
TELKOMNIKA, Vol.17, No.5, October 2019, pp.2505~2511
ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, Decree No: 21/E/KPT/2018
DOI: 10.12928/TELKOMNIKA.v17i5.11317 ◼ 2505

Received September 28, 2018; March 19, 2019; Accepted April 22, 2019

Power consumption analysis on an IoT network
based on wemos: a case study

V. Kanakaris1, G. A. Papakostas*2, D. V. Bandekas3

1,3MEASUREMENTS-Lab, Department of Physics,
International Hellenic University, GR-65404 Agios Loukas, Kavala, Greece, Yunani

2HUMAIN-Lab, Computer of Science Department,
International Hellenic University, GR-65404 Agios Loukas, Kavala, Greece, Yunani

*Corresponding author, e-mail: vkanak@teiemt.gr1, gpapak@teikav.edu.gr2, dbandek@teikav.edu.gr3

Abstract
 On Internet of Things network (IoT), connections established among every device that connected

to the Internet. An IoT uses different communication method instead to that, the Internet uses. Internet of
Things (IoT) applications, use a light weight protocol Message Queue Telemetry Transport (MQTT). In this
article an Internet of Things (IoT) system is presented, an advanced solution of monitoring the temperature
and luminosity at different locations in a data centre of MQTT Server, measuring power consumption in
2 types of time of capturing data (every 0.5 min and every 1 min) making temperature and luminosity data
visible over internet through cloud based dashboard. The quality of service (QoS) in some application is very
crucial because the data collection is essential. This research focus on QoS in terms of power consumption
as well as the battery life of the system. The results show that the battery life span is proportional to the QoS
and the longevity of the battery and respectively the IoT network life depends on it.

Keywords: battery, data base, internet of things, IoT, wireless sensor network, WSN

Copyright © 2019 Universitas Ahmad Dahlan. All rights reserved.

1. Introduction

The last five years more and more studies have been conducted on IoT in order to
evaluate protocol’s performance, power consumption and security isuues. The power efficiency
on ESP8266 have discussed in detail in many surveys. Montori et al. conducted a research that
foucused on battery duration using different types of battery, different deep sleep duration, and
different authentication policies, but without using it in real time application. The results showed
that the batteries provided equivalent performance while the consumption during the deep sleep
mode was much instead the one that provide the data sheet [1].

Thomas et al. compares the MSP430 and ESP-03 (ESP8266 ver. 3) in terms of power
consumption and the results from the tests highlight that ESP-03 when it combined with MSP430
consume less energy instead of working separately. Moreover, this survey conducted without
using any specific IoT protocol [2]. Mocnej et al. also conducted a research on energy
consumption at ESP8266 in terms of overhead. The survey showed that when an overhead
occured the battery depleted rapidly [3].

Instead of the avove mentioned surveys, this research examines the QoS of
the complete IoT in terms of power consumption. Here, the entire processing is done within
Raspberry Pi 2 and as Wi-Fi repeater, a NodeMCU board via a WiFi router is used [4].
The solution that being recommended here uses the NodeMCU, which is based on ESP8266
chip, providing not only processing abilities but also supports Wi-Fi as well as two Wemos D1
mini that is also bases on ESP8266. The Wemos does the processing as well as
the communication activities over Wi-Fi but with low power consumption. On Wemos [5] data
retrieved from the sensors and then sent to the ESP8266 which then can be processed itself using
the firmware loaded into its flash memory [6]. NodeMCU act as the Access Point of
the Wireless Sensor Network (WSN), where the ESP8266 chip connects to the Wi-Fi router as an
intermediate station node and can push data from Wemos to the Wi-Fi router and then to
the NodeRed MQTT Broker in the internet at regular intervals [7, 8]. That means the Wemos is
playing as the sensor interface unit in one hand and on the other hand as the Wireless
Communication Unit besides doing all the processing. This results into faster processing and

