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Abstrak 
Metoda nir-destruktif adalah cara yang mampu untuk memberikan informasi mengenai kondisi 

dalam dari suatu objek, tanpa ada aksi pengerusakana. Metoda ini bekerja berdasarkan data yang 
didapatkan dari perhitungan atau pengukuran besaran eksternalnya. Problem rekonstruksi struktur datar 
yang berlapis ditawarkan dengan bantuan data gelombang penyebaran di sisi depan dan belakang 
struktur yang diamati. Masalah seperti ini adalah problem inversi, yang bersifat ill-posed. Sehingga dalam 
penyelesaiannya, selain metoda inversi matriks, juga diperlukan suatu prosedur regularisasi. Regularisasi 
multiplikatif yang digunakan memiliki kemampuan dalam mendeteksi perubahan parameter dielektrika 
yang selayaknya. Dengan bantuan metoda inversi Gauss-Newton, didapatkan nilai permitivitas lapisan, 
yang akan meminimalisir suatu fungsi harga tertentu. Dalam pengamtan yang dilakukan beberapa struktur 
memerlukan lebih lapisan dengan ketebalan dan jumlah lapisan yang berbeda-beda. Beberapa struktur 
memerlukan diskretisasi yang lebih halus atau jumlah langkah iterasi yang lebih banyak. 

  
Kata kunci: fungsi Green, gelombang electromagnetika, problem inversi, regularisasi multiplikatif, sumber 
kontrast  

 
 

Abstract 
 There is an increasing interest to have an access to hidden objects without making any 

destructive action. Such non-destructive method is able to give a picture of the inner part of the structure 
by measuring some external entities. The problem of reconstructing planar multilayered structures based 
on given scattering data is an inverse problem. Inverse problems are ill-posed, beside matrix inversion 
tools, a regularization procedure must be applied additionally. Multiplicative regularization was considered 
as an appropriate penalty method to solve this problem. The Gauss-Newton inversion method as an 
optimization procedure was used to find the permittivity values, which minimized some cost functions. 
Several dielectric layers with different thickness and profiles were observed. Some layers needed more 
discretization elements and more iteration steps to give the correct profiles.  

  
Keywords: contrast source, electromagnetic waves, Green’s function, inverse problems, multiple 
regularization   
  
 
1. Introduction 

There is an increasing interest in using the mathematical model of inverse problems for 
getting understanding of many practical applications. Examples of such applications are ranging 
from detecting the shape and location of cracks inside a wall, through exploration of geophysical 
problems, to detecting of breast cancers [1-3]. These inverse problems make use of 
electromagnetic fields for determining the inner structure of objects, whose parts are 
distinguished by different dielectric constants or permittivities. By exposing electromagnetic 
fields to the structures, these inhomogeneous objects cause scattering fields. The scattering 
fields generated by objects with known permittivities can be analytically or numerically 
calculated by well known methods [4, 5, 6, 7], this problem is called direct or forward problems. 
The calculation of direct problems is straightforward and easy. On the other side, if the data 
about scattering fields is given, and the permittivity profile of the structure must be determined, 
the situation is different. Considering these inverse problems theoretically, leads to a 
mathematical expression which contains Fredholm integral equation of the first kind. The 
Fredholm equation of the first kind has the nature of ill-posedness. An ill-posed equation has at 
least one of the following characters: no solution exists, the solutions are not unique and the 
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solution is not stable against noise [8]. Mathematically, the system matrix governing the problem 
has a very large condition number. In order to solve the inverse problems meaningfully, 
calculation methods must be combined with some regularization strategies; truncated singular 
value decomposition (TSVD), Tikhonov regularization, total variation (TV) or multiplicative 
regularization (MR), just to name a few [9]. Shea et al [10] use the Finite Difference Time 
Domain (FDTD) combined with TSVD to make some observations according to biomedical 
tissues. In [11] Charbonnier et al use total variation formulation, which is the basis of some 
multiplicative regularization (MR), to enhance the quality of image restoration through the ability 
for detecting some edges in image profile. Gilmore et al [12] compare some regularization 
strategies based on Born approximation, Tikhonov regularization and multiplicative 
regularization. The multiplicative regularization has the ability to detect sharp variation in 
permittivities. Kilic et al [13] show an approach combining an integral equation method and 
multiplicative regularization for problems inside a rectangular waveguide. Aly et al [14] solve 
similar problems in coaxial structures using the super-resolution technique root multiple-signal 
classification. Another strategies are combinations of some nature-inspired optimization 
methods, like genetic algorithms, neuronal networks etc [15, 16]. 

