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Abstract 
It is generally known that almost all filled function methods for one-dimensional unconstrained 

global optimization problems have computational weaknesses. This paper introduces a relatively new 
parameter free filled function, which creates a non-ascending bridge from any local isolated minimizer to 
other first local isolated minimizer with lower or equal function value. The algorithm’s unprecedented 
function can be used to determine all extreme and inflection points between the two considered 
consecutive local isolated minimizers. The proposed method never fails to carry out its job. The results of 
the several testing examples have shown the capability and efficiency of this algorithm while at the same 
time, proving that the computational weaknesses of the filled function methods can be overcomed. 
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1. Introduction  
This article presents a new method for finding the global minimum of a non-convex 

function. A variety of fields, including engineering, operational research, finance and social 
sciences can be transformed as the optimization model where its objective function is  
non-convex. This non-convexity property makes the main reason a classical optimization 
method often fails to obtain a global minimizer (maximizer) [1-10]. The existing methods for 
finding a global minimizer provide the global descent [11, 12], the interval [13-17], the simulated 
annealing [18], the genetic algorithm [19], one-dimensional global optimization with Lipschitz 
conditions [20, 21], the filled function methods [4-6, 22-25] ideas and etc. Most of the filled 
function methods work quite different compared to the methods described in [11-22, 26-28]. 
This article will focus on the filled function methods and the comparison among them. 

Suppose that 𝑥𝑘
∗  (𝑘 = 0,… ,𝑚) are 𝑚 isolated minimizers of 𝑓 Four different parametric 

filled functions at 𝑥𝑘
∗  are defined by 

 

𝐹𝐺 = 𝐹𝐺(𝑥, 𝑥𝑘
∗ , 𝑟, 𝜌) =

1

𝑟+𝑓(𝑥)
exp (−

‖𝑥−𝑥𝑘
∗‖
2

𝑝2
), (1) 

 

𝐹𝑍 = 𝐹𝑍(𝑥, 𝑥𝑘
∗ , 𝑟, 𝜇)  

     = 𝑓(𝑥𝑘
∗) − min(𝑓(𝑥𝑘

∗), 𝑓(𝑥)) − 𝜌‖𝑥 − 𝑥𝑘
∗‖2 + 𝜇{max(0, 𝑓(𝑥) − 𝑓(𝑥𝑘

∗))}
2
, (2) 

 

𝐹𝐿𝑆 = 𝐹𝐿𝑆(𝑥, 𝑥𝑘
∗ , 𝜏, 𝜌) = 𝜂(0.5‖𝑥 − 𝑥0‖

2) + 𝜑(𝜏[𝑓(𝑥) − 𝑓(𝑥𝑘
∗) + 𝑝]), and (3) 

 

𝐹𝑋 = 𝐹𝑋(𝑥, 𝑥𝑘
∗ , 𝑎) =

1

ln(1+𝑓(𝑥)−𝑓(𝑥𝑘
∗ ))
− 𝑎‖𝑥 − 𝑥𝑘

∗‖2, (4) 

 

are proposed in [4, 26, 29, 22] respectively where parameter 𝑎 is defined by 
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𝑎 =
𝜉|𝑓′(𝑥𝑠)|

2|𝑥𝑠−𝑥1
∗|(1+𝑓(𝑥)−𝑓(𝑥𝑘

∗ ))(ln(1+𝑓(𝑥)−𝑓(𝑥𝑘
∗ )))

2. (5) 

 
Unfortunately, the existing filled function methods [23, 26-29] can not solve the global 

optimization problems since:  
a. cannot assure the existence of a better local minimizer in a lower basin [29, 30]; 
b. require the assumption that 𝑓 has only a finite number of local minimizer which have different 

function values, i.e., 𝑓(𝑥1
∗) ≠ 𝑓(𝑥2

∗) if 𝑥1
∗ ≠ 𝑥2

∗; 
c. difficult to adjust an appropriate parameter to satisfy the conditions of filled function;  
d. iteratively updated the parameter;  
e. can only obtain one global optimizer, and  
f. contain exponential or logarithmic expressions in their forms which make a large amount of 

computation.  
For filled function [24], its two parameters, one of which relies on the diameter of a 

bounded closed domain which contains all global minimizers, and the other on Lipschitz 
constant of 𝑓 respectively. The parameter free filled function (PFFF) was initially introduced  
in [30-35]. A PFFF proposed by Ma et al. [34] is 

 

𝐹𝑀(𝑥, 𝑥𝑘
∗) = −𝑠𝑖𝑔𝑛(𝑓(𝑥) − 𝑓(𝑥𝑘

∗))arctan(‖𝑥 − 𝑥𝑘
∗‖2) where 𝑠𝑖𝑔𝑛(𝑡) = {

1, (𝑡 ≥ 0)

−1, (𝑡 < 0)
 (6) 

 

where this method also has weaknesses as the others. 
Our new PFFF method (or simply IYRH’s method) is based on PFFF [30-35] for global 

optimization of 𝑓: 𝐷 ⊆ 𝑅 → 𝑅 where 𝑓 satisfies the following seven assumptions: 

A1. 𝑓 is a trice continuously differentiable on 𝐷 (or 𝑓 ∈ 𝐶3(𝐷)) 
A2. 𝑓 has only a finite number of extreme and inflection points in 𝐷, and 𝑓(𝑛)𝑥𝐼 ≠ 0 for 𝑛 ≥ 3 

where 𝑥𝐼 is an inflection point of 𝑓. 

A3. 𝑓(1), 𝑓(2) and 𝑓(3) of 𝑓 are Lipschitz-continuous with computable constants. 
A4. 𝑓(𝑥) → ∞

 
as |𝑥| → ∞. 

A5. For 𝑥𝑘
∗  ([36]), 𝑓(𝑥) − 𝑓(𝑥𝑘

∗) = 0 yields at most two nearest points 𝑥𝑘
𝑍− and 𝑥𝑘

𝑍+ located on 

the left and the right hand sides of 𝑥𝑘
∗ , respectively such that 𝑓(𝑥𝑘

𝑍−) = 𝑓(𝑥𝑘
∗) = 𝑓(𝑥𝑘

𝑍+) and 

𝑥 ∈ [𝑥𝑘
𝑍−, 𝑥𝑘

𝑍+].  
A6. 𝑓(𝑥) > 𝑓(𝑥𝑘

∗)
 
for 𝑥 ∈ (𝑥𝑘

𝑍−, 𝑥𝑘
𝑍+)

 
and 𝑓(𝑥) = 𝑓(𝑥𝑘

∗)
 
if 𝑥 = 𝑥𝑘

𝑍− or 𝑥 = 𝑥𝑘
𝑍+.  

A7. There exists only one 𝑥𝐼 between two consecutive minimizer and maximizer of 𝑓(𝑥). 
The reason why we need to solve one-dimensional multimodal function is described in 

many references cited in [20]. The needed is appeared in scientific and engineering applications 
especially in electrical engineering optimization problem. One of the important issues in global 
optimization is “the region of attraction” where its detail explanation can be seen in [3]. 

This paper is organized as follows. Section 2 describes the IYRH’s function. Section 3 
describes how to find all extreme and inflection points using the IYRH’s function. Section 4 
discusses the relationship between 𝑓 and IYRH’s function. In Section 5, the idea of curvature is 
described. Section 6 contains the convergence theorem. The numerical results of IYRH’s 
algorithm will be presented in section 7. Comparison and discussion will be given in section 8. 
Section 9 contains the conclusion and the brief explanation on how this one-dimensional case 
can be extended to n-dimensional case. 