mailto:vkanak@teiemt.gr
mailto:gpapak@teikav.edu.gr
mailto:dbandek@teikav.edu.gr

 ◼ ISSN: 1693-6930

TELKOMNIKA Vol. 17, No. 5, October 2019: 2505-2511

2506

transmission. Current techniques and tendencies of IoT concentrates on pushing data into a
centralized cloud platform which is being administered by IT experts and are available to anyone
with the proper credentials and an Internet connection. Nowadays, cloud-computing platforms
offer not only the required processing power but also the storage to manage vast sensor data [8].
The total uptime of these platforms continues to incline upwards as they get conciliatory to the
growing request of the IoT world. Following the IoT trends, the suggested approach also
comprises Cloud implementation on top of Raspberry Pi 2 WSN based temperature and
illumination monitoring system.

2. System Overview
2.1. System Components

DHT 22 [9, 10] and TSL 2561 [11, 12] sensors send the measured data to the Wemos.
Wemos is loaded with the firmware program written in C that does all the interfacing with sensors,
processing the sensor data and interfacing with cloud platform and finally uploading the data to
the NodeRed MQTT Broker ideally once every minute [13, 14]. To write the code and upload it to
the ESP8266 that Wemos and NodeMCU has, Visual Micro is used. Visual Micro is part of Visual
Studio 2017 and has all the feature of Arduino IDE. Two sets of data from the two Wemos that
have DHT 22 and TSL 2561 sensors accordingly are send to NodeMCU that works as
intermediate station from two “nodes” (Wemos) providing extended communication between
nodes and router. Then the router sends the data to the NodeRed MQTT broker, which is loaded
to the Raspberry Pi 2, and is responsible to publish the data and monitor them via the
Smart-Phone Application shown in Figure 1, as well as to transfer them to the MongoDB in order
to save them for further analysis and process shown in Figure 2. During this process we measure
the Power Consumption (Volt and mA) that Wemos need on every life cycle deep sleep, wake-up
transmit/receive and then deep sleep.

Figure 1. Smartphone application UI

Figure 2. IoT network deployment

2.2. Hardware Implementation
The technical specification of the hardware components used in the proposed system

described in the following. Measurement range of DHT 22 is from -40 degree centigrade to
80 degree centigrade with response time of 2 seconds. Its small size, low power consumption
and maximum 100-meter signal transmission makes it suitable for this application. For lower
temperature range and less precision DHT 11 sensors can be used.

The light sensor (TSL2561) uses infrared and visible light sensors in order to work as
the human eye. Because the TSL2561 is a sophisticated sensor, it can measure both very small

TELKOMNIKA ISSN: 1693-6930 ◼

Power consumption analysis on an IoT network based on wemos: a case study (V. Kanakaris)

2507

and very large amounts of light ESP8266 is a system-on-a-chip (SoC) designed by Espressif
Systems which is based on 32-bit RISC CPU with the Tensilica Xtensa LX106 processor [15, 16].
It has features like inbuilt Wi-Fi (802.11 b/g/n), GPIO (General Purpose Input/Output),
Inter-Integrated Circuit (I²C), analog-to-digital conversion, Serial Peripheral Interface (SPI), UART
(Universal asynchronous receiver/transmitter), and pulse-width modulation (PWM).

Wemos D1 is a module based on ESP-8266EX microcontroller and can be used for WiFi
Internet of Things (IoT) applications [17, 18]. The nine Input/Output pin makes this module
qualified for big IoT target audience. It is an excellent MCU (Microcontroller Unit) that can be
programmed with both Arduino IDE or Visual Micro. It has micro USB port for auto programming
and it can also be programmed using OTA (Over The Air) function. At the one side of the board
there is a of ESP8266 module and at the other there are a CH340 serial to USB chip, a reset
button and a PCB antenna.

