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 This paper presents a wideband varactorless voltage controlled oscillator 
(VCO) based on tunable active inductor in 90 nm CMOS process which 

yields a tuning range of 1.22 GHz to 3.7 GHz having a tuning scope of 

100.5%. The designed VCO can be used for wideband wireless applications. 

The proposed VCO consumes a very low power (1.05~2.5) mW with  
the change of tuning voltages (0.3~0.9) V and provides a differential  

output power of (1.17~-5.13) dBm. The VCO exhibits phase noise of  

-80.50 dBc/Hz @ 2.74 GHz and the Figure of merit (FOM) is  

-147.73 dBc/Hz @ 2.74 GHz at 1MHz offset frequency. Achievement of 
high tuning range by altering the inductance of inductor which paves the way 

for eliminating the MOS varactor that recedes the overall silicon area 

consumption, is the noteworthy outcome of the proposed VCO. Furthermore, 

considering the dc power consumption, Figure of merit (FOM) and 
consistency of performance parameters over tuning range, the proposed VCO 

outstrips the other referred VCOs. 
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1. INTRODUCTION 

In the modern era of communication, voltage controlled oscillator has grabbed a significant position, 

gradually has become indispensible in many cases. Phase Locked Loop (PLL) which is used for frequency 

multiplier, divider and FM detector, has an unavoidable component, VCO [1-3]. Moreover, frequency 

jammer, function generator, analog to digital converter, RFID has an inevitable element, which is voltage 

controlled oscillator [4-10]. VCO can be implemented in two major ways: LC VCO and Ring VCO [11]. 

Power consumption, tuning range, phase noise, silicon area consumption and output power are the basic 

parameters for characterizing a VCO. The phase noise is a kind of impurity of frequency spectrum, which 

evolved from the VCO’s elements [12-13]. Ring VCO consumes less silicon area and also consumes less 

power, where LC VCO consumes a large silicon area due to the presence of spiral or passive inductor [11].  

The substitution of the spiral or passive inductor with active inductor will be the best solution in 

case of large silicon area consumption. Basic active inductor is the two back to back connected 

transconductors with one port connected to a capacitor. CMOS active inductor provides several advantages 

such as high and tunable inductance as well as quality factor, low silicon area consumption and can be 

implemented in wide tuning ranged VCO [14]. On the contrary, poor phase noise performance and dc static 
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power consumption are the two major disadvantages of the active inductor [15]. However, the minimization 

of both of these two disadvantages will be the ultimate goal of a good design. 

The main pivotal point of this proposed research is that making the active inductor tunable by 

altering the parameters that control the inductance of the inductor without any physical change, which is not 

possible for spiral inductor. Moreover, tuning capability of inductor will provide a good opportunity to tune 

the oscillation frequency of the LC-VCO. The most common technique to tune the oscillation frequency of 

VCO is obtained by imbedding MOS varctors, which adds to the total silicon area consumption. However, if 

high tuning range can be achieved by altering the inductance of the active inductor, then the varactors can be 

eliminated, which ultimately reduces the total silicon area consumtion.  
 

 

2. LIANG FEEDBACK RESISTANCE REGULAR CASCODE ACTIVE INDUCTOR 

Liang utilizes the Manetakis regulated cascode active inductor [16] by adding an additional 

resistance. Manetakis reduced the loss evolved from the series resistance by adding an additional regulated 

cascode, which is also further improved by Liang where a feedback resistor 𝑅𝑓 was added from the drain 

output of the 𝑀3 to the gate input of 𝑀2 as shown in the Figure 1 [17]. 
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Figure 1. Schematic diagram of Liang feedback resistance regular cascode active inductor 

 

 

The corresponding equation of the inductance, series resistance, capacitance and conductance are 

given below: 
 

𝐿 ≈
𝐶𝑔𝑠2(1+𝑅𝑓𝑔𝑜1)

𝑔𝑚1𝑔𝑚2
  

𝑅𝑠 ≈
𝑔𝑜3𝑔𝑜4

𝑔𝑜1𝑔𝑚1𝑔𝑚2𝑔𝑚3𝑔𝑚4
 

𝐶 ≈ 𝐶𝑔𝑠1 (1) 

𝐺 ≈ 𝑔𝑜2 +
𝑔𝑚1

1 + 𝑅𝑓𝑔𝑜1
 

 

similarly, the self-resonant frequency and quality factor at self-resonant frequency is: 

 

𝜔𝑜 = √
𝑔𝑚1𝑔𝑚2

𝐶𝑔𝑠1𝐶𝑔𝑠2(1 + 𝑅𝑓𝑔𝑜1)
   𝑎𝑛𝑑  𝑄(𝜔𝑜) =

ω0𝐿

𝑅𝑠
=

𝑔𝑜1𝑔𝑚3𝑔𝑚4

𝑔𝑜3𝑔𝑜4
√

𝑔𝑚1𝑔𝑚2𝐶𝑔𝑠2

𝐶𝑔𝑠1(1 + 𝑅𝑓𝑔𝑜1)
  

