
TELKOMNIKA, Vol.17, No.4, August 2019, pp.1785~1795
ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, Decree No: 21/E/KPT/2018
DOI: 10.12928/TELKOMNIKA.v17i4.12033  1785

Received January 31, 2019; Revised April 12, 2019; Accepted May 2, 2019

Design and implementation of single bit error
correction linear block code system based on FPGA

Abdullah Mohammed A. Hamdoon, Zaid Ghanim Mohammed*, Emad A. Mohammed
Computer Eng. Technology Department of Technical Eng. College

Northern Technical University, Mosul, Iraq
*Corresponding author, e-mail: zaid_gh@ntu.edu.iq

Abstract
Linear block code (LBC) is an error detection and correction code that is widely used in

communication systems. In this paper a special type of LBC called Hamming code was implemented and
debugged using FPGA kit with integrated software environments ISE for simulation and tests the results of
the hardware system. The implemented system has the ability to correct single bit error and detect two bits
error. The data segments length was considered to give high reliability to the system and make an
aggregation between the speed of processing and the hardware ability to be implemented. An adaptive
length of input data has been consider, up to 248 bits of information can be handled using Spartan 3E500
with 43% as a maximum slices utilization. Input/output data buses in FPGA have been customized to meet
the requirements where 34% of input/output resources have been used as maximum ratio. The overall
hardware design can be considerable to give an optimum hardware size for the suitable information rate.

Keywords: double bit error detection, FPGA, Hamming code, single bit error correction

Copyright © 2019 Universitas Ahmad Dahlan. All rights reserved.

1. Introduction

Error detection and correction is widely used in many application fields especially in
communication systems, satellite and space communications, network communications, cellular
telephone networks, and any other of digital data communication. In addition, it is used in
computing applications, data compression, and system coding. In noisy communication system
the data transmission from transmitter to receiver suffer from errors. To overcome this problem
and get error free data, there are number of error detection and correction techniques can be
used. Linear block code (LBC) is one of the most common used error detection and correction
methods. Hamming Code is a special case of LBC error detection and correction codes which is
used to detect single or double bit errors and correct single bit errors that occur within data
when it is transmitted from one device to another [1]. In traditional communication systems,
the implemented hardware of error detection and correction part is designed to deals with fixed
number of information data (bits) and has no ability to be reprogramed easily to meet other
requirements of different communication system. To overcome this problem a flexible hardware
system can be used such as Field programmable Gated Array (FPGA) [2-9].

Hamming code system based on FPGA is utilized in this work. Many sub-systems can
implemented to consist the overall system hardware, each sub-systems run with its own
program and need to be executed correctly, as well as, whenever data is stored or transmitted,
there are chances that at least one or more bits will be an incorrect value. The transmission
systems are exposing to get bits error values in either the instruction or data causing
undesirable crashes or other system failures. Therefore, utilizing Hamming Code inside an
embedded system is considered with high priority in modern industrial fields [1-19].

Many research works on designing and implementation Hamming code with embedded
system with FPGA kits have been introduced. Hamming code as hardware system using VHDL
or Virlog as hardware description language is proposed to demonstrate and analyze
the performance of the system. Most of these works have limitation on the number of data bits
and hardware resources [7-19]. Literary review for the most important research involved this
approaches with their limitation can be summarized:
- ECC application on embedded systems is designed for memory error detection and

correction it is realized a 64-bit ECC controller has been proposed in [10].

  ISSN: 1693-6930

TELKOMNIKA Vol. 17, No. 4, August 2019: 1785-1795

1786

- 3D Parity check code with data stored in memory system with maximum data bits about
128 bits has been proposed in [11].

- CRC as a hardware system has been implemenated with PIC microcontroller as in [12].
- Demonstrate implementation of Hamming code as a hardware system with simple 8 bit of

data length has been explained in [13].
- Design a Hamming code system based on IP core with 56 data bits for the transmission data

of communication system is demonstrated in [14].
- Hamming code architecture which is used as an alternative error detection code scheme in

Controller Area Network technology, the implementation done on set of inputs from 8-bit to
64-bit of data frames has been explained in [15].

- A code rate of (15, 11) algorithm for design Hamming code as hardware system is
utilized in [16], while a code rate of (7, 4) algorithm is used in with Verilog as hardware
description languge [17].