For this project we use NodeMCU (ESP8266) 2nd generation ver.1.0 which has
integrated TCP/IP protocol stack . In this project NodeMCU is used as an intermediate station
and it connects to the Access Point of the wireless network i.e. the wireless router using the SSID
(Service Set Identifier) and the password of the network. As it connects to the Access Point
successfully it gets assigned to an IP and joints the network. Moreover, it acts as gateway in
order to provide the measurements to an MQTT server based on “NodeRed” [19, 20], a
browser-based programming editor that easily anyone can connect flows together using a variety
of nodes in the palette [21] shown in Figure 3. All these cooperate with the Mongo Database,
which is a non-SQL database, but it is opensource and many users used it especially for IoT
(Internet of Things) applications [22].

Figure 3. NodeRed deployment

MQTT server with Quality of Service (QoS) at most once, means that the minimal level is
zero and ensures a best effort delivery. This technique called “fire and forget” which guarantees
the same as the subjacent TCP protocol. In that case the message on receiver will not
acknowledged or saved and redelivered by the sender [23, 24].

Now in order the ESP8266 to function according to the project requirements,
the ESP8266 needs to be programmed. This is done by connecting the ESP8266 to Microsoft

 ◼ ISSN: 1693-6930

TELKOMNIKA Vol. 17, No. 5, October 2019: 2505-2511

2508

Visual Studio 2017 (Visual Micro) running on a PC via UART interface (Send/ Receive pins) of
ESP8266 through UART to USB converter shown in Figure 3, and the compiled program is
uploaded to the flash memory of the ESP8266 [25, 26].

 The battery that is used for all tests can provide when it is fully charged 4,03 Volts and
2273 mAh. Moreover, we are using a boost converter circuit which provides 5V supply for
the sensors as well as supply to the Wemos as shown in Figure 4. We have measure that the
boost converter circuit consumes in standalone mode 10 μA. The Wemos board also measured
in terms of consumed current and found that it consumes in deep sleep mode, with WiFi Off, and
without sensors 240 μA while when the sensors are connected consumes 270 μΑ.

Figure 4. Prototype setup at lab with dht 22 and wemos

2.3. Software Implementation

The Visual Micro (Microsoft Visual Studio 2017)-Uses the Visual Studio environment to
write the firmware in C language including the required header files for the integration of DHT
sensors and the interaction with NodeRed and Mongo DB can be used to program ESP8266 as
well. This Visual Micro helps to write, compile and upload the firmware to the flash memory of
the ESP8266. Moreover, the required library files for the programming are extracted and saved
in the folder pointed as library folder for the Visual Micro [25].

Web-Browser UI Access: The ESP8266 as well as the Wemos with sensors can be
visually be checked through a web-browser from a PC to a smartphone. The measurements of
each sensor depicted on the customized UI that the NodeRed provides. The interface can be
easily changed from a gauge mode to labeled value. Once configured the UI provides online
real-time values from the sensors [27-30].

3. Flow Steps
Flow steps as shown in Figure 5:

− Sense of temperature and illumination at a specific location of a rack with the help of
two sensors.

− The two Wemos receive the data from the sensors through its GPIOs (General Purpose Input
Output)

− Data are transferred to the ESP8266 (Figure 6) which has the role of intermediate station of
buffering data and connect more nodes.

− ESP8266 connects to the Wi-Fi router using SSID and password.

− ESP8266 also establishes connection to the MQTT server which ran under NodeRed platform
in Raspberry Pi 2.

− Raspberry Pi 2 sends data to a PC that runs MongoDB and stores the values for
further processing.

TELKOMNIKA ISSN: 1693-6930 ◼

Power consumption analysis on an IoT network based on wemos: a case study (V. Kanakaris)

2509

Figure 5. Flow chart of code running

on wemos

Figure 6. Prototype setup at lab of ESP8266

4. Results
As the prototype system is deployed at a setup, the live data is being monitored over

Smart-Phone Application as well as the Mongo Database. The Application continuously presents
the live data. In the following two graphs presented the power consumption in terms of time as
the number of dropped packets during the 10-day communication. In Figure 7 the graph presents
how the battery power is depleted when the Wemos send every half minute and every minute
respectively. By selecting, the MQTT QoS at most once the battery lifetime increased while
avoiding the re-transmissions.

