 
 

Figure 8. Object detection pipeline 

 

 

 
 

Figure 9. Result of deployment sanitation test against various distances 
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Compared to Szemenyei and Estivill-Castro [33] using the ROBO object detection system, which 

gained 84.5 mAP in accuracy and 13 FPS in speed. We can conclude that we have a similar result but a slightly 

better performance using YOLO-NAS. Szemenyei and Estivill-Castro [33] have a 200% increase in speed 

when introduced on pruning, while in our research, we have a 243% speed increase when introduced upon the 

implementation of quantization. 

 

 

4. CONCLUSION 

This study indicates that YOLO-NAS outperforms its counterparts by achieving a balance between 

inference speed (17.496 FPS on Nvidia Jetson Nano) and accuracy (mAP of 0.8968 at 0.5 IoU). Despite a 7% 

drop in mAP for a 243% gain in speed upon compilation, YOLO-NAS maintains robust detection from 

distances of 1 to 7 meters, although performance metrics are contingent on the specific test datasets used. 

Teams are advised to implement YOLO-NAS for their detection systems. The study highlights a notable gap 

in the form of a dedicated theoretical framework for YOLO application in this field, suggesting an opportunity 

for future research to develop a targeted approach. Recommendations for future research include considering 

hardware upgrades capable of int8 quantization for faster processing and exploring C++ implementation for 

more efficient GPU utilization, which could potentially increase frame rates over the current Python-based 

methods. 
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