 
 

2. A Relatively New Parameter Free Filled Function 
In this section, the IYRH’s will be derived. Definition 1 (One-Dimensional PFFF): 

Suppose that 𝑓: [𝑎, 𝑏] ⊂ 𝑅 → 𝑅 satisfies A1–A7. A new 𝐹(𝑥, 𝑥𝑘
∗) (𝑥 ∈ [𝑥𝑘

𝑍−, 𝑥𝑘
𝑍+]) called IYRH’s 

function of 𝑓 at 𝑥𝑘
∗ , is defined by: 

 

𝐹(𝑥, 𝑥𝑘
∗) = {

−∫ (𝑓(𝑠) − 𝑓(𝑥𝑘
∗)) 𝑑𝑠

𝑥𝑘
∗

𝑥
 (𝑥𝑘

𝑍− ≤ 𝑥 ≤ 𝑥𝑘
∗)

−∫ (𝑓(𝑠) − 𝑓(𝑥𝑘
∗)) 𝑑𝑠

𝑥

𝑥𝑘
∗  (𝑥𝑘

∗ ≤ 𝑥 ≤ 𝑥𝑘
𝑍+)

 (7) 

 

if 𝐹(𝑥, 𝑥𝑘
∗) satisfies the following 3 conditions. C1. 𝑥𝑘

∗  is a local isolated maximizer  

of 𝐹(𝑥, 𝑥𝑘
∗), C2. 𝐹(𝑥, 𝑥𝑘

∗) has no stationary point in the interval (𝑥𝑘
𝑍−, 𝑥𝑘

∗) ∪ (𝑥𝑘
∗ , 𝑥𝑘

𝑍+), and C3.  
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If 𝑥𝑘
∗  is not a global minimizer of 𝑓, then 𝑥𝑘

𝑍− and 𝑥𝑘
𝑍+ are the minimizer or stationary points of 

𝐹(𝑥, 𝑥𝑘
∗). It is enough to consider the second integration of (7) which can be rewritten as follows: 

 

𝐹(𝑥, 𝑥𝑘
∗) = −∫ (𝑓(𝑠) − 𝑓(𝑥𝑘

∗)) 𝑑𝑠
𝑥

𝑥𝑘
∗ ,       (𝑥𝑘

∗ ≤ 𝑥 ≤ 𝑥𝑘
𝑍+) (8) 

 

by using A5, the following results can be proved. Theorem 1: If 1) 𝑓 ∈ 𝐶3(𝑎, 𝑏); 2) 𝑥𝑘
∗ ∈

[𝑥𝑘
𝑍−, 𝑥𝑘

𝑍+] ⊆ [𝑎, 𝑏] and; 3) 𝐹(𝑥, 𝑥𝑘
∗) is defined by (6), then 𝑥𝑘

∗  must be a local isolated maximizer 

of 𝐹(𝑥, 𝑥𝑘
∗). Theorem 2: If the hypotheses of Theorem 1 are valid, then 𝐹(𝑥, 𝑥𝑘

∗)  

does not have any stationary point in the interval 𝐼1 = {𝑥: 𝑓(𝑥) > 𝑓(𝑥𝑘
∗), 𝑥 ∈ (𝑥𝑘

𝑍−, 𝑥𝑘
𝑍+)\{𝑥𝑘

∗}} =

(𝑥𝑘
𝑍−, 𝑥𝑘

∗) ∪ (𝑥𝑘
∗ , 𝑥𝑘

𝑍+). By (8), for 𝑥1, 𝑥2 ∈ [𝑥𝑘
∗ , 𝑥𝑘

𝑍+] with 𝑥1 < 𝑥2, 𝐹(𝑥1, 𝑥𝑘
∗) − 𝐹(𝑥2, 𝑥𝑘

∗) =

∫ (𝑓(𝑠) − 𝑓(𝑥𝑘
∗))

𝑥2
𝑥1

𝑑𝑠 ≥ 0. Thus, 𝐹(𝑥, 𝑥𝑘
∗) decreases over [𝑥𝑘

∗ , 𝑥𝑘
𝑍+]. By similar argument, 𝐹(𝑥, 𝑥𝑘

∗) 

increases over [𝑥𝑘
𝑍−, 𝑥𝑘

∗]. Theorem 3: If the hypotheses of Theorem 1 are valid and 𝑥𝑘
∗  is not a 

global minimizer of 𝑓(𝑥), then 𝑥𝑘
𝑍− and 𝑥𝑘

𝑍+ are the minimizer or stationary point of 𝐹(𝑥, 𝑥𝑘
∗).  

The obtaining of all the extreme and inflection points in every [𝑥𝑘
∗ , 𝑥𝑘

𝑍+]  
(𝑘 = 0,1,2, … , 𝑡 < ∞) is an indicator that this algorithm never fail to obtain the global one. That is 
why it makes this method explores along the entire domain which very much different to other 
methods [4-6, 11-21]. 

We are not aware with the method in [37], which quiet similar with our method. 
Fortunately, our method has been published first as mentioned in [30-35]. However, we did not 
know how the authors [37] compute their integration. In IYRH’s algorithm, the integration is 
never been computed as had been done in [30-35]. Therefore, IYRH’s algorithm very much 
different compared with others. 
 
 

3. Sequences of Extreme and Inflection Points 

The IYRH’s function 𝐹(𝑥, 𝑥𝑘
∗) (𝑥 ∈ [𝑥𝑘

𝑍−, 𝑥𝑘
𝑍+]) has the following properties: 

P1. 𝐹(𝑥, 𝑥𝑘
∗)

 
is concave downward at 𝑥𝑘

∗  and concave upward at both 𝑥𝑘
𝑍− and 𝑥𝑘

𝑍+. 

P2. 𝐹(𝑥, 𝑥𝑘
∗), 𝐹(1)(𝑥, 𝑥𝑘

∗), 𝐹(2)(𝑥, 𝑥𝑘
∗) and 𝐹(3)(𝑥, 𝑥𝑘

∗) are continuous. 

P3. 𝐹(𝑥, 𝑥𝑘
∗) < 0 for [𝑥𝑘

𝑍−, 𝑥𝑘
∗] ∪ [𝑥𝑘

∗ , 𝑥𝑘
𝑍+] and 𝐹(𝑥𝑘

∗ , 𝑥𝑘
∗) = 0. 

P4. 𝐹(𝑥, 𝑥𝑘
∗) are increasing and decreasing over [𝑥𝑘

𝑍−, 𝑥𝑘
∗] and [𝑥𝑘

∗ , 𝑥𝑘
𝑍+] respectively.  

P5. 𝐹(1)(𝑥, 𝑥𝑘
∗) > 0 (𝑥 ∈ (𝑥𝑘

𝑍−, 𝑥𝑘
∗)) and 𝐹(1)(𝑥, 𝑥𝑘

∗) < 0) (𝑥 ∈ (𝑥𝑘
∗ , 𝑥𝑘

𝑍+)) except at inflection points 

P6. 𝐹(𝑥, 𝑥𝑘
∗) has isolated minimizer or stationary point at 𝑥𝑘

𝑍− or 𝑥𝑘
𝑍+. 