The graphs in Figure 8 and Figure 9 show the communication quality on the IoT network.
The results show that only 7 packets lost on totally 14400 packets shown in Figure 8, when
the transmission occured every half minute, while when the trasmission occurred every minute
the number of packets that lost are 4, although the MQTT QoS service doesn’t provide at all
quality by not re-transmitting any lost packet.

Figure 7. Battery power consumption on wemos

 ◼ ISSN: 1693-6930

TELKOMNIKA Vol. 17, No. 5, October 2019: 2505-2511

2510

Figure 8. Communication quality when the wemos transfer data every 0.5 min

Figure 9. Communication quality when the wemos transfer data every 1 min

5. Conclusion

An IoT has been deployed using two wireless nodes using Wemos board each one
equipped with a temperature and illumination sensor, and a NodeMCU which acts as intermediate
stage in order to transfer data from Wemos to the Router and from there to the MQTT Broker and
the MongoDB. A continuous test run of more than 21 iterations of almost 10 days and 5 days
respectively of each iteration, showing almost the same performance in terms of power
consumption. The hardware setup together with the software from the NodeRed platform,
MongoDB and Smart-Phone App provides real time monitoring of the parameters remotely,
anytime with the help of the dashboard. The outcome of this research reveals that the battery life
is proportional to the frequency that the data dispatched. Using the MQTT server with Quality of
Service (QoS) at most once, increases the life of the network by sycrificing the communication
quality as there is no re-transmission of the data in case of packet loss. In the future, further
analysis need to be done using different MQTT QoS.

References
[1] F Montori, R Contigiani, L Bedogni. Is WiFi suitable for energy efficient IoT deployments? A

performance study. 2017 IEEE 3rd International Forum on Research and Technologies for Society and
Industry (RTSI). 2017: 1-5.

[2] D Thomas, R Mc Pherson, G Paul, J Irvine. Optimizing Power Consumption of Wi-Fi for IoT Devices:
An MSP430 processor and an ESP-03 chip provide a power-efficient solution. IEEE Consumer
Electronics Magazine. 2016; 5(4): 92-100.

TELKOMNIKA ISSN: 1693-6930 ◼

Power consumption analysis on an IoT network based on wemos: a case study (V. Kanakaris)

2511

[3] J Mocnej, M Miškuf, P Papcun, I Zolotová. Impact of edge computing paradigm on energy consumption
in IoT. IFAC-PapersOnLine. 2018; 51(6): 162-167.

[4] S Saha, A. Majumdar. Data centre temperature monitoring with ESP8266 based Wireless Sensor
Network and cloud-based dashboard with real time alert system. Devices for Integrated Circuit (DevIC),
IEEE. Industrial Internet of Things and Communications at the Edge by Tony Paine. 2017. 307-310.

[5] S Rukhmode, G Vyavhare, S Banot, A Narad, RM Tugnayat. IoT based agriculture monitoring system
using wemos. 2017: 14-19.

[6] IM Aho, JC Agunwamba. Use of Water Extract of Moringa Oleifera Seeds (WEMOS) in Raw Water
Treatment in Makurdi, Nigeria. Global Journal of Engineering Research. 2014; 13(1): 41-45.

[7] G Marques, R Pitarma. An indoor monitoring system for ambient assisted living based on internet of
things architecture. International journal of environmental research and public health. 2016; 13(11):
1152.

[8] V Fernoaga, GA Stelea, D Robu, F Sandu. Communication Solutions for Power Measurement in
the Cloud. 2018 International Conference on Communications (COMM). 2018: 397-402.

[9] M Bogdan. How to use the DHT22 sensor for measuring temperature and humidity with the arduino
board. ACTA Universitatis Cibiniensis. 2016; 68(1): 22-25.