 

 
3. PROPOSED TUNABLE ACTIVE INDUCTOR 

As ideal current source cannot be implemented practically so it should be replaced by MOS 

operated in saturated region. Figure 2 represents the proposed tunable active inductor where the ideal current 

sources 𝐽1, 𝐽2 and 𝐽3 are replaced by MOSs 𝑀7, 𝑀6 and 𝑀5, which are operated in saturation region. Now  

the inductance of the inductor given by  
 

𝐿 ≈
𝐶𝑔𝑠2(1+𝑅𝑓𝑔𝑜1)

𝑔𝑚1𝑔𝑚2
  (2) 
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So the inductance is directly proportional to the gate to source capacitance of MOS 𝑀2 and inversely 

proportional to transconductance of MOS 𝑀1 and 𝑀2 and the change of the any of these three parameters will 

result in the change of inductance. The current through a MOS operated in the saturation region is given by: 

 

𝐼𝐷  =  
1

2
𝜇𝑛 𝐶𝑜𝑥

𝑊

𝐿
(vgs − 𝑣𝑡ℎ)2 (3) 

 

The increment of the gate to source voltage will cause the increment of the drain current 𝐼𝐷6
 of  

the MOS 𝑀6 . The increase of the drain current 𝐼𝐷6
 will cause the increase of the drain current of MOS 𝑀2, 

finally the transconductance 𝑔𝑚2 according to the following equation. 

 

𝑔𝑚 = √𝜇𝑛𝐶𝑜𝑥
𝑊

𝐿
𝐼𝐷 (4) 

 

The inductance will be decreased and the reduction of the inductance will increase the oscillation 

frequency, when the inductor will be implemented in LC oscillator. Now, if a good tuning range can be 

achieved from altering the inductance only there will be a noteworthy opportunity to eliminate the varactors 

as a tuning parameter. An implemented varactor is nothing but mosfet with shorted drain, body and source. 

So, the integration MOS varactor will boost up the silicon area consumption. So, the elimination of MOS 

varactor will recede the silicon area consumption. 

Tuning the inductance by changing the gm will result in a disadvantage that is the variation of dc 

power consumption. This will alter the phase noise of LC VCO as according to the equation given below 

phase noise has dependence on the dc power dissipation [18]. 

 

𝐿(𝛥𝜔) = 10log {
2𝐹𝑘𝑇

𝑃𝑠
[1 + (

𝜔0

2𝑄𝛥𝜔
)

2

](1 +
𝛥𝜔1/𝑓3

𝛥𝜔
)} (5) 

 

where, 

𝛥𝜔 = Frequency offset from the oscillation frequency 𝜔0 

𝑄 = Quality factor of the oscillator 

𝐹 = Excess noise factor 

𝑘 = Boltzmann constant 

𝑇 = Absolute Kelvin temperature 

𝑃𝑠 = Power dissipation 

Similarly, the alternation on dc power dissipation will also alter the Figure of merit, which defines 

the overall performance of LC VCO by counting three major parameters: power consumption, oscillation 

frequency and phase noise [19]. 

 

𝐹𝑂𝑀 = 𝐿(𝛥𝜔) + 10 log (
𝑃𝑑𝑖𝑠𝑠

1𝑚𝑊
) − 20 log (

𝜔𝑜

𝛥𝜔
) (6) 

 

The reduction of the variation of these two performing parameters (phase noise and Figure of merit) will be 

the major target of this proposed design. A significantly low value and low variation of DC power 

consumption will pave the way for the achievement of this goal. 

Table 1 shows the W/L ratios for all the mosfets used in the proposed tunable active inductor 

depicted in Figure 2. Figure 3 shows the variation of the inductance value of the proposed tunable active 

inductor with the variation of tuning voltage ranging from 0.3 V to 0.9 V. Finally the Table 2 represents  

the numerical value of inductance for different frequencies with the variation of tuning voltages. 

