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Abstract 
 Motif discovery in DNA sequences is one of the most important issues in bioinformatics.  

Thus, algorithms for dealing with the problem accurately and quickly have always been the goal of 
research in bioinformatics. Therefore, this study is intended to modify the random projection algorithm to 
be implemented on R high performance computing (i.e., the R package pbdMPI). Some steps are needed 
to achieve this objective, ie preprocessing data, splitting data according to number of batches, modifying 
and implementing random projection in the pbdMPI package, and then aggregating the results. To validate 
the proposed approach, some experiments have been conducted. Several benchmarking data were used 
in this study by sensitivity analysis on number of cores and batches. Experimental results show that 
computational cost can be reduced, which is that the computation cost of 6 cores is faster around 34 times 
compared with the standalone mode. Thus, the proposed approach can be used for motif discovery 
effectively and efficiently. 
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1. Introduction 

Motif discovery in DeoxyriboNucleic Acid (DNA) sequences is one of the most important 
issues in the field of bioinformatics since it may help biologists to obtain better understanding on 
the structure and function of the molecules in the sequence [1]. A motif is a short pattern that 
repeats in the DNA sequence consisting of a combination of four basic nitrogen: Adenine (A); 
Guanine (G); Cytosine (C); and Thymine (T) [2]. Issues in motif discovery can be categorized 
into 3 types, namely Simple Motif Search (SMS), Edit distance based (EMS), and Planted Motif 
Search (PMS) [3]. The purpose of SMS is to find all the motifs from lengths 1 to the specified 
length in all sequences of [4] while the purpose of the EMS is to find all the motifs on the desired 
number of sequences [5]. PMS aims to find the motive that appears in every sequence  
that exists [6].  

In PMS, there are two important input parameters: the desired length of motif 
symbolized byland the number of mismatches denoted by d [7]. For example, there are three 
DNA sequences, as follows: S1=ATTGCTGA, S2=GCATTGAA, and S3=CATGCTTG.  
Withl=4 and d=1, we obtain the following repetitive motifs: ATTG and TTGC. It can be seen that 
PMS is included in the NP-Hard problem, so that if this algorithm is run to look for all possible 
motives that appear in all sequences, then the time spent will be exponential [1]. Random 
Projection (RP) [8] is one of the algorithms used for motive search problems in DNA sequences 
included in PMS. In this algorithm a piece of the input data in the form of sub-sequences  
(l-mers) will be projected according to the random position determined by k (k-mers)  
values [1, 9]. RP represents that mutations can occur anywhere so the projection is done 
randomly. Even though many algorithms have been introduced, since PMS is NP-hard 
problems, an implementation of the algorithms into parallel computing is necessary to be done.  

Therefore, this research is aimed to design and implement RP for dealing with PMS in 
parallel computing in R programming language. The R programming language [10] is chosen 
since it has become the de-facto standard for statistics, data analysis, and visualization. 
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Nowadays, there are many algorithms, collected in software libraries/packages, that have been 
implemented and saved in the Comprehensive R Archive Network (CRAN) at  
https://cran.r-project.org/. In this repository, one of packages in R used for high performance 
computing and big data analysis is pbdMPI [11] that is used in this research.  

In the literature, we found some relevant articles discussing implementations of motif 
discovery in parallel computing. For example, in Clemente & Adorna's study [12], random 
Projection algorithm was developed in the concept of GPU (Graphic Processing Units). Each 
processor will be directed into threads that work within the device or GPU. Meanwhile, the 
sequential process will be executed on the host or CPU. TEIRESIAS has been introduced to 
improve the speed on finding maximal pattern [13]. An enhancement of the PMSPRUNE 
algorithm has been proposed with two additional features: neighbor generation on a demand 
basis and omitting the duplicate neighbor checking [14]. Furthermore, there are some different 
approaches for dealing with patterns matching in various fields. For instance, multiple patterns 
matching methods was introduced for large multi-pattern matching [15]. Improving the scanning 
mode of Square Non-symmetry and Antipacking Model (SNAM) for binary-image is obtained by 
proposing the new neighbor-finding algorithm [16].  

The rest of the paper is organized as follows: first, the global procedure of this research 
is presented in section 2. In section 3, a main contribution, which is a modification and 
implementation of parallel random projection by using the pbdMPI package, is discussed.  
To validate and analyze the proposel computational model, we conduct some experiments in 
section 4 and some analysis in section 5. Finally, we conclude the research in section 6.        
 