In this paper, an inverse problem combining the integral equation method and 
multiplicative regularization is considered to determine the dielectric properties of planar 
multilayered objects located in free space. The multilayered walls are illuminated by incident 
fields of different frequencies. On the front and back side of the walls, the scattering fields are 
calculated analytically by means of reflection and transmission of electromagnetic fields at and 
through multilayered walls [4]. This synthetic data is given for reconstructing the wall profile. 
Some structures consisting of different layers, thickness and permittivities are considered and 
the results are compared with the original structures. 
 
 
2. Problem Statement 

In an inverse problem, a certain inhomogeneous region is exposed by electromagnetic 
fields.  In this work we concentrate the attention to planar multilayered structures, which consist 
of layers with unknown thickness and material properties, see Figure 1. Due to interaction 
between electromagnetic fields and materials some scattering fields are generated and 
observed for solving the inverse problem. In our case, scattering fields on the same side like the 
incident field are called reflected fields, and on the contrary side called transmitted fields. The 
superposition of the incident Einc(z) and scattering fields Es(z) yields the total field E(z). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 1. Scattering of electromagnetic field due to interaction with inhomogeneous materials. 
The scattering fields must fulfill the Helmholtz partial differential equation [4] 

 

ሻݖ௦ሺܧଶ׏ ൅ ݇௢
ଶܧ௦ሺݖሻ ൌ െ݇௢

ଶݒሺݖሻܧሺݖሻ,  (1) 

incident field 

Einc 

reflected field 

Erefl 

transmitted field 

Etran z 
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which connects the scattering fields, the contrast v(z) and the total fields. The constrast is 
defined as 
 

ሻݖሺݒ ൌ ሻݖ௥ሺߝ െ 1 െ ݆
ఙሺ௭ሻ

ఠఌ೚
                                                                              (2) 

 

The solution of the above Helmholtz equation is given by the following data equation [1] 

 

ሻݖ௦ሺܧ ൌ ݇௢
ଶ ׬ ,ݖሺܩ                                                                         , ᇱݖᇱሻ݀ݖሺܧᇱሻݖሺݒᇱሻݖ

஽
  (3) 

 

which equates the unknown quantities, contrast and total field, with the data, the scattering 
fields. The coordinate z in eq. (3) represents observation points outside the inhomogeneous 
region and G(z,z’) is the Green’s function given for electromagnetic field in free space as [4,13] 

 

,ݖሺܩ ᇱሻݖ ൌ െ
௝

ଶ௞೚
݁ି௝௞೚|௭ି௭ᇱ|                                                                            (4) 

 
The integration is carried out along the inhomogeneous region D. In order to make the 

problem formulation complete we need the so-called object equation, which combines the 
incident field and scattered field to get the total field 

 

ሻݖሺܧ ൌ ሻݖ௜௡௖ሺܧ ൅ ݇௢
ଶ ׬ ,ݖሺܩ                                                         ᇱݖᇱሻ݀ݖሺܧᇱሻݖሺݒᇱሻݖ

஽
  (5) 

 
Again the integration in eq. (5) is calculated along the domain D, however we set the 

observation points now inside the domain D. 
Eq. (3) and (5) play the central role in solving the unknown quantities, the contrast v(z) 

and the total field E(z). The incident field Einc(z) is generally known, and the scattering field Es(z) 
can be approximately measured or if no measurement exists, it can be synthetically calculated. 
In some parts of the equations we have the unknowns as a product of each other, so that we 
can define additionally a fictive quantitive the so-called contrast source w(z) [1] 

 

ᇱሻݖሺݓ  ൌ  ᇱሻ                                                                                                            (6)ݖሺܧᇱሻݖሺݒ

 
 

3. Multiplicative-Regularization Contrast Source Inversion (MR-CSI) 
Solving the above described inverse problem with computers begins with discretization 

of the inhomogeneous structures. The layers are discretized so fine, that inside each 
discretization element the contrast and the field can be assumed to be constant. Eq. (5) 
becomes 

ሾܧሿ ൌ ሼሾܫሿ െ ሾܩௌሿ ∙ ሾݒሿሽ
ିଵሾܧ௜௡௖ሿ.                                                                                    (7) 

 

ሾܩௌሿ is a matrix, whose elements describe the integration of Green’s function in a discretization 
element with observation point inside the integration domain. Initially, the algorithms begins with 
a guess value for contrast, let be v1 = 1.0 for all layers. So that with eq. (7) we can calculate 
initial value for the total field. Eq. (6) gives the initial value for the source contrast w. For the 
further iteration steps, the contrast will be improved by  

ሾݒ௡ሿ ൌ ሾݒ௡ିଵሿ ൅   ௡ሿ.                                                                                                (8)ݒ௡ሾΔߙ
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Δvn is the search direction and αn is the distance [17], which can be calculated by the 
described algorithm below. Using the point-matching method for each scattering data eq. (3) 
leads to a functional to be minimized by a certain optimization algorithm  

