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Abstract 
Energy harvesting relay network is considered as the promising solution for a wireless 

communication network in our time. In this research, we present and demonstrate the system performance 
of the energy harvesting based two-way full-duplex relaying network over Nakagami-m fading 
environment. Firstly, we propose the analytical expressions of the achievable throughput and outage 
probability of the proposed system. In the second step, the effect of various system parameters on  
the system performance is presented and investigated. In the final step, the analytical results are also 
demonstrated by Monte-Carlo simulation. The numerical results demonstrated and convinced  
the analytical and the simulation results are agreed with each other. 
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1. Introduction 

Radio frequency (RF) energy transfer and harvesting has recently emerged as a 
promising way to extend the lifetime of energy-constrained wireless networks, especially when 
conventional energy harvesting techniques from renewable energy sources are not applicable. 
This technique enables wireless terminals to scavenge energy from RF signals broadcast by 
ambient/dedicated wireless transmitters to support their operation and information transmission. 
This new communication format has been termed wireless-powered communication (WPC) in 
the literature, which advocates the dual function of RF signals for both information delivery and 
energy transfer. In WPC, wireless terminals can avoid being interrupted by their batteries’ 
depletion, which can thus be deployed more flexibly and maintained at lower cost. In this sense, 
WPC has greater potential to sustain the network operation than its conventional  
battery-powered counterpart in a long run. Thanks to these inherent merits, WPC has been 
regarded as an indispensable and irreplaceable building block in a wide range  
of applications, e.g., RFID, wireless sensor networks, machine-to-machine communications, 
low-power wide-area networks, and Internet of Things, and so on [1-7]. 

In this paper, the system performance of the energy harvesting based two-way  
full-duplex re-laying network over Nakagami-m fading environment is proposed and 
investigated. Firstly, we analyze and demonstrate the analytical expressions of the achievable 
throughput, and outage probability of the proposed system. In the second step, the effect of 
various system parameters on the system performance is presented and investigated. In  
the final step, the analytical results are also demonstrated by Monte-Carlo simulation.  
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The numerical results demonstrated and convinced the analytical and the simulation results are 
agreed with each other. The main contributions of the paper are summarized as follows:  
i). The system model of energy harvesting based two-way full-duplex re-laying network over 

Nakagami-m fading environment with the power switching protocol is proposed and 
investigated.  

ii). The closed-form of the outage probability and throughput of the proposed system is 
derived.  

iii). The influence of the main parameters on the system performance is demonstrated entirely.  
The remaining of this paper is presented as follows. Sections 2 presents the system 

model of the model system. Sections 3 proposes and demonstrates the analytical mathematical 
expressions of the system performance. Section 4 provides the numerical results and some 
discussions. Finally, section 5 concludes the paper. 

 
 

2. System Model 
In this section, energy harvesting based two-way full-duplex relaying network over 

Nakagami-m fading environment is proposed in Figure 1. The information transmission and 
energy transfer between the nodes C, D via the helping relay R are presented in Figure 1.  
In this system model, each node C, D has two antennas which are responsible for signal 
transmission and reception, respectively. The line topology is adopted, where the relay node is 
located on the straight line connecting the two source nodes. Assume that the two source nodes 
cannot receive signals from each other directly due to high path loss caused by  
obstacles [8-17]. In this model, the following set of assumptions are considered: 

 There is no connection between the source and the destination in the results of elimination 
transmission information. 

 The required power of the data decoding process at the relay is negligible in comparison to 
the signal transmission energy from the relay to the destination. 

Moreover, the energy harvesting and information processing at the relay by the power 
switching protocol are proposed in Figure 2. In Figure 2, T is the block time, in which nodes C 
and D connected with each other via the helping relay R. 
 