 
2. Research Method 

Figure 1 shows the research design done in this study. It can be seen that first, we 
perform some preparation, such as identifying problems, research objectives, and literature 
study. These activities have been presented in the previous section. Then, we present a main 
contribution of this research, which is designing and implementing parallel random projection 
with R high performance computing (i.e., the pbdMPI package). This part will be explained in the 
next section. After that, we conduct some experiments and their analysis of the results. Drawing 
some conclusión is presented in the end.  

 
 

 
 

Figure 1. Research design to conduct parallel random projection 
 
 

3. Parallel Random Projection with the pbdMPI package  
Basically, the computational model proposed in this research can be seen in Figure 2. 

First, after reading and converting the input data from the .falsa file, we perform a modification 
of random projection by utilizing R high perfomance computing (i.e., the pbdMPI package), 
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called parallel random projection with pbdMPI. Detailed explanation regarding the proposed 
approach can be seen in Figure 3. The results of this model is all motifs, their starting indices, 
and computational costs.  

 
 

 
 

Figure 2. The computational model of parallel random projection with pbdMPI 
 
 

According to Figure 3, it can be seen that besides supplying some parameters related to 
the RP algorithm, we need to input the number of cores and batches. Since the R programming 
language needs to load data into random access memory (RAM), we need to define the number 
of batches so that each batch just takes less than 20% of total memory capacity. Furthermore, 
actually Step 1 to 3 and Step 6 to 8 illustrated in Figure 3 are the same as the RP algorithm on 
the standalone mode. However, from Step 4 to 5 the tasks are conducted in parallel computing 
by using pbdMPI commands. An important part of these steps is a rule to divide the sequence 
into numbers of batches.  Moreover, the rule should prevent all possible motif including the 
sequence even though it has been splitted into several batches. So, in this case we implement 
the (1) and (2):  
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where
i

sindex and 
i

eindex are starting and ending indices for cutting the batch of i . , ,L b  and l  

are the length of sequence, number of batches, and length of pattern, respectively. It should be 

noted that the starting index starts from i =2. For example, it is give the sequence  

S=CAGTGACGTAATCA, and the length of pattern is 3. So, according to (1) and (2), we obtain 
the following batches: S1=CAGT; S2=GTGACG; and S3=CGTAATCA. By following how the 
algorithm random projection generates k-mers, we obtain the following k-mers on all batches 
that are the same as k-mers on the sequence (without splitting into batches): CAG; AGT;GTG; 
TGA; GAC; ACG; CGT; GTA; TAA; AAT; ATC; and TCA. It means that even though the 
sequence has been splited and processed by different cores, the results of RP and parallel 
random projection are the same.  
 
 

 
 

Figure 3. The pseudo code of parallel random projection with pbdMPI 
 
 
4.    Experimental Study 
4.1. Data Gathering 

The data used in this study obtained from research in [17]. To download the data can 
be through the site of University of Washington Computer Science and Engineering on page 
http://bio.cs.washington.edu/research/download. In total, there are 52 data sets of DNA 
sequences derived from four species, 6 of which are derived from the Drosophila melanogaster 
sequence, 26 data derived from human sequences, 12 data derived from rat sequences and 8 
other data derived from the Saccharomyces cerevisiae sequence. In each data file there are 
several sequences that number between 1 to 35 sequences. Then, every sequence that resides 
on the file has a variable length ranging from 500 to 3000 base pairs.  

In this case, we only consider to use four datasets as follows: the dm01r.fasta and 
dm05r.fasta files that are DNA sequences of Drosophila melanogaster, then hm01r.fasta 
derived from the human sequence, and muso4r.fasta which is the rat DNA sequence as the 
input data. The dm01r.fasta file contains 4 DNA sequences with the total length of sequence is 
6000, while the dm05r.fasta file consists of 3 DNA sequence with the length of 7500.  
The hm01r.fasta and mus04r.fasta files have the DNA sequence length of 36000 and  
7000, respectively.   

 
4.2. Experimental Design 

In this study we conduct two simulations: standalone and parallel computing  
(i.e., multicore) modes. Each group will use all data as mentioned previously: dm01r.fasta, 
dm05r.fasta, hm01r.fasta, and muso4r.fasta. Furthermore, in accordance with the algorithm, 
some parameters should be assigned, as follows: the length of motif and mismatches (l, d), 
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threshold values (θ), and number of repetitions in each simulation (m). Specific variables (i.e., 
number of batches (b) and cores (c)) on parallel computing with pbdMPI are also assigned. 
Total experiments conducted for both scenarios are 1560 experiments (i.e., 120 times for 
standalone and 1440 times for parallel computing) by assigning all possibilities of the 
combinations of the following parameter values: (l, d)={(6,2), (7,2), (8,3)}, θ={3,4}, m={1,2,3,4,5}, 
b={10,50}, and c={1,2,…,6}. 
 