ܥ ൌ ‖݀‖ଶ                                                                                                                        (9) 

 

with                  ሾ݀ሿ ൌ ሾܧ௦ሿ െ ሾܩ஽ሿሾݒሿሾܧሿ
ଶ                                                                                          (10) 

 
The symbol ||·|| denotes L2-norm. ሾܩ஽ሿ is a matrix, whose elements describe the 

integration of Green’s function in a discretization element with observation point outside the 
integration domain. In order to find the minimum of the cost functional, the Gauss-Newton 
Inversion method as an optimization method is used [17], which makes use the derivative of the 
cost functional during the computation intensively. A derivative of the cost functional is given in 
form of the following Frechet derivative with respect to the variable v 

 

ሾܥ௩ሿ ൌ ሾܩ஽ሿሼሾܫሿ െ ሾܩௌሿ ∙ ሾݒሿሽ
ିଵሾܧሿ                                                                              (11) 

 
The system matrix in eq. (10) is principally ill-conditioned, and due to noises 

contaminating the value of scattered fields, the minimum of this functional leads to physically 
meaningless solution. In order to alleviate this problem, in this paper we use multiplicative 
regularization given by a multiplication between the above functional and a penalty function 

ெܥ ൌ ܥ ∙  ெோ   ,                                                                                                                 (12)ܥ

which is defined according to [1] as 
 

ெோܥ ൌ ׬ 
௩|మାఋ೙׏|

మ

௕೙
మஐ

 ݀Ω′                                                                                                  (13) 

 

with ܾ௡
ଶ ൌ ܰሺ|ݒ׏௡|

ଶ ൅ ௡ߜ
ଶሻ   and     ߜ௡

ଶ ൌ
஼

ௗ௭య/మ
 , N is the number of discretized elements, dz is the 

width of the discretization small element and ݒ׏௡ is the gradient of the contrast.                             
Applying the regularized cost functional (12) in Gauss-Newton optimization algorithm, 

yields the following equation, which can be solved to get the search direction [12] 

 

ሺሾܥ௩
∗ሿ ∙ ሾܥ௩ሿ െ ܥ ∙ ሾࣦሿሻሾΔݒ௡ሿ ൌ ሾܥ௩

∗ሿ ∙ ሾ݀ሿ ൅ ܥ ∙ ሾࣦሿ ∙ ሾݒሿ                                     (14) 

 

ሾܥ௩
∗ሿ is the adjoint of the Frechet derivatives ሾܥ௩ሿ and the operator ሾࣦሿ represents the 

discrete form of ׏ ∙ ሺܾ௡
ଶ׏ሻ operator and provides an edge-preserving regularization. If the one 

specific region of observed region is homogeneous, the weight ܾ௡
ଶ will be almost constant, 

therefore the operator ሾࣦሿ will be approximately equal to ܾ௡
ଶ׏ଶ, which favors smooth solution. On 

the other hand, if there is a discontinuity, the corresponding ܾ௡
ଶ will be small. The discontinuity 

will not be smoothed out [12].  
The distance of variation αn is calculated by a line search algorithm [16]. Line search 

methods work well for finding a minimum of a quadratic function. They tend to fail miserably 
when searching a cost surface with many minima, because the vectors can totally miss the area 
where the global minimum exists. Here, we use the Polak-Ribiere formulation [17] 

 
 

௡ߙ ൌ ௡ିଵߙ െ
‖ሾௗሿ∙ሺሾ஼ೡሿ೙ିሾ஼ೡሿ೙షభሻ‖

஼
                                                                           (15) 
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4. Results and Analysis 
In this section, the algorithm is verified by several cases. Some test structures 

consisting of one or more layers with known permittivities and thicknesses are given. The 
incident field impinges the planar multilayered wall perpendicular, and is generated in frequency 
intervall of 9 GHz to 10 GHz (101 frequency points).  The scattered data, i.e. reflected and 
transmitted fields, can be calculated analytically [4]. This scattered data is used in the following 
reconstruction process. In this way we can avoid the so-called ‘inverse crimes’ [18].  

 
4.1. One-layer structures 

Based on synthetic data from analytical calculation, four dielectric layers εr = 2 with 
different thicknesses are observed, the thickest ist 18 mm and the thinnest is 6 mm. As 
described in section 3, the observed region (z=0 .. 20 mm) is discretized in 40 small elements, 
in each of the elements constant permittivity is assumed. Beginning with εr = 1 for all 40 small 
elements, the inverse procedure refines the permittivity values iteratively. Figure 2 shows the 
reconstructed profiles along the observed region and figure 3 gives the cost (eq. 9) at each 
iteration. For thicknesses D=18 mm, 14 mm and 10 mm, the cost decreases very fast and at 
10th-iteration the value is already smaller that 10-6.  