As an example, the graph of our PFFF for sin 𝑥 + sin(2𝑥/3) can be plotted as in  

Figure 1. By P1, there exists at least two inflection points of 𝐹(𝑥, 𝑥𝑘
∗) each lies in (𝑥𝑘

𝑍−, 𝑥𝑘
∗) and 

(𝑥𝑘
∗ , 𝑥𝑘

𝑍+). By P1-P6, Figure 1 and [𝑥𝑘
∗ , 𝑥𝑘

𝑍+] ([𝑥𝑘
𝑍−, 𝑥𝑘

∗]), the IYRH’s function generates  
the sequence of: 

 

𝑥0
∗, 𝑥1

∗, 𝑥2
∗, … , 𝑥𝑘

∗ , … (𝑥0
∗,𝑥−1

∗ ,𝑥−2
∗ , … , 𝑥−𝑘

∗ ,…) (9) 
 

using any suitable optimization tools except 𝑥0
∗, starting at: 

 

𝑥0, 𝑥0
𝑍+, 𝑥1

𝑍+, 𝑥2
𝑍+… , 𝑥𝑘

𝑍+, … (𝑥0, 𝑥0
𝑍−, 𝑥−1

𝑍−, 𝑥−2
𝑍−

 
…, 𝑥−𝑘

𝑍−, …) (10) 
 

respectively where as beginning 𝑥0 is any given point for obtaining 𝑥0
∗. Therefore, we have 2 

phases as follows: 
Phase I : Starting at 𝑥𝑘 (𝑘 = 0,1,2, … ). Minimize 𝑓(𝑥) to obtain isolated minimizer 𝑥𝑘

∗ .  

Phase II : 𝐹(𝑥, 𝑥𝑘
∗) is constructed to find 𝑥𝑘

𝑍+. Replace 𝑥𝑘with 𝑥𝑘
𝑍+. Restart Phase 1. 

However, it is not easy to obtain (9) and (10) since 𝐹(𝑥, 𝑥𝑘
∗) contains at least 1 inflection 

point in [𝑥𝑘
∗ , 𝑥𝑘

𝑍+] and also in [𝑥𝑘
𝑍−, 𝑥𝑘

∗]. The analytical existence of inflection points is shown as 
follows.  

a. 𝐹(1)(𝑥, 𝑥𝑘
∗) = −(𝑓(𝑥) − 𝑓(𝑥𝑘

∗)) (𝑥𝑘
∗ ≤ 𝑥 ≤ 𝑥𝑘

𝑍+) and 𝐹(2)(𝑥, 𝑥𝑘
∗) = −𝑓(1)(𝑥) (𝑥𝑘

∗ ≤ 𝑥 ≤ 𝑥𝑘
𝑍+).  

If 𝐹(2)(𝑥, 𝑥𝑘
∗) = 0, then 𝑓(1)(𝑥) = 0. Therefore, the solution of 𝐹(2)(𝑥, 𝑥𝑘

∗) = 0 becomes  

the critical point of 𝑓(𝑥).  
b. 𝐹(3)(𝑥, 𝑥𝑘

∗) = −𝑓(2)(𝑥) (𝑥𝑘
∗ ≤ 𝑥 ≤ 𝑥𝑘

𝑍+), if 𝐹(3)(𝑥, 𝑥𝑘
∗) = 0, then 𝑓(2)(𝑥) = 0. Therefore, by A2, 

the solution of 𝐹(3)(𝑥, 𝑥𝑘
∗) = 0 (the critical point of 𝐹(2)(𝑥, 𝑥𝑘

∗)) becomes the inflection point of 

𝑓(𝑥) but this solution becomes the critical point (maximizer or minimizer) of 𝐹(2)(𝑥, 𝑥𝑘
∗). 
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Therefore, the isolated extreme points i.e. 𝑥𝑀,𝑘
(1)

 (local maximizer) and 𝑥𝑚,𝑘
(1)

 (local minimizer) of 

𝑓(𝑥) as shown in Figure 2, are inflection points of 𝐹(𝑥, 𝑥𝑘
∗)

 
where (1) the superscript of 𝑥𝑀,𝑘

(1)
 

and 𝑥𝑚,𝑘
(1)

, denotes the first inner iteration in the interval [𝑥𝑘
∗ , 𝑥𝑘

𝑍+].  
 
 

 
 

Figure 1. 𝐹(𝑥, 𝑥𝑘
∗) 𝑥 ∈ [𝑥𝑘

𝑍−, 𝑥𝑘
𝑍+]) for  

sin 𝑥 + sin(2𝑥/3)
 

 
 

Figure 2. Relationship between 

𝑓(𝑥), 𝐹(𝑥, 𝑥𝑘
∗), 𝐹(1)(𝑥, 𝑥𝑘

∗), 𝐹(2)(𝑥, 𝑥𝑘
∗)  

and 𝐹(3)(𝑥, 𝑥𝑘
∗)

 
 
 

Note that there might exist more than one inner iteration in the interval [𝑥𝑘
∗ , 𝑥𝑘

𝑍+]
 
and this 

will happen when more than two inflection points occurred in [𝑥𝑘
∗ , 𝑥𝑘

𝑍+]. Therefore for Phase II, 

we need to analyse the behaviour of 𝐹(𝑥, 𝑥𝑘
∗). Since 𝑥𝑘

∗  cannot be used blindly to minimize  

the filled function, then in the phase II, a 𝛿 > 0 must be chosen such that 𝑥𝑘
∗ + 𝛿 can be safely 

utilized to minimize 𝐹(𝑥, 𝑥𝑘
∗). For handling these difficulties, consider the relationship between 𝑓, 

𝐹 and 𝐹(2) as illustrated in Figure 2. Since Newton’s method [38] sometimes fails to converge to 

𝑥𝑘
𝑍− or 𝑥𝑘

𝑍+, we need IYRH’s function method to handle it. From Figure 2 and the above 

discussion, it is clear that all minimizers and maximizers of 𝐹(2)(𝑥, 𝑥𝑘
∗) become the inflection 

points of 𝑓(𝑥), and all the roots of 𝐹(2)(𝑥, 𝑥𝑘
∗) become minimizers or maximizers of 𝑓(𝑥). These 

special properties are only possessed by IYRH’s function. 
 
 

4. Computation of the Inflection Points 
Based on the discussion in Section 3, we have proved the following theorems:  

Theorem 4: If the hypotheses of Theorem 1 are valid, then the solution of 𝐹(2)(𝑥, 𝑥𝑘
∗) = 0 

becomes the critical point of 𝑓(𝑥). Theorem 5: If the hypotheses of Theorem 1 are valid, then 

the critical point of 𝐹(2)(𝑥, 𝑥𝑘
∗) becomes the inflection points of 𝑓(𝑥). 

By A5 and Figure 2, 𝑥𝑖,𝑘
(1)

, 𝑥𝑀,𝑘
(1)

 and 𝑥𝑚,𝑘
(1)

 are the first isolated inflection, maximum and 

minimum points of 𝑓(𝑥) respectively, 𝑥𝑖,𝑘
(2)

is the second inflection point of 𝑓(𝑥)
 
found after 𝑥𝑘

∗  where 

𝑥𝑖,𝑘
(1) < 𝑥𝑀,𝑘

(1) < 𝑥𝑖,𝑘
(2) < 𝑥𝑚,𝑘

(1)
, and it might continue with another sequence of extreme and inflection 

points until 𝑥𝑘
𝑍+ such that 𝑓(𝑥𝑘

𝑍+) = 𝑓(𝑥𝑘
∗) and 𝑓(𝑥𝑘

∗) < 𝑓(𝑥) (𝑥 ∈ (𝑥𝑘
∗ , 𝑥𝑘

𝑍+)). In order to guarantee 

no extreme or inflection points of 𝑓(𝑥) missed during the computation, the outer and inner iterations 

are used over [𝑥𝑘
∗ , 𝑥𝑘

𝑍+]. In inner iteration, 𝐹(3)(𝑥, 𝑥𝑘
∗) and 𝐹(2)(𝑥, 𝑥𝑘

∗) are used
 
to compute inflection 

and extreme points of 𝑓(𝑥) respectively whereas in outer iteration, 𝑓(𝑥) is minimized or solve 

𝐹(1)(𝑥, 𝑥𝑘
∗) = 0 to obtain 𝑥𝑘

𝑍+. The following steps implement those both inner and outer iterations: 
Outer Iteration 
Step 1 : construct 𝐹(𝑥, 𝑥𝑘

∗) at 𝑥𝑘
∗ . 