From previous works, which are intended in this research to present an essential error
detection technique that can deal with adaptive information data bits length up to 248 bits is
introduced. This research organize as first introduces Hamming code theory, then shows
hardware design of Hamming algorithm with decoding and encoding of it, finally the obtained
result is demonstrated and discussed with conclusion.

2. Single bit Error Correction (Hamming code) Theory
The key to the Single bit error correction is the use of extra parity bits to allow the

identification of a single error. Two methods (even parity, odd parity) for generating redundancy
bits that Hamming code need it. Number of redundancy bits are generated (Check bits) is
calculate according to (1). This redundancy bits are depends on the number of information data
bits [7-8-13-14].

(2
r
) ≥ (k + r + 1) (1)

where k is the data bits length, and r is the bits to find the check bits that will add to data.
Summarize table for the redundant (check bits length opposite to the data bits length)

as shown in Table 1. The operation of hamming code extended can be summarize as following:
a. Mark all bit positions that are powers of two as parity bits (positions 1, 2, 4, 8, 16,

32, 64, etc.).
b. All other bit positions are for the data to be encoded (positions 3, 5, 6, 7, 9, 10, 11, 12, 13,

14, 15, 17, etc.).
c. The last bit is added for Parity bit.
d. Each parity bit calculates the parity for some of the bits in the code word. The position of the

parity bit determines the sequence of bits that it alternately checks and skips.
- Position 1: check 1 bit, skip 1 bit, check 1 bit, skip 1 bit, etc. (1, 3, 5, 7, 9, 11, 13, 15,...)
- Position 2: check 2 bits, skip 2 bits, check 2 bits, skip 2 bits, etc. (2, 3, 6, 7, 10, 11,

14, 15, ...)
- Position 4: check 4 bits, skip 4 bits, check 4 bits, skip 4 bits, etc. (4, 5, 6, 7, 12, 13, 14, 15,

20, 21, 22, 23, ...)
- Position 8: check 8 bits, skip 8 bits, check 8 bits, skip 8 bits, etc. (8-15, 24-31, 40-47, ...)

and so on for the position 16 and 32 …etc.
e. Set a Parity bit to 1 if the total number of ones in the positions it checks is odd (XOR

operation between all bits) . Set a parity bit to 0 if the total number of ones in the positions it
checks is even.

f. To test packet data received, the XOR is applied on all bits to determine if there is any error
in Parity bit; Parity bit is extracted; same algorithm is applied on rest bits to generate
hamming code.

g. If hamming code is zero and Parity bit is zero, then there are no error in received packet
data. If hamming code is not zero and Parity bit is one, then there is one error in packet data
and correction is capable by invert the bit location that pointed by hamming code value.
If hamming code is not zero and Parity bit is zero, then there are two errors or even errors in
packet data and cannot correction.

TELKOMNIKA ISSN: 1693-6930 

Design and implementation of single bit error correction... (Abdullah Mohammed A. Hamdoon)

1787

Table 2 explains the data packet is (10001000) and check bit is unknown so it is
calculated. Table 3 add the check bits to the data with test is that it free from error. In Table 4,
an error is add to the data packet D4 bit which become D6 bit after combine it with check bits.

Table 1. Check Bits Opposite Data Bits Length
Data length Bits (k) Check bit length (r)

2-4 3
5-11 4

11-26 5

Table 2. First Stage Encoding the Data

D1 D2 D3 D4 D5 D6 D7 D8

Parity
bit

Total Bits

Data 1 0 0 0 1 0 0 0

 k=8 bit

Check Bits
Location

P1 P2 P4 P8

r=4 bit

 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 k+r

over all bits ? ? 1 ? 0 0 0 ? 1 0 0 0 Pb=?

redundant P1 ?