 

 
 

Figure 1. The proposed system model 

 
 
Figure 2. The energy harvesting and 

information processing in the 
proposed system 

 
 

3. System Performance Analysis 
The total harvested energy of R during energy harvesting time T is given by: 
 

 2 2

R CD CR DRE P h h T    (1) 

 

where 0 1   is the energy conversion efficiency which depends on the rectification process 

and the energy harvesting circuitry in [10] and C D CDP P P   denotes the transmission power of 

node C and D. Furthermore, 0 1  : is the power fraction, which can affect the system 

throughput. Moreover, the average transmission power of R is computed by: 
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   2 2 2 2CDR
R CR DR CD CR DR

TPE
P h h P h h

T T


       (2) 

 

Due to the full-duplex system, the multiple-access phase (MAP) and the broadcast 
phase (BCP) can work at the same time. Therefore, the received signal at the relay can be 
expressed as: 

 

1 1R CR C DR D RR R Ry h x h x h x n         (3) 

 

where ,C Dx x  are the transmission signal from node C and D , respectively, 
RRh denotes the 

residual self-interference channel at R and 
Rn  the zero-mean additive white Gaussian noise 

(AWGN) with variance N0, and    2 2

C D CDx x P   ;  2

R RE x P . Here E{.} denotes the 

expectation operation, ,CR DRh h  are the Nakagami-m distribution factors. In this research model, 

the amplify-and-forward protocol is used. Hence, the received signal at the relay is amplified by 
a factor β which is given by: 

 

2 2 2

0(1 )

R R

R CD CR DR R RR

x P

y P h h P h N



 

    
 

  (4) 

 
The receive signal at the C can be express as: 

 

C CR R CC C Cy h x h x n    (5) 

 

where Rx  are the transmission signal from R, CCh denotes the residual self-interference channel 

at node A and Cn  the zero-mean additive white Gaussian noise (AWGN) with variance N0 

combine (3) and (4), (5) can be rewritten as: 

 

2

1 1

1 1

C CR R CC C C

CR CR C DR D RR R R CC C C

CR C CR DR D CR RR R CR R CC C C

y h y h x n

h h x h x h x n h x n

h x h h x h h x h n h x n



  

   

  

         

       

 (6) 

 

The first term of 
21 CR Ch x  can be totally canceled due to network coding in [11]. 

Substituting (2), (4) into (6), with some mathematic manipulation, the received signal to 
interference noise ratio (SINR) at the node C can be obtained as: 

 

 
   

2 2 2 22

2 2 2 2 2 2

0 0 0

(1 )

(1 )

CR DR CR DR

C

CR CR DR CR DR

h h h h

h h h N h h N N

 


  

 


    
 (7) 

 

where we denote 
1 1 1

CD CD CD

RR CC DD

P P P
   

     
. At the high SNR region, (7) can be 

approximated as: 
 

2

1 2 1 2

1 0 0 1

(1 ) (1 )

(1 ) 1
C

N N

    


    

 
 

   
  (8) 
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where we denote 
2 2

1 2

0

, ,CR DRh h
N


     . In this analysis section, please note that for 

convenience, the residual self-interference at the three nodes is modeled as AWGN with zero 

mean and variance of , ,RR CC DD    [12] are totally identical. Similarity, we can obtain SINR at 

the node B as: 
 

1 2

2

(1 )

1
D

 


 




 
 (9) 

 
In this work, we consider the delay limited (DL) transmission mode, where the outage 

probability can compute the average throughput. At first, we will determine the probability 

density function (PDF) and the cumulative density function (CDF) of a random variable (RV) i  

which  1,2i . As in [13] the PDF of RV can be calculated by the following: 

 
1

( ) exp( )
( 1)!( )

i

i i

ii i

m

m

x x
f x

m






 



 
 

 (10) 

 

from (10) The CDF of RV i  can be obtained with the help of [Eq 8.353.4] in [18]. 

 
1

0

( ) 1 exp( )
!( )

i

i

i i

m t

t
t

x x
F x

t





 





  
 

   (11) 

 

where i

i

i
m








  ; 

i
m is the Nakagami-m parameter and note that the case of 1

i
m   

corresponds to Rayleigh fading; 
i

 is the mean of RV i  which  1,2i . 