Inner Iteration 

Step 2 : Solve 𝐹(3)(𝑥, 𝑥𝑘
∗) = 0 by Newton’s method for inflection point of 𝑓(𝑥) nearest to 𝑥𝑘

∗ . 

Step 3 : Solve 𝐹(2)(𝑥, 𝑥𝑘
∗) = 0 by Newton’s method for isolated maximizer of 𝑓(𝑥). 

Step 4 : Solve 𝐹(3)(𝑥, 𝑥𝑘
∗) = 0 by Newton’s method for next inflection point of 𝑓(𝑥). 

Step 5 : Solve 𝐹(2)(𝑥, 𝑥𝑘
∗) = 0 by Newton’s method for isolated minimizer of 𝑓(𝑥). 
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Step 6 : If 𝑓(𝑥) > 𝑓(𝑥𝑘
∗)and 𝑥 < 𝑥𝑘

𝑍+ then repeat Step 2 - Step 5 else solve 𝐹(1)(𝑥, 𝑥𝑘
∗) = 0 by 

Newton’s method for 𝑥𝑘
𝑍+such that 𝑓(𝑥𝑘

𝑍+) = 𝑓(𝑥𝑘
∗). 

Step 7 : Use 𝑥𝑘
𝑍+ to yield 𝑥𝑘+1

∗ . 𝑘 ≔ 𝑘 + 1. Go to Step 1 if 𝑥𝑘+1
∗ < 𝑏.  

 
 

5. Convergence with Curvature 
The curvature [39] and radius of curvature are defined by: 
 

𝜅(𝑥) = |
𝑑𝜑

𝑑𝑥
| =

|𝑑2𝑥/𝑑𝑥2|

[1+(𝑑𝑦 /𝑑𝑥)2]3/2
 and 𝜌(𝑥) =

1

𝜅(𝑥)
 

 

 

respectively. Basically, to make Newton’s method converges to 𝑥∗, the solution of 𝑓(𝑥) = 0, we 
need an initial estimation which closes enough to 𝑥∗. Assign the radius of curvature of 𝑓(𝑥) to 𝜌, 

therefore 𝑥𝑘
∗ + 𝜌 becomes the initial best estimator for Newton’s method to solve 𝑓(𝑥) = 0. We 

will prove that 𝜂 = |𝑥𝑘
∗ + 𝜌 − 𝑥∗|

 
is the radius of the largest interval around 𝑥∗ such that  

the Newton’s method converges to 𝑥∗ ∈ (𝑥∗ − 𝜂, 𝑥∗ + 𝜂). However, we will need the following 
definition.  
Definition 2 [40]: The function 𝑓: 𝐷 ⊂ 𝑅 → 𝑅 is Lipschitz continuous function with constant 𝛾 in 𝐷, 

written 𝑓 ∈ 𝐿𝑖𝑝𝛾(𝐷), if for every 𝑥, 𝑦 ∈ 𝐷, |𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝛾|𝑥 − 𝑦|. 

For the convergence of Newton’s method, we need 𝑓(1) ∈ 𝐿𝑖𝑝𝛾(𝐷) which had been 

shown in [40].  

Lemma 1 [40] : If 1) 𝑓: 𝐷 ⊂ 𝑅 → 𝑅 for an open interval 𝐷; 2) 𝑓(1) ∈ 𝐿𝑖𝑝𝛾(𝐷), then for any 𝑥, 𝑦 ∈ 𝐷, 

|𝑓(𝑦) − 𝑓(𝑥) − 𝑓(1)(𝑥)(𝑦 − 𝑥)| ≤ 𝛾(𝑦 − 𝑥)2/2.  

For most problems, Newton’s method will converge 𝑞-quadratically to its root [40].  

Theorem 6 [40]: If 1) 𝑓: 𝐷 ⊂ 𝑅 → 𝑅 for an open interval D; 2)
 
𝑓(1) ∈ 𝐿𝑖𝑝𝛾(𝐷) 3) for some 𝛽 > 0, 

|𝑓(1)(𝑥)| ≥ 𝛽 (𝑥 ∈ 𝐷); 4) 𝑓(𝑥) = 0 has a solution 𝑥∗ ∈ 𝐷, then there is some 𝜂 > 0 such that if 

|𝑥0 − 𝑥∗| < 𝜂, then {𝑥𝑛} generated by 𝑥𝑛+1 = 𝑥𝑛 − (𝑓(𝑥)/𝑓
(1)(𝑥)) (𝑛 = 0,1,2, … ) exists and 

converges to 𝑥∗. Furthermore,|𝑥𝑛+1 − 𝑥∗| ≤ (𝛾/2𝛽)|𝑥𝑛 − 𝑥∗|
2 (𝑛 = 0,1,2, … ). 

Now, we prove that �̂� = |𝑥1
∗ + �̂� − 𝑥∗|, the radius of the largest interval around the 

solution of 𝑓(1)(𝑥) = 0 holds Theorem 6. The similarity proof is applied for 𝐹2(𝑥, 𝑥𝑘
∗). Theorem 7: 

If 1) 𝑓: 𝐷 ⊂ 𝑅 → 𝑅 is an objective function; 2) 𝑥1
∗ is a local isolated minimizer of 

𝑓(𝑥); 3) 𝑓(1): 𝐷 ⊂ 𝑅 → 𝑅 and 𝑓(2) ∈ 𝐿𝑖𝑝𝛾(𝑋) for 𝑋 ⊆ 𝐷; 4) for some 𝜌 > 0, |𝑓(2)(𝑥)| ≥ 𝜌 for every  

𝑥 ∈ 𝐷; 5) 𝑓(1)(𝑥) = 0 has a solution 𝑥∗ ∈ 𝐷, then there is some 𝜂 > 0 such that if |𝑥0 − 𝑥∗| < 𝜂, 

then the sequence {𝑥𝑛} generated by 𝑥𝑛+1 = 𝑥𝑛 − (𝑓
(1)(𝑥𝑛)/𝑓

(2)(𝑥𝑛))

  

(𝑛 = 0,1,2, … ) exists and 

converges to 𝑥∗. Furthermore, |𝑥𝑛+1 − 𝑥∗| ≤ (𝛾/2𝐵)|𝑥𝑛 − 𝑥∗|
2 (𝑛 = 0,1,2, … ). 

 
 
6. Convergence of the IYRH’s Algorithm 

By A2, IYRH’s algorithm actually generates (9) and (10) according to  
the following pattern: 

 

+

−

+

−

−

+

−

+

−

−

++


Z

n

n

Z

n

n

Z

k

k

Z

k

k

ZZ x

x

x

x

x

x

x

x

x

x

x

x

x

x

1

*

2

*

1

1

*

2

*

1

1

*

2

0

*

1

0

*

0

......