 

 

Table 1. Widths and lengths of implemented transistors 
MOS Width (μm) Length (nm) 

M1 12 120 

M2 22 140 

M3 25 140 

M4 4.2 300 

M5 4 120 

M6 6 300 

M7 4 120 
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Figure 2. Liang feedback resistance regular 

cascode active inductor with saturated MOS 

as current source 

 

Figure 3. Variation of inductance with the variation of  

the control voltage 𝑉𝑡𝑢𝑛𝑒  

 

 

Table 2. Inductance at diffeent frequencies for different tuning voltages 

Vtune 
Inductance(nH) 

@ 1GHz 

Inductance(nH) 

@ 2GHz 

Inductance(nH) 

@ 3GHz 

Inductance(nH) 

@ 4GHz 

Power Consumption  

of AI (mW) 

0.3 43.3 55.3 57.3 -50.2 0.259 

0.4 16.4 20.3 31.7 48.7 0.331 

0.5 9.77 11.8 17.2 32.8 0.446 

0.6 7.24 8.76 12.4 21.4 0.588 

0.7 6.03 7.34 10.3 15.7 0.737 

0.8 5.36 6.57 9.21 12.3 0.878 

0.9 4.95 6.11 8.50 99.9 1.007 

 

 

4. PROPOSED TUNABLE ACTIVE INDUCTOR BASED VCO 

NMOS LC VCO topology, which has cross coupled pair of NMOS transistors, with a tail current 

source is the most commonly used topology. The LC tank circuit is loaded at the drain terminal and a couple 

of LC tank forms the differential configuration. The back to back connected NMOSs are in common source 

configuration, so that a large voltage gain can be achieved, which is one of the fundamental conditions of  

the Barkhausen criteria for sustaining oscillation. Another condition regarding the total phase shift that it 

should be 0o or 360o is provided by these NMOSs which provides 180o phase shift as they are in common 

source configuration. Figure 4 presents the proposed active inductor based voltage controlled oscillator based 

on most commonly used NMOS LC VCO topology. The indicated dotted section is Liang regular cascade 

active inductor and the presence of two active inductors indicates the differential configuration. Vcon at  

the gate terminal of the MOS M6 is the tuning voltage which changes the gate voltage and finally  

the inductance of the active inductor. Mnegs are the two MOSs, used as negative resistor whom resistance is 

controlled by MOS M8 operated in saturation region. The overall contribution of these elements will result  

a differential output which are taken from the two output terminals Out1 and Out2. Supply voltage VDD is 

used 1 V and the W/L ratios of all MOSs are given in Table 3. 

 

 

Table 3. Widths and lengths of implemented transistors for the proposed VCO 

MOS Width (μm) Length (nm) 

M1 12 120 

M2 22 140 

M3 25 140 

M4 4.2 300 

M5 4 120 

M6 6 300 

M7 4 120 

Mneg 30 100 

M8 30 100 (multipliers = 3) 
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Figure 4. Proposed tunable active inductor based VCO 

 

 

5. SIMULATION RESULTS 

Transient, pss (with 5 harmonics), pnoise, dc analysis had been performed to achieve output 

oscillation, oscillation frequency, phase noise, output power and dc power dissipation of the proposed VCO. 

The oscillator shows an oscillation frequency ranging from 1.22 GHz to 3.7 GHz with the variation of control 

voltage ranging from 0.3 V to 0.9 V. The tuning scope is 100.5% and the oscillator yields a phase noise of  

-77.01 dBc/Hz to -76.44 dBc/Hz in the whole tuning range. The dc power dissipation is 1.05 mW to  

2.50 mW where the VDD is 1V. The dc power consumption is very low which is one of the major focal points 

of the proposed VCO. The proposed VCO provides differential output power of 1.17 dBm to -5.13 dBm with 

the increment of tuning frequency. Table 4 shows the performance parameters of the proposed active 

inductor based differential VCO for the variation of control voltage. 

 

 

Table 4. Performance parameters for different tuning voltage vcon 

Vcon 

 

(V) 

Freq. 

(f) 

GHz 

(PSS 

Output 

Oscillation 

Voltage 

(PSS) @f 

Phase 

Noise @ 

1MHz 

offset 

dBc/Hz 

Power 

Diss. 

@1V 

(mW) 

Output Power 

(50-ohm R) 

Figure of merit 

(FOM) 

@ 1 MHz Offset Differential Differential Differential 

(P-P) +ve -ve +ve -ve 
dBc/Hz dBF 

mV mV (dBm) 

0.3 1.224 396.5 to -395.8 361.6 -77.01 1.0496 1.165 -138.555 288.555 

   181.0 180.6   -4.846 -4.866   

0.4 2.123 366 to -366 344.4 -80.02 1.19091 740.7 -145.8 295.8 

   172.3 172.1   -5.274 -5.286   

0.5 2.735 337.5 to -337.9 326.2 -80.50 1.41426 269.9 -147.734 297.734 

   163.3 162.9   -5.740 -5.761   

0.6 3.141 295 to -294.5 289.0 -79.97 1.68951 782.3 -147.634 297.634 

   144.7 144.3   -6.790 -6.816   

0.7 3.404 250.5 to -250.8 246.8 -78.83 1.97745 -2.154 -146.509 296.509 

   123.6 123.2   -8.162 -8.187   

0.8 3.578 210.5 to -211 208.3 -77.54 2.25122 -3.625 -145.089 295.089 

   104.4 103.9   -9.628 -9.664   

0.9 3.696 176.9 to -177 175.2 -76.44 2.50185 -5.131 -143.812 293.812 

   87.78 87.38   -11.13 -11.17   

 