 

  1 2
_

1

(1 )
( ) Pr Pr

1Cout C th C th thP F
 

   
 

 
     

  
 (12) 

 

where 22 1R

th    is the threshold. 
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


  (13) 

 
Combine (13) with (11), (12) we have: 
 

 

2

2 2

1

1

11 1
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_
01 10
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1 1
1

1 1 1
1 exp

(1 ) ! (1 )

exp
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m
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 








       
                      

 
   

    


 (14) 

 

Now by applying the
0

( )
m

m m n n

n

m
x y x y

n




 
   

 
  to (14), the outage probability can demonstrate 

as follow:  
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  (16) 

 
using Table of Integral [3.471,9] in [18], the (16) can reformulate as: 
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similiarity:  
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where ( )vK   is the modifed Bessel function of the second kind and v
th
 order.  

Finally, the achievable throughput at the source nodes C and D can compute by: 
 

_(1 )j out jP R     which ( , )j C D  (20) 
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4. Numerical Results and Discussion 
In this section, Monte Carlo simulation results are presented to verify our theoretical 

derivations section 3. In this section, we investigate the system performance (in term of  
the throughput, the outage probability) of the energy harvesting based two-way full-duplex 
relaying network over Nakagami-m fading environment is validated in details [14-25].  
The simulation parameters are listed in Table 1. 

 
 

Table 1. Simulation Parameters 
Symbol Name Values 

η   Energy harvesting efficiency 0.7 

1
    Mean of 

2

CRh  
1 

2
  Mean of 

2

DRh  
1 

m Nakagami m-factor 3 

 
SNR threshold 7 

Ps/N0 Source power to noise ratio 0-40dB 

AA BB RR   
  

Residual self-interference 0-5dB 

R Source rate 1.5 bit/s/Hz 

 
 

Figures 3 and 4 investigates the impact of PCD/N0 on the outage probability and 
throughput of the proposed model system. The parameters of this figure are set by ρ=0.5 and  
Ω=0, 0.5, 5. As we can see, as PCD/N0 from 0 to 40, the outage probability of the model system 
decreases but the throughput increases remarkably. Moreover, the Monter Carlo simulation 
agrees well with the analytical expression. In another hand, the system performance is 
presented as a function of ρ when PCD/N0=20 and Ω=0, 0.5, 5 as shown in Figures 5 and 6.  
As the research results, we can see that outage probability significantly increases, and  
the throughput rapidly decreases when the value of ρ increases from 0 to 1. We can observe 
that the simulation results match very well with the theoretical results.  

Furthermore, In Figures 7 and 8, we investigate the impact of Ω on outage probability 
and the throughput of the model system, respectively. In this simulation, we set the main system 
parameters as PCD/N0=20 and ρ=0.3, 0.6, 0.9. In these figures, we can see that that outage 
probability significantly increases and the throughput rapidly decreases when the value of Ω 
increases from 0 to 5. Once again, the theoretical and simulation results are in a good 
agreement. On the other way, Figure 9 and 10 illustrates system performance as a function of 
m=m1=m2 from 0 to 8 when PCD/N0=20 and Ω=0, 0.5, 5. It can be seen from the research results 
that as increasing the value of m=m1=m2, the outage probability of the model system decreases 
but the throughput increases remarkably. Again, the theoretical and simulation results agree 
with each other very well. 
 
 

 
 

Figure 3. Outage probability versus PCD/N0 

 
 

Figure 4. Throughput versus PCD/N0 

th
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Figure 5. Outage probability versus ρ 
 
 

 
 

Figure 6. Throughput versus ρ 

 
 

Figure 7. Outage probability versus Ω 
 
 

 
 

Figure 8. Throughput versus Ω 

 
 
Figure 9. Outage probability versus m=m1=m2 

 
 

Figure 10. Throughput versus m=m1=m2 
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4. Conclusion 
In this paper, the system performance of the energy harvesting based two-way  

full-duplex relaying network over Nakagami-m is demonstrated. Analytical expressions for  
the outage probability, and the throughput are proposed and investigated for investigating  
the system performance. The research results show that the analytical mathematical expression 
and the simulation results using Monte Carlo method are totally matched each other. Moreover, 
this paper has provided practical insights into the effect of various system parameters on  
the system performance. The results could be providing the prospective solution for  
the communication network via helping relay. 
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