 
 
which satisfy 𝑓(𝑥0

∗) ≥  𝑓(𝑥1
∗) ≥. . . ≥ 𝑓(𝑥𝑘

∗) ≥. . . ≥ 𝑓(𝑥𝑛−1
∗ ) ≥ 𝑓(𝑥𝑛

∗) where 𝑥0 is any given point in 

the considered interval. Therefore, IYRH’s algorithm generates a finite sequence [𝑥0
∗, 𝑥0

𝑍+],
[𝑥1
∗, 𝑥1

𝑍+], . . . , [𝑥𝑘
∗ , 𝑥𝑘

𝑍+], . . . , [𝑥𝑛−1
∗ , 𝑥𝑛−1

𝑍+ ]. Thus, by A2, IYRH’s algorithm converges to 𝑥𝑛
∗  as a global 

minimizer. IYRH’s algorithm also automatically generates at least a set of finite sequence of 

inflection, local isolated maximizers and isolated minimizers, 𝐴1 = {𝑥𝑖,𝑘
(1), 𝑥𝑀,𝑘

(1) , 𝑥𝑖,𝑘
(2)} in every 

subinterval [𝑥𝑘
∗ , 𝑥𝑘

𝑍+] (𝑘 = 0, 1, . . . , 𝑛) if exist where the superscript (1) on 𝑥𝑀,𝑘
(1)

 denotes the first 

number of local maximizer and subscript of 𝐴 denotes the number of local maximizer  

in [𝑥𝑘
∗ , 𝑥𝑘

𝑍+]. If it contains two local isolated maximizers, then it generates  
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𝐴2 = {𝑥𝑖,𝑘
(1), 𝑥𝑀,𝑘

(1) , 𝑥𝑖,𝑘
(2), 𝑥𝑚,𝑘

(1) , 𝑥𝑖,𝑘
(3), 𝑥𝑀,𝑘

(2) , 𝑥𝑖,𝑘
(4)} and so forth. However for 𝐴2, the inflection point𝑥𝑖,𝑘

(4)
 is 

option. Thus, the following theorem is proved.  
Theorem 8 (Convergence Theorem): If 1) all the hypothesis of Theorem 6  

and Theorem 7 are valid for 𝑓, 𝑓(1), 𝑓(2), 𝑓(3) and; 2) 𝐹(𝑥, 𝑥∗) is IYRH’s function at 𝑥∗, the local 
isolated minimizer of 𝑓, then IYRH’s algorithm converges to the right solution. 
 
 

7. Numerical Results 
The test examples are listed in Tables 1–3. In Table 1 where 𝑁, 𝑓(𝑥), 𝐷, 𝑣𝑔

∗ and 𝑚𝑘
∗  

denote the number of function, the expression of the objective function, the domain, global 
minimum value and global minimizer respectively. The numerical results will be presented to 
compare the capability of the IYRH’s method with two-parameter filled function  
methods [4, 26, 29], one-parameter filled function methods [6, 22, 28], and the PFFF  
method [34]. We also present the results for observing the sensitivity of IYRH’s method due to 
different initial points. Therefore, the presentation is arranging into four categories.  
 
 

Table 1. 20 Test Functions Cited from [41] for Minimization Problem (Original Results) 

𝑁 𝑓(𝑥) 𝐷 𝑣𝑔
∗ 𝑚𝑔

∗  

1. 
1

6
𝑥6 −

52

25
𝑥5 +

39

80
𝑥4 +

71

10
𝑥3 −

79

20
𝑥2 − 𝑥 +

1

10
 [−1.5,11] −29763.233 10 

2. sin 𝑥 + sin (10/3)𝑥 [2.7,7.5] −1.899599 5.145735 

3. −∑𝑘 sin((𝑘 + 1)𝑥 + 𝑘)

5

𝑘=1

 

[−9.4,10] 
[−9.4,10] 
[−9.4,10] 

−12.03124 
−12.03124 

−12.03124 

−6.7745761 
−0.491391 

5.791785 

4. −(16𝑥2 − 24𝑥 + 5)𝑒−𝑥 [1.9,3.9] −3.85045 2.868034 

5. −(−3𝑥 + 1.4) sin(18𝑥) [0,1.2] −1.48907 0.96609 

6. (−𝑥 + sin(𝑥))𝑒−𝑥
2
 [−10,10] −0.824239 −0.679579 

7. sin (𝑥) + sin ((10/3)𝑥) + ln 𝑥 − 0.84𝑥 + 3 [2.7,7.5] −1.6013 5.19978 

8. −∑𝑘 cos((𝑘 + 1)𝑥 + 𝑘)

5

𝑘=1

 

[−9.7,10] 
[−9.7,10] 
[−9.7,10] 

−14.508 

−14.508 
−14.508 

−7.083506 

−0.800321 
5.48286 

9. sin 𝑥 + sin (2/3)𝑥 [3,20] −1.90596 17.039 

10. −𝑥sin 𝑥 [0,10] −7.91673 7.9787 

11. −2cos𝑥 − cos2𝑥 [−1.57,6.28] −3 4.76837𝑒 − 009 

12. sin3 𝑥 + cos3 𝑥 
[0,6.28] 
[0,6.28] 

−1 
−1 

𝜋 
4.712389 

13. −𝑥2/3 − (1 − 𝑥2)1/3 [0.001,0.99] −1.5874 1/√2 

14. −𝑒−𝑥 sin2𝜋𝑥 [0,4] −0.788685 0.224885 

15. (𝑥2 − 5𝑥 + 6) ÷ (𝑥2 + 1) [−5,5] −7.03553 −0.41422 

16. 2(𝑥 − 3)2 + 𝑒−𝑥
2/2 [−3,3] 0.0111090 3 

17. 𝑥6 − 15𝑥4 + 27𝑥2 + 250 
[−4,4] 
[−4,4] 

7 

7 

−3 

−3 

18. {
(𝑥 − 2)2                𝑥 ≤ 3

2ln(𝑥 − 2) + 1        (otherwise)
  0 2 

19. −sin3𝑥 + 𝑥 + 1 [0,6.5] 0,467511 0,41032 

20. (−𝑥 + sin 𝑥)𝑒−𝑥
2
 [−10,10] −0.0634905 −1.19514 

 
 

For first category, the results of Table 4 shows that IYRH’s algorithm can solve  
the global optimization problems listed in Table 1. In Table 4, 𝑘

 
(𝑘 ≥ 0) is the number of outer 

iteration, 𝑗
 
(𝑗 ≥ 0) is the number of inflection points 𝑥𝑖,𝑘

(𝑗)

 
and 𝑥𝑖,𝑘

(𝑗+1)
 where 𝑖 refers to the word 

“inflection”, 𝑛 is the number of local isolated maximizer 𝑥𝑀,𝑘
(𝑛) ∈ [𝑥𝑘

∗ , 𝑥𝑘
𝑍+] and minimizer  

𝑥𝑚,𝑘
(𝑛) ∈ [𝑥𝑘

∗ , 𝑥𝑘
𝑍+] where 𝑀 and 𝑚 denote maximizer and minimizer respectively, 𝑥𝑘

∗  (𝑘 ≥ 0) is 

isolated minimizer and 𝑥𝑘
𝑍+and 𝑥𝑘

𝑍− (𝑘 ≥ 0) are points such that 𝑓(𝑥𝑘
𝑍−) = 𝑓(𝑥𝑘

∗) = 𝑓(𝑥𝑘
𝑍+).  
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In inner iteration, there are several cases that 𝑥𝑚,𝑘
(𝑛)

 equals to 𝑥𝑘
𝑍+and 𝑥𝑘+1

∗

 
as shown in 

Table 4 for 𝑘 = 2, 3 of example 3 (𝑁 = 3), 𝑘 = 3 of example 8 (𝑁 = 8), 𝑘 = 1 of example 12  

(𝑁 = 12) and 𝑘 = 0 of example 17 (𝑁 = 17). For second category, Tables 5–8 compare IYRH’s 
algorithm with New algorithm [42], the direct method [42] and Lagrange interpolation [43], using 
test functions in Table 1 [44] and 100 one-dimensional randomized test functions [45]. Table 5 
shows the relative errors [42] of global minimum values and global minimizers of functions as 
shown in Table 1 obtained by IYRH’s algorithm is better than Lagrange interpolant on 81 
Chebyshev nodes [43]. Table 6 shows that a “fortune effect” does not happened to IYRH’s 
algorithm when it is applied to the example given in Table 3 for 𝑟 = 67 and 𝑥𝑟

∗ is chosen 
randomly and differently where its graph is shown in Figure 3. 
 