 

Figure 5 shows the differential output oscillation for the control voltage Vcon = 0.6 V, where Figure 6 

represents phase noise vs frequency offset for tuning voltages of 0.3 V, 0.6 V and 0.9 V and the phase noises 

are -77.01, -79.97 and -76.44 dBc/Hz at 1 MHz offset respectively. Figure 7 shows the variation of tuning 

frequency with the change of tuning voltage. The accieved frequency range is 1.22 to 3.7 GHz. 
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Figure 5. Differential output oscillation for tuning voltage Vcon = 0.6 V 
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Figure 6. Phase noise vs frequency offset for various tuning voltage 

 

 

A performance parameter, Figure of merit defined by (6), considering phase noise, dc power 

consumption and oscillation frequency which is depicted in Figure 8 with the variation of tuning voltages. 

The plot shows that the Figure of merit (FOM) is almost constant with the alteration of oscillator’s oscillation 

frequency which is the outcome of the proposed design. The Figure of merit can also be defined in terms of 

dBF which is given by (7) [20]. 

 

𝐹𝑂𝑀(𝑑𝐵𝐹) = 20 log(𝑓𝑟𝑒𝑞) − 𝑝ℎ𝑎𝑠𝑒 𝑛𝑜𝑖𝑠𝑒 − 10 log (𝑃𝑑𝑖𝑠𝑠) (7) 

 

Finally, the main contribution of the proposed VCO is the elimination of MOS varactors which are 

used for the tuning purpose. MOSFET with shorted drain, source and body can be used as capacitor.  

The change of the gate voltage of MOSFET results in the change of the capacitance of this MOS varactor. To 

achieve higher value of capacitance, we have to multiply the number of MOS which ultimately increases  

the silicon area consumption. So, the elimination of MOS varactor, under some conditions can be possible, if 

high tuning range can be achieved. But tuning of the inductor engenders the variation of performance 

parameter such as dc power consumption, phase noise and ultimately the Figure of merit. The data table and 

the plots presented clearly point out that the variations are highly limited. After all, reduction of the silicon 

area consumption by eliminating MOS varactor and at the same time the limitation of variation of 

performance parameters are the yielding of the proposed design which outdoes the other designs as referred 

in Table 5.  
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Figure 7. Frequency vs tuning voltage for the proposed VCO 
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Figure 8. Figure of merit (FOM) vs tuning voltages for the proposed VCO 
 

 

Table 5. Performance comparison of VCO with other designs 
References [21] [22] [23] [24] [25] This work 

CMOS Technology 180 nm 180 nm 180 nm 180 nm 130 nm 90 nm 

Supply Voltage (V) 1.8 1.8 1.8 1.8 1.2 1 

Power (mW) 44.6 16.27 29.38 11.9 3.2 1.05~2.5 

Tuning Range (GHz) 1.26~2.98 0.1~2.5 ---- 0.55~3.8 1.913~2.491 1.22~3.69 

Tuning Range (%) 81.13 184.6 ---- 149 26.24 100.5 

Output Power(dBm) -5.3~-18.7 5~15 
0.21 

@ 5.5GHz 
3~-11 ---- 

1.16~5.13 

(differential) 

PN@1MHz (dBc/Hz) -90 –93~-80 -80.31 -89~-78 -80.23 
-80.50 

@ 2.74 GHz 

FOM (dBc/Hz) @1MHz 
-141.11 @ 

2.4 GHz 

-120.88~ 

135.84 

-140.43 @ 

5.5 GHz 

-133.5~ 

-138.84 

-140.81~ 

-143.106 

-147.734 

@ 2.74 GHz 

 

 

6. CONCLUSION 

A low power tunable active inductor based voltage controlled oscillator for wireless applications has 

been proposed in this research which provides a tuning range of 1.22 GHz to 3.7 GHz having a tuning 

scope of 100.5%. The proposed VCO exihibts low dc power dissipation characteristics (1.05~2.5) mW with  

the change of tuning voltages (0.3~0.9) V along with a good differential output power of (1.17~-5.13) dBm. 

Furthermore, elimination of MOS varactor which has been achivevd by tuning the inductance only, has 

faciliated the way to reduce the silicon area consumption. Low power consumption, stabilty of performance 

parameters and finally the good Figure of merit (FOM) are the specific outcomes of the proposed design 

which outperform the other referred designs. 
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