[10] Digital-output relative humidity & temperature sensor/module DHT22 (DHT22 also named as AM2302)
https://www.sparkfun.com/datasheets/Sensors/Temperature/DHT22.pdf

[11] SU Zagade, RS Kawitkar. Wireless Sensor Network for Greenhouse. International Journal of Science
and Technology. 2012; 2(3): 130133.

[12] J Kalathas, DV Bandekas, A Kosmidis, V Kanakaris. Seedbed based on IoT: A Case Study. Journal of
Engineering Science & Technology Review. 2016; 9(2).

[13] RK Kodali, KS Mahesh. A low-cost implementation of MQTT using ESP8266. Contemporary
Computing and Informatics (IC3I), 2016 2nd International Conference on. 2016: 404-408.

[14] N Shofa, A Rakhmatsyah, SA Karimah. Infusion monitoring using WiFi (802.11) through MQTT
protocol. 2017 5th International Conference on Information and Communication Technology (ICoIC7).
2017: 1-7.

[15] ESP8266 Datasheet. Accessed July 10, 2018. https://www.espressif.com/sites/default/files/
documentation/0a-esp8266ex_datasheet_en.pdf

[16] ESP8266 Community Forum. Accessed July 10, 2018, https://www.esp8266.com/
[17] RK Kodali, A Sahu. An IoT based weather information prototype using WeMos. Contemporary

Computing and Informatics (IC3I). 2016 2nd International Conference on. 2016: 612-616.
[18] A McEwen, H Cassimally. Designing the internet of things. John Wiley & Sons. 2013. Designing

the Internet of Things by Adrian McEwen and H. Cassimally
[19] N Shofa, A. Rakhmatsyah, SA Karimah. Infusion monitoring using WiFi (802.11) through MQTT

protocol. 2017 5th International Conference on Information and Communication Technology (ICoIC7).
2017: 1-7.

[20] JE Luzuriaga, JC Cano, C Calafate, P Manzoni, M Perez, P Boronat. Handling mobility in IoT
applications using the MQTT protocol. 2015 Internet Technologies and Applications (ITA). 2015:
245-250.

[21] Node-RED. Accessed June 5, 2018, https://nodered.org/docs/user-guide/
[22] mongoDB. Accessed June 9, 2018, https://www.mongodb.com/mongodb-architecture
[23] A Del Campo, E Gambi, L Montanini, D Perla, L Raffaeli, S Spinsante. MQTT in AAL systems for home

monitoring of people with dementia. 2016 IEEE 27th Annual International Symposium on Personal,
Indoor, and Mobile Radio Communications (PIMRC). 2016: 1-6.

[24] MQTT QoS. Accessed June 8, 2018, https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-
quality-of-service-levels/

[25] Visual Micro Plugin Features. Accessed May 19, 2018, https://www.visualmicro.com/page/Arduino-
Plugin-Distinguishing-Features.aspx

[26] H Zhou. The internet of things in the cloud: A middleware perspective. CRC press. 2012.
[27] TA Abdulrahman, OH Isiwekpeni, NT Surajudeen-Bakinde, AO Otuoze. Design, specification and

implementation of a distributed home automation system. Procedia Computer Science. 2016; 94: 4
73-478.

[28] A Škraba, A Koložvari, D Kofjač, R Stojanović, V Stanovov, E Semenkin. Prototype of group heart rate
monitoring with NODEMCU ESP8266. 2017 6th Mediterranean Conference on Embedded Computing
(MECO). 2017: 1-4.

[29] E Dalipi, F Van den Abeele, I Ishaq, I Moerman, J Hoebeke. EC-IoT: An easy configuration framework
for constrained IoT devices. 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT). 2016:
159-164.

[30] A Kulkarni, D Mukhopadhyay. Internet of Things Based Weather Forecast Monitoring System.
Indonesian Journal of Electrical Engineering and Computer Science. 2018; 9(3): 555-557.