 

Table 2. 7 Test Functions for Comparison with Existed Filled Function Methods 
𝑁 𝑓(𝑥), 𝐷, 𝑥0 

1 𝑓(𝑥) = sin(𝑥) + sin(10𝑥/3) + ln(𝑥) − 0.84𝑥 

2 𝑓(𝑥) = −∑sin((𝑖 + 1)𝑥 + 𝑖)

5

𝑖=1

 

3 
𝑓(𝑥) =

𝜋

𝑛
{𝑘 sin2(𝜋𝑦1) +∑[(𝑦1 − 𝐴)

2(1 + 𝑘 sin2(𝜋𝑦𝑖+1))]

𝑛−1

𝑖=1

+ (𝑦𝑛 − 𝐴)
2} 

𝑦1 = 1 +−0.25(𝑥𝑖 − 1), 𝑘 = 10, 𝐴 = 1 and 𝑛 denotes the dimensionality of the problem 

4 
𝑓(𝑥) =

𝜋

𝑛
{𝑘 sin2(𝜋𝑥1) +∑[(𝑥1 − 𝐴)

2(1 + 𝑘 sin2(𝜋𝑥𝑖+1))]

𝑛−1

𝑖=1

+ (𝑥𝑛 − 𝐴)
2} 

𝑘 = 10, 𝐴 = 1 and 𝑛 denotes the dimensionality of the problem 

5 
𝑓(𝑥) = 𝑘 sin2 𝜋𝑙0𝑥1 + 𝑘1∑[(𝑥1 − 𝐴)

2(1 + 𝑘 sin2 𝜋𝑙0𝑥1)]

𝑛−1

𝑖=1

+ 𝑘1(𝑥𝑛 − 𝐴)
2(1 − 𝑘0 sin

2 𝜋𝑙0𝑥1) 

where the constants in this equation have been fixed as follows: 𝑘0 = 1, 𝑘1 = 0.1, 𝐴 = 1, 𝑙0 = 3 

 
 

Table 3. Test Functions for “Fortune Effect” of IYRH’s Function [44] 
𝑟 𝑓𝑟 𝐷 

1,… ,100 0.025(𝑥 − 𝑥𝑟
∗)2 + sin2[(𝑥 − 𝑥𝑟

∗) + (𝑥 − 𝑥𝑟
∗)2] + sin2(𝑥 − 𝑥𝑟

∗) [−5,5] 

 
 

For third category, Table 7 compares the results of IYRH’s algorithm with Ma et al.’s 
filled function and Lucidi and Piccially’s filled function for a set of 5 test examples in Table 2.  
For the last category, the results presented in Table 8 is used to observe the sensitivity of 
IYRH’s algorithm due to three initial points using example 3 from Table 2. It is clear that IYRH’s 
function can be used to solve the global optimization problems from any initial point. 
 
 

 
 

Figure 3. Graph of 𝑓67(𝑥) one of the 100 one-dimensional randomized test functions 

𝑓(𝑥) 
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Table 4. Numerical Results of a Set of 20 Test Functions by IYRH’s Algorithm 
𝑁 𝑘 𝑗/𝑛 𝑥0 𝑥𝑘

∗ 𝑥𝑖,𝑘
(𝑗)

 𝑥𝑀,𝑘
(𝑛)

 𝑥𝑖,𝑘
(𝑗+1)

 𝑥𝑀,𝑘
(𝑛)

 𝑥𝑘
𝑍+ 

1 0 1/1 -1.5 -1.41421 -0.982448 -0.1 0.18688 0.5  
3/2   1.06955 1.41421 8.0460129  2.04497 

1 1/1  10      
2 0 1/1 2.7 3.38725 3.78614 4.1966 4.68536  4.77334 

1 1/1  5.14574 5.6704 6.21731 6.60591 7.00015  
3 0 1/1 -9.4 -9.03744 -8.78099 -8.54977 -8.25976 -8.00868 -8.24149 

1 1/1  -8.00868 -7.6897 -7.39728 -7.09257 -6.77458 -6.90218 
2 1/1  -6.77458 -6.50838 -6.20297 -5.9699 -5.70624  

3/2   -5.46785 -5.21159 -4.97098 -4.71981  
5/3   -4.47764 -4.23167 -3.9846 -3.73921  
7/4   -3.49188 -3.25263 -2.996 -2.75426  
9/5   -2.4978 -2.26658 -1.97658 -1.72549  
11/6   -1.40652 -1.1141 -0.809383 -0.491391 -0.491391 

3 1/1  -0.491391 -0.225195 0.0802188 0.313287 0.57695  
3/2   0.815333 1.07159 1.3122 1.56337  
5/3   1.80555 2.05152 2.29859 2.54398  
7/4   2.7913 3.03056 3.28718 3.52893  
9/5   3.78538 4.01661 4.30661 4.55769  
11/6   4.87667 5.16909 5.4738 5.79179 5.79179 

4 1/1  5.79179 6.05799 6.3634 6.59647 6.86014  
3/2   7.09852 7.35478 7.59539 7.84656  
5/3   8.08873 8.3347 8.58177 8.82716  
7/4   9.07449 9.31375 9.57037 9.81211  

4 0 1/1 1.9 2.86803      
5 0 1/1 0 0.0793517 0.15548 0.247978 0.314097 0.398387  

3/2   0.44637 0.496343 0.569406 0.629167  
5/3   0.721013 0.794718 0.887021  0.927292 

1 1/1  0.966086 1.05752 1.13904    
6 0 1/1 -10 -0.679579 2.98021e-009 0.679579 1.17698   
7 0 1/1 2.7 3.43923 3.78421 4.13614 4.6866  4.56652 

1 1/1  5.19978 5.66958 6.15443 6.60654 7.06776  
8 0 1/1 -9.7 -9.28634 -9.03059 -8.79406 -8.52587  -8.45402 

1 1/1  -8.29039 -7.98039 -7.70831 -7.39207  -7.31459 
2 1/1  -7.08351 -6.79634 -6.47857 -6.23259 -5.94894  

3/2   -5.71688 -5.4614 -5.21924 -4.96318  
5/3   -4.72391 -4.47753 -4.23112 -3.98396  
7/4   -3.73827 -3.49725 -3.24447 -3.00316  
9/5   -2.74741 -2.51088 -2.24269 -2.0072  
11/6   -1.6972 -1.42513 -1.10889 -0.800321 -0.800321 

3 1/1  -0.800321 -0.513159 -0.195386 0.0505096 0.334244  
3/2   0.566304 0.821784 1.06394 1.32  
5/3   1.55927 1.80566 2.05197 2.29923  
7/4   2.54492 2.78593 3.03872 3.28003  
9/5   3.53578 3.77231 4.0405 4.27598  
11/6   4.58598 4.85806 5.1743 5.48286 5.48286 

4 1/1  5.48286 5.77003 6.0878 6.33378 6.61743  
3/2   6.84949 7.10497 7.34713 7.60319  
5/3   7.84246 8.08884 8.33515 8.58241  
7/4   8.8281 9.06912 9.3219 9.56321  
9/5   9.81896     

9 0 1/1 3 5.36225 6.73129 8.39609 9.42478 10.4535  
3/2   12.1183 13.4873 15.3753  15.9845 

1 1/1  17.0392 18.8496     
10 0 1/1 0 2.02876 3.6436 4.91318 6.57833  6.56409 

1 1/1  7.97867 9.62956     
11 0 1/1 -1.57 4.76837e-009 0.935929 2.0944 2.57376 3.14159  

3/2   3.70942 4.18879 5.34726   
12 0 1/1 0 0.785398 1.20593 1.5708 2.35619  1.98146 