The profiles for D=18 mm (stared curve), D=14 mm (curve with circles), and D=10 mm 
(dashed line curve) can be reconstructed very well. The deviation from the exact value (1.0 or 
2.0) is maximal 0.004. The profile for D=6 mm (solid curve in figure 2) is actually calculated also 
very good (with maximal error of about 0.016), however the the cost obtained is just below 0.1 
(solid curve in figure 3). The reconstruction of thin layer is indeed a very challenging problem, it 
is the question about the resolution of the reconstruction. 

In order to verify the capability of the algorithm to detect thin layer, in following a 
dielectric layer (εr = 2) with thickness 4 mm is observed. The whole observed region is 20 mm 
thick, and discretized into N = 20 small equally thick elements. It means, at frequency 10 GHz, a 
small element of the thickness 1 mm is much more thinner than the wavelength inside the 
dielectric layer (21.21 mm). Theoretically N = 20 should be sufficient. 

 
 

 
Figure 2. Reconstructed profile of dielectric 
layer with εr = 2 and different thicknesses. 

 
Figure 3. Convergence of the reconstruction of 

dielectric layer (εr = 2) different layers. 
 
 
Figure 4 show the reconstructed profile for N = 20 (curve with circles). Instead of a 

profile with constant permittivity εr = 2 at position intervall from 8 mm to 12 mm, and  εr = 1 
outside this intervall, we find relative good approxilatiom of the profile, the cost function C > 1.0. 
Increasing the discretization to N = 40, we get better profile, with the cost function of about 0.05 
(Figure 5, curve with triangles at iteration 15). We guess, that the Gauss-Newton inversion 
method catched the local minimum of the cost function, so at iteration 18 we try to use new start 
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values for the contrast v. However, the cost function has higher value (> 1.0), so we stopped the 
process. 

For N=80 (dashed curve in Figure 4 and 5), the dielectric layer still cannot be 
reconstructed correctly, the cost function is about 5x10-3. At the last, we try to use higher 
discretization elements (N=160). The solid curve in Figure 4 and 5 shows very good result and 
the cost function is about 4x10-5.  

 
 

 
 

Figure 4. Reconstruction of 4 mm dielectric layer 
with εr = 2 by different discretization. 

 

 
Figure 5. Convergence of the reconstructing 

process of 4mm-dielectric layer (εr = 2). 
  

 

 
Figure 6. Reconstruction of three-layer 

dielectric by different discretization.' 
 
 

 

 
Figure 7. Convergence of the reconstructing 

process of three-layer dielectric. 

4.2. Three-layered structures 
The layers under consideration consist of 10 mm dielectric (εr = 2), 8 mm air and 8 mm 

dielectric (εr = 2). In front and back side there is a 2mm-air layer. In the reconstructing process 
the overall region observed is 30 mm width. 

The reconstruction process uses 160 frequency points in intervall 9 GHz to 10 GHz. 
Coarse discretizations (N=40 and N=80) are not able to reconstruct the profile, the end cost is 
about 0.6 even after a restart. A discretization of N=160, leads to better reconstructed profile 
(dashed line curve). In intervall z = 0 to 2 mm the permittivity is about 1.0, between 2 mm to 12 
mm, the permittivity reconstructed is between 1.9 to 2.15 from the exact value of 2.0. Between 
12 mm and 20 mm, the permittivity reconstructed is almost exact, in intervall 20 mm to 28 mm 
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the optimization gives the permittivity value of about 1.8 (exact value is 2.0), and in the last 
intervall 28 mm to 30 mm, almost the exact value of 1.0 can be reconstructed. The cost of this 
value combination is in about 8.0x10-4. This is obtained after setting the initial contrast for 
second time. 

A finer discretization of N=320 yields worse result, with cost of about 0.3. Although the 
profile can be  reconstructed well. A reason could be, we have more unknowns than the number 
of frequency points. So that, the choice N=160 is the optimal solution. 
 
 
5. Conclusion 

The method combining the integral equation method based on the used of Green’s 
function and the multiplicative regularization is able to reconstruct several dielectric profile with 
different thickness and number of layers. Layers with very thin thickness is more challenging to 
reconstruct, more discretization elements are needed to get good result. Structures with several 
layers including thin layer are more challenging. There is a need to use more frequency points 
for better reconstruction. 

There are some open questions; how the line search gives impact to the quality of the 
result. The choice of the initial value for the contrast can indeed have effects to the result, so 
that we must try to start the optimization process with different starting values. Another way 
could be the use of global optimization method. 
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