1

0

0

1

0

 P1=xor(?10010)=0

redundant P2

? 1

0 0

0 0

 P2=xor(?10000)=1

redundant P4

? 0 0 0

0 P4=xor(?0000)=0

redundant P8

? 1 0 0 0 P8=xor(?1000)=1

Table 3. Appling Check Bits (Decoding)

D1 D2 D3 D4 D5 D6 D7 D8

Parity
bit

Total Bits

Data 1 0 0 0 1 0 0 0

Check Bits
Location

P1 P2 P4 P8

 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 k+r

over all bits 0 1 1 0 0 0 0 1 1 0 0 0 0 xor(011000011000)=0

redundant P1 0

1

0

0

1

0

 xor(010010)=0

redundant P2 1 1 0 0 0 0 xor(110000)=0

redundant P4 0 0 0 0 0 xor(00000)=0

redundant P8 1 1 0 0 0 xor(11000)=0

Table 4. Test Data with Bit Error

D1 D2 D3 D4 D5 D6 D7 D8

Parity
bit

Total Bits

Data 1 0 0 1 1 0 0 0

Check Bits
Location

P1 P2 P4 P8

 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13

over all bits 0 1 1 0 0 0 1 1 1 0 0 0 1 xor(011000111000)=1

redundant P1 0 1 0 1 1 0 xor(010110)=1

redundant P2 1 1 0 1 0 0 xor(100100)=1

redundant P4 0 0 0 1 0 xor(00010)=1

redundant P8 1 1 0 0 0 xor(11000)=0

 D7 is the error bit

  ISSN: 1693-6930

TELKOMNIKA Vol. 17, No. 4, August 2019: 1785-1795

1788

3. Hardware Design of Hamming Algorithm
The Hamming code is a system that encoding data depending on its contents which

means that Data Packet Encoding is changed as the data information changed.
The information's data can be extract form data packet needed by removing the hamming bits.
The error detection and correction can be done by applying the same algorithm at encoding.
The hamming code uses for detecting errors in data packet and correct one bit only. In many
systems, the data's information size is very large, and to create Data Packet Encoding needs
many clock pulses to input data information to Hamming Encoding System at many sequence
slice input, and the output data packet encoding is divided into a sequence slices output to input
them to a next system processing. The customizing data bus in\out width is used to control on
the width of input/output data bus. The constants parameters are used to increase or decrease
width of input/output data bus as need. If a data bus slice is large, the data is input/output fast
to/from Hamming Encoding/Decoding System, but the large data size exhausting the hardware
input/output pins. If a data bus size is small, the data input/output processing is slow, and
needed less hardware pins to input and output data. The selection of data information size uses
to control on size of hardware used and cost of all design [20-25].

The encoding/decoding hamming system design is configured via a parameters of
constant data. These parameters are determins the following:
a. The data bus input Slice to system (data_width_slice_in constant).
b. The data bus output Slice from a system (data_width_slice_out constant).
c. The size of data Information processing in system (information_bits constant).
d. The size of hamming code depends on size of data information (ham_bits constant).

The size of data packet encoding is determined by adding three parameters, the size of
Data Information Size, the Hamming Code Size and the number of parity bit (packet_bits
constant). The design can be implemented for deference implementation with select different
parameters and monitor the features of system design implementation of FPGA device, and
then select the suitable parameters for the design.

3.1. Customizing Input/Output Data Bus Size

The data bus size at input and output can be changed by two parameters
(data_width_slice_in and data_width_slice_out constant). The size can be changed from one bit
(serial transfer) to any size suitable for the system input and output data. For example if data
input to the system is 17 bit, then the data_width_slice_in is programmed to number 17. If the
size of data bus of the system receive data from our system is 23 bit, then the
data_width_slice_out is programmed to number 23. By using this method the system can be
connected to any system data bus by programming the data bus size as the size of the system
connected.

3.2. Encoding Design

If the new data information is applied to the encoding system, the system begin input
data and a Data Packet Encoding is produced. As shown in Figure 1 the hardware signals with
block diagram of the encoding of the designed system that if the new_data_flag signal is zero
and new_info_packet signal is one to initialize the controls, flags, and counters signals to
initialize values at rising edge of first clock, then the new_data_flag signal is one to begin input
part of Information Data Signal. The Data Bus Input (data_in port) is load to low byte of
data_info_new signal at second clock until the whole Information Data Signal inputs on it.
The size of Data Bus Input Size (data_width_slice_in constant) and Information Data Size
(information_bits constant) are determined as constants definition in a design. The number of
clocks needing to input all Information Data signal bits is determined by subtraction the Data
Bus Input Size from Information Data Size at each clock input data. The last input bits that result
from remainder of subtraction are input from the low Data Bus Input bits, as result, the excess
bits at high Data Bus Input bits are ignored. For each data bits input are collected in Information
Data Signal. The size of this signal is determined by Information Data Parameter.