 
5. Results and Analysis 

Since the limited space, in this section we illustrate the results and their analysis for a 
particular dataset only. For example, on the standalone mode, a comparison of the number of 
motifs found according to m, θ, and (l, d) on the dm01r dataset is shown in Figure 4. It can be 
seen that the higher numbers of mismatch makes the higher of numbers of motifs.  

 
 

 
 

Figure 4. The comparison of the numbers of motifs found on the dm01r dataset 
 
 

Furthermore, on the standalone mode, we can compare the computational cost with 
length of DNA sequence on the different (l, d) and θ as shown in Figure 5. It is obvious that the 
longer length of DNA sequence takes the higher computation cost. It should be noted that these 
lengths also represent the datasets used in the experiments, such as the dm01r has the length 
of 6000.  

 
 

 
 

Figure 5. The comparison between the computational cost and datasets/length of datasets 
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On the parallel computing mode, Figure 6 shows that the comparison between the 
computational costs and numbers of cores when we used the dm01r dataset on (l, d)=(6.2),  
θ=3, and b=10. It can be seen that the proposed model has been successful since in general 
speaking the computation cost can be reduced by adding the number of cores.  

 
 

 
 

Figure 6. The comparison between computational cost and number of core on the  
dm01r dataset 

 
 

To ensure the analysis, Figure 7 explains a comparison between computational cost 
and number of core on different (l, d) and m and the same θ (i.e., 3), and b (i.e., 10). It can be 
seen that the computational time with stand alone mode (i.e., c=1) at (l, d)=(8.3) with m=5 took 
26.98 seconds while on the number of core of 2 the computation only took 6.3 seconds.  
It means that the computational time on stand alone needs four times longer than using 2 cores. 
Moreover, the standalone mode took more than ten times compared with parallel computing 
using 3 cores (i.e., 2.52 seconds). Using 6 cores, the computation can be faster around  
34 times compared with the standalone mode. So, now it is obvious that the proposed model is 
much faster than the standalone mode.  
 
 

 
 

Figure 7. The comparison on dm01r with θ=3 and b=10 

 

 

We also compared computational time gained from experimental results on the previous 
research [1] even though there are different data on the file dm01r and mus04r. The number of 
DNA sequences contained in the file dm01r is 4 with the length of 1500 for each sequence while 
in the research [1] the dataset contains 5 DNA sequences. In the file mus04r the number of 
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DNA sequences used in this experiment is 7 sequences with the length of each sequence is 
1000 while only 6 sequences were used by the previous research. The comparison can be seen 
in Table 1. It can be seen that all experiments conducted in this research are faster than the 
study in [1]. It should be noted that the research conducted by [1] was performed in  
standalone mode. 
 

 
Table 1. Comparison with the Other Research [1] 

File 
Number of 
sequence 

Length of each 
sequence 

(l,d) 
Time in 
[1] (s) 

Time using 6 cores in 
this research (s) 

dm01r 4 1500 

(6,2) 1.81 0.32 
(7,2) 5.804 0.45 

(8,3) 39.55 0.42 

dm05r 3 2500 
(6,2) 2.574 0.48 
(7,2) 7.268 0.51 
(8,3) 52.537 0.52 

hm01r 18 2000 
(6,2) 2.73 1.75 
(7,2) 7.708 1.65 
(8,3) 50.135 1.71 

mus04r 7 1000 
(6,2) 1.4 0.52 
(7,2) 5.08 0.5 
(8,3) 35.45 0.52 

 
 
6. Conclusion 

The main contributions of this research are as follows (i) to propose the computational 
model for modifying the random projection algorithm, called parallel random projection, for 
dealing with planted motif search by utilizing R high performance computing (i.e., the pbdMPI 
package) and (ii) to implement the proposed model and then validate it for finding motifs on 
DNA sequences. According to the experiments, we can state that the proposed model are able 
to reduce the computational cost significantly. Moreover, a comparison with the previous study 
has been done, and it shown that the proposal produced better results in the term of 
computational cost.  

In the future, we have a plan to improve the model by using Big Data platform, such as 
by using the programming model of MapReduce on Apache Hadoop [18] and Resilient 
Distributed Datasets on Apache Spark [19]. Moreover, the different tools for utilizing parallel 
computing, e.g., the foreach package [20], can be used as the study in [21]. Different tasks in 
the related research to bioinformatics can be applied to test the proposed model as well, such 
as prediction on cáncer [22], kidney disease [23], and sleep disorder [24]. Additionally, another 
method that can be implemented for dealing with this research is Knuth Morris Pratt [25, 26].  
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