1 1/1  3.14159 3.50646 3.92699 4.34753 4.71239 4.71239 
2 1/1  4.71239 5.49779     

13 0 1/1 0.001 0.707107      
14 0 1/1 0 0.22488 0.449761 0.72488 0.949761 1.22488  

3/2   1.44976 1.72488 1.94976 2.22488  
5/3   2.44976 2.72488 2.94976 3.22488  
7/4   3.44976 3.72488 3.94976   

15 0 1/1 -5 -0.414214 0.267949 2.41421 3.73205   
16 0 1/1 -3 3      
17 0 1/1 -4 -3 -2.38396 -1 -0.56277 1.054185e-008  

3/2   0.56277 1 2.38396 3 3 
5/3  3      

18 0 1/1 0 2 (3 , 1)     
19 0 1/1 0 0.41032 1.0472 1.68408 2.0944 2.50471  

3/2   3.14159 3.77847 4.18879 4.59911  
5/3   5.23599 5.87287 6.28319   

20 0 1/1 -10 -1.19514 -0.69004 -1.61476e-010 0 1.61476e-010  
3/2   0.69004 1.19514 1.69015   
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Table 5. The Comparison of Relative Errors of Minimum Value and Minimizer of Table 1 

𝑁 

Global Minimum Value Global Minimizer 

Lagrange 
interpolation 

IYRH’s 
algorithm 

Relative error 
IYRH’s 

algorithm 
Relative error 

Lagrange 
interpolation 

1. 1.02e-8 -29763.23334 1.300253442e-9 10 0.0 2.97e-7 

2. 1.18e-7 -1.8996 1.379501097e-6 5.14574 8.135723392e-7 4.46e-8 

3. 3.15e-8 -12.0312 3.06954672e-6 -6.77458 5.016350666e-7 1.52e-6 

3.15e-8 -12.0312 3.06954672e-6 -0.491391 0.0 1.52e-6 

3.15e-8 -12.0312 3.06954672e-6 5.79179 7,361834923e-7 1.52e-6 

4. 1.35e-7 -3.85045 0.0 2.86803 1.110062719e-6 3.69e-7 

5. 1.01e-6 -1.48907 0.0 0.966086 2.03449486e-6 2.14e-6 

6 6.04e-7 -0.824239 0.0 -0.679579 0.0 1.01e-5 

7. 2.89e-6 -1.60131 3.84423173e-6 5.19978 0.0 2.49e-7 

8. 6.69e-7 -14.508 0.0 -7.08351 4.948347907e-7 7.16e-7 

6.69e-7 -14.508 0.0 -0.800321 0.0 7.16e-7 

6.69e-7 -14.508 0.0 5.48286 0.0 7.16e-7 

9. 3.76e-7 -1.90596 0.0 17.0392 1.108708908e-5 1.10e-5 

10 3.08e-7 -7.91673 0.0 7.97867 3.341240937e-6 3.83e-6 

11 1.49e-8 -3 0.0 4.76837e-009 0.0 1.66e-7 

12 5.74e-9 -1 0.0 3.14159 0.0 3.68e-8 

5.74e-9 -1 0.0 4.71239 1.750581062e-7 3.68e-8 

13 2.55e-9 -1.5874 0.0 0.707107 0.0 8.46e-6 

14 2.16e-7 -0.788685 0.0 0.22488 4.082015863e-6 3.72e-6 

15 6.97e-9 -7.03553 0.0 -0.414214  7.35e-6 

16 4.70e-10 0.0111090 0.0 3 0.0 1.80e-9 

17 1.68e-9 7 0.0 -3 0.0 1.31e-7 

1.68e-9 7 0.0 3 0.0 1.31e-7 

18 1.27e-5 1.97215 e-031 0.0 2 0.0 6.99e-5 

19 5.08e-7 0.467511 0.0 0.41032 0.0 6.17e-7 

20 1.38e-7 -0.0634905 0.0 -1.19514 0.0 8.53e-6 

 
 

Table 6. Numerical Results of 𝑓67(𝑥) by IYRH’s Algorithm 

𝑁 𝑘 𝑗/𝑛 𝑥0 𝑥𝑘
∗ 𝑥𝑖,𝑘

(𝑗)
 𝑥𝑀,𝑘

(𝑛)
 𝑥𝑖,𝑘

(𝑗+1)
 𝑥𝑀,𝑘

(𝑛)
 𝑥𝑘

𝑍+

 
21 0 1/1 -5 -4.94728 -4.83149 -4.70524 -4.56113 

 
-4.51102 

1 1/1  -4.40585 -4.24739 -4.06127 -3.90347 -3.72308 
 

3/2  
 

-3.48405 -3.17118 -2.86885  -1.78366 

2 1/1  -1.34952 -0.762247 -0.434035 -0.211967 -0.0283928  

3/2   0.194441 0.372753 0.555842 0.720526  

5/3   0.858072 0.983464 1.13369 1.27036  

7/4   1.38786 1.49935 1.6191 1.73018  

9/5   1.84105 1.94761 2.04578 2.13882  

11/6   2.24384 2.34491 2.43053 2.51298  

13/7   2.61041 2.70403 2.78338 2.86058  

15/8   2.94927 3.03458 3.111 3.18578  

17/9   3.26598 3.34343 3.4181 3.49135  

19/10   3.56437 3.63526 3.70814 3.77964  

21/11   3.84724 3.91324 3.98374 4.05282  

23/12   4.11674 4.17944 4.2469 4.31295  

25/13   4.37456 4.43522 4.49921 4.56184  

27/14   4.62208 4.68152 4.74192 4.80109  

29/15   4.86042 4.91905 4.97605   
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Table 7. Comparison of the Numerical Results by IYRH’s Algorithm with Two Other Methods 
Example nfI/nfM/nfL nf*I/nf*M/nf*L nFI/nFM/Nfl nF*I/nF*M/nF*L 

1 27/1361/failed 27/1361/failed 55/1141/failed 62/1211/failed 

2 16/170/failed 16/170/failed 16/72/failed 22/132/failed 

3 104/339/failed 104/339/failed 35/236/failed 57/296/failed 

4 8/418/failed 8/504/failed 9/309/failed 19/429/failed 

5 18/505/failed 18/505/failed 20/397/failed 31/457/failed 

 
 

The meaning of the abbreviations used in Table 8 is as follows: 
- nfI, nfM and nfL are the number of function evaluations needed to yield the global minimum 

of IYRH’s, Ma et al.’s and Lucidi and Picialy’s algorithms respectively. 
- nf*I, nf*M and nf*L are the number of function evaluations needed to satisfy the stopping 

criterion of IYRH’s, Ma et al.’s and Lucidi and Piccially’s algorithms respectively. 
- nFI , nFM and nFL are the number of filled function evaluations needed to obtain the global 

minimum of IYRH’s, Ma et al.’s and Lucidi and Piccially’s algorithms respectively. 
- nF*I, nF*M and nF*L are the number of filled function evaluations needed to satisfy  

the stopping criterion of IYRH’s, Ma et al.’s and Lucidi and Piccially’s algorithms respectively. 
-    5.“failed” means the method of Lucidi and Piccially fails to achieve the results. 