The Information Data Signal is reconstruction by insert the location of hamming bits,
then adding one bit for parity after last bit. The location of hamming bits in the encoding signal
are 1, 2, 4, 8,…, 2n , where n is the Hamming Code Size (ham_bits constant). The size of
Encoding Signal (data_encode signal) is produced by addition of three parameters, Hamming
Code Size, Information Data Parameter, and the number for parity bit. The Encoding Signal is

TELKOMNIKA ISSN: 1693-6930 

Design and implementation of single bit error correction... (Abdullah Mohammed A. Hamdoon)

1789

changed to the Data Packet Encoding Signal (data_packet_out signal) by calculated the values
of hamming bits in Encoding Signal and parity bit. Each hamming bit has its equation for
calculating its value. For example hamming bit (1) value is calculated by Exclusive OR (XOR) of
the locations (3, 5, 7 ,9,…). The parity bit is calculated by Exclusive OR (XOR) for all bits of
Data Packet Encoding Signal and stored at last bit of it.

 Figure 1. Block diagram of encoding system

After the Data Packet Encoding Signal built, its output to the next system. The width of
Data Bus Output (data_out_packet port) is determine by the Data Bus Output Size
(data_width_slice_out). The number of clocks needing to output all bits of the Data Packet
Encoding Signal is determined by subtraction The Data Bus Output Size (data_width_slice_out
constant) from the Packet Data Size (packet_bits constant). The last output bits that produced
from remainder of subtraction are only updated at the Data Bus Output and others bits are zero,
as result, the excess bits are ignored from received system. To repeat the Encoding operation,
the new_data_flag signal must be zero to Reset the values of counters, flags, and control signal
that needed to input new information.

3.3. Decoding Design

If the new data Packet is applied to the decoding system, the system begin input data
and a Data Information Encoding is produced. As shown in Figure 2, the hardware signals with
block diagram of the decoding of the designed system that if the new_data_flag signal is zero
and new_info_packet signal is zero to initialize the controls, flags, and counters Signals to
initialize values at rising edge of first clock pulse, then the new_data_flag signal is one to begin
input part of Data Packet Encoding Signal. The Data Bus Input (data_in port) is load low byte of
data_info_new signal at second clock until the whole Data Packet Encoding Signal inputs on it.
The size of Data Bus Input Size (data_width_slice_in constant) and Information Data Size
(information_bits constant) are defiened as constants definition in a design. The number of clock
pulses needing to input all Data Packet Encoding Signal bits is determined by subtracting
the Data Bus Input Size from the Packet Data Size. The last input bits that result from remainder
of subtraction are input from the low Data Bus Input bits, as result, the excess bits at high Data
Bus Input bits are ignored. For each data bits input are collected in Packet Data signal. The size
of this signal is defined by Packet Data Size.

Figure 2. Block diagram of decoding system

  ISSN: 1693-6930

TELKOMNIKA Vol. 17, No. 4, August 2019: 1785-1795

1790

The Data Information Signal (data_information_read signal) is extracted from Data
Packet Encoding Signal by canceled the Hamming code bits locations and values and parity bit.
The Data Information Signal size new depending on Information Data Size constant. While
extraction, the Hamming Code Signal (ham_test signal) is calculated from Data Packet
Encoding Signal by applying hamming code algorithm. The parity bit (parity_bit signal) is
calculated, if zero there is no parity error in packet, else parity error is found.

If Hamming Code Signal value's is not equal to zero and less than packet_bits constant
and parity bit equal to zero, then the one bit error correction is applied and both one_error_bit
and error flag signals are ones. If Hamming Code Signal value's is not equal to zero and less
than packet_bits constant and parity bit equals to one, then the one bit error correction cannot
applied and one_error_bit signal equal to zero and error_flag signal is equal to one. If Hamming
Code Signal value's is not equal to zero and large than packet_bits, then the one bit error
correction cannot applied and one_error_bit signal equal to zero and error_flag signal is equal to
one. If Hamming Code Signal value's is equal to zero and parity bit equal one, then the one bit
error correction can not applied and one_error_bit signal equal zero and error_flag signal is
equal are one. If Hamming Code Signal value's is equal to zero and parity bit equal to zero, then
the one bit error correction is applied and one_error_bit and error_flag signals are equal to
zeros. Finally, the Data Packet Signal that not has error or one bit correction is done on it can
be decoding to extract Data Information Signal