 
 

Table 8. Numerical Results due to 3 Different Initial Points for Example 3 of Table 2 

𝑥0 𝑘 𝑗/𝑛 𝑥𝑘
∗ 𝑥𝑖,𝑘

(𝑗)
 𝑥𝑀,𝑘

(𝑛)
 𝑥𝑖,𝑘

(𝑗+1)
 𝑥𝑀,𝑘

(𝑛)
 𝑥𝑘

𝑍+ 

-12 0 1/1 -10.8789 -9.99355 -9.10281 -8.00645  -7.87069 

1 1/1 -6.91954 -5.99355 -5.06151 -4.00645  -3.67996 

2 1/1 -2.95985 -1.99355 -1.02048 -0.00645042  0.594662 

3 1/1 1 2.00645 3.02048 3.99355 4.95985  

 3/2  6.00645 7.06151 7.99355 8.91954  

 5/3  10.0065 11.1028 11.9935   

-9.6 0 1/1 -10.8789 -9.99355 -9.10281 -8.00645  -7.87069 

1 1/1 -6.91954 -5.99355 -5.06151 -4.00645  -3.67996 

2 1/1 -2.95985 -1.99355 -1.02048 -0.00645042  0.594662 

3 1/1 1 2.00645 3.02048 3.99355 4.95985  

 3/2  6.00645 7.06151 7.99355 8.91954  

 5/3  10.0065 11.1028 11.9935   

-5.6 0 1/1 -6.91954 -5.99355 -5.06151 -4.00645  -3.67996 

1 1/1 -2.95985 -1.99355 -1.02048 -0.00645042  0.594662 

2 1/1 1 2.00645 3.02048 3.99355 4.95985  

 3/2  6.00645 7.06151 7.99355 8.91954  

 5/3  10.0065 11.1028 11.9935   

 
 
8. Comparison and Discussion 

The graphical comparison between IYRH’s filled function method with other best current 
filled function methods (1)-(4) included tunneling and bridging methods, will be presented.  
 
8.1. Comparison with the Tunneling Method [8]  

The weakness of tunneling method [8] 𝑇(𝑥, Γ) = (𝑓(𝑥) − 𝑓(𝑥1
∗))/[(𝑥 − 𝑥1

∗)Γ(𝑥 − 𝑥1
∗)]𝜆 

appeared when Newton’s method is used since the non-convexity problem. Fortunately, IYRH’s 
filled function can be utilized (Theorem 6 and Theorem 7) using the radius of curvature applied 
to Newton’s method to find the root of non-convex problems. For example 7 [8], the tunneling 
method can only obtain the global minimizer, whereas IYRH’s algorithm can obtain the entire 
extreme and inflection points in considered domain.  
 
8.2. Comparison with the Bridging Method [41] 

The bridging function [41]: 
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𝑓𝑟 =

{
 
 

 
 𝑟(𝑥)                                     ((𝑥 > 𝑥0) 𝑜𝑟 (𝑓(𝑥) ≥ 𝑟(𝑥)))

𝑟(𝑥) −
(𝑟(𝑥) − 𝑓(𝑥))

2

2𝜀
          ((𝑥 > 𝑥0) 𝑎𝑛𝑑 (𝑟(𝑥) − 𝜀 < 𝑓(𝑥) < 𝑟(𝑥)))

𝑓(𝑥) +
𝜀

2
                              ((𝑥 > 𝑥0) 𝑎𝑛𝑑 (𝑓(𝑥) < 𝑟(𝑥) < 𝜀))

 

 

𝑓𝑙 =

{
 
 

 
 𝑙(𝑥)                                     ((𝑥 > 𝑥0) 𝑜𝑟 (𝑓(𝑥) ≥ 𝑙(𝑥)))

𝑙(𝑥) −
(𝑙(𝑥) − 𝑓(𝑥))

2

2𝜀
          ((𝑥 > 𝑥0) 𝑎𝑛𝑑 (𝑙(𝑥) − 𝜀 < 𝑓(𝑥) < 𝑙(𝑥)))

𝑓(𝑥) +
𝜀

2
                              ((𝑥 > 𝑥0) 𝑎𝑛𝑑 (𝑓(𝑥) < 𝑙(𝑥) < 𝜀))

 

 
which  is strongly depended on the parameters 𝛿0, 𝛿1, 𝜀0, 𝛿 and 𝑑 where 𝛿0, 𝛿1, and 𝜀0  
must be predetermined, where 𝑟(𝑥) = 𝑟(𝑥, 𝑥0, 𝛿) = 𝑓(𝑥0) − 𝛿(𝑥 − 𝑥0), and 𝑙(𝑥) = 𝑙(𝑥, 𝑥0, 𝛿) =
𝑓(𝑥0) + 𝛿(𝑥 − 𝑥0).  

The authors suggested that 𝛿0 should be chosen first and it should big enough so that 

when 𝛿 ≥ 𝛿0 the computer does not treat −𝛿 as zero. They suggested𝛿0 = 10
−2 𝑜𝑟 10−3, 

𝛿1 = 0.1 𝑜𝑟 1, and 𝑑 is choosen such that 𝛿1/𝑑
𝑘 = 𝛿0. We are lucky since IYRH’s algorithm did 

not face any situation like that. 
 
8.3. Comparison with the Two-Parameter Filled Function  

The graph of 𝑓𝑐(𝑥) = cos(3𝑥/5) cos(2𝑥) + sin(𝑥) (0.5 ≤ 𝑥 ≤ 12) is given in Figure 4 (a) 

and the graph of 𝐹𝐼𝑅𝐻(𝑥, 𝑥1
∗) (𝑥 ∈ [1.34096,2.73151]) of 𝑓 is given in Figure 4 (b) where 

𝑥1
∗ = 1.34096. The graphs of the filled functions (1) with 𝜌 = 1and 𝑟 = 1 − 𝑓(𝑥), (2) with 
 𝜌 = 5and 𝜇 = 1, (3) with 𝜌 = 1 and 𝑟 = 1 − 𝑓(𝑥)and (1.4) with 𝑥0 = 2, 𝜏 = 10 are given in  

Figures 5 (a)-(d) respectively. Contrast to 𝐹𝐼𝑅𝐻, (a) 𝐹𝐺 has the infinity structure (flat) and strongly 
depended on 𝜌 and 𝑟. Therefore 𝐹𝐺 becomes inefficient, (b) 𝐹𝑍 

discontinuous at a point  
𝑥′ ∈ (2,3). This condition makes the minimizing difficult, (c) according to (3), they actually have 

four parameters to be adjusted (see [29]) and (d) 𝑎 (see (5)) contain a parameter 𝜉 > 0, which is 
also difficult to be adjusted, and it is clear that 𝐹𝑋 is not a one-parameter filled function. 

 
 

 
(a) 

 

 
(b) 

 
Figure 4. Graps of (a) 𝑓(𝑥) and (b) 𝐹𝐼𝑅𝐻 at 𝑥1

∗ = 1.34096 
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(b) 

 
(a) 

 
(c) 

 

 
(d) 

Figure 5. The graphs of (a) 𝐹𝐺, (b) 𝐹𝑍, (c) 𝐹𝐿𝑆, (d) 𝐹𝑋 
 
 
8.4. Comparison to the Parameter Free Filled Function 

Ma et al. [34] suggest a PFFF (6) at 𝑥𝑘
∗

 
of 𝑓. When applied to Example 9 in Table 1 at 

𝑥𝑘
∗ = 5.36225, it yields a graph as in Figure 6. It is clear that, 𝐹𝑀 is discontinuous at 𝑥𝑘

𝑍+, and 

almost flat for 𝑥 such that 𝑓(𝑥) < 𝑓(𝑥𝑘
∗) whereas 𝐹𝐼𝑅𝐻 is continuous as shown in Figure 7. 

 
 

 
  

Figure 6. Example 9 in Table 1 
 

Figure 7. Example 9 in Table 1
 

 
 
8.5. Conclusion 

This article introduces a new IYRH’s method which absolutely different from other filled 
function methods, in finding all extreme and inflection points of 𝑓: 𝐷 ⊆ 𝑅 ⟶ 𝑅 According to  
the results listed in Tables 4-8, this method never fail compute all those points. Thus, this 
method is an efficient and reliable method for solving the global optimization problems 
numerically and analytically. Therefore, the IYRH’s method is far more advanced and superior 
than other most of the filled function methods published in the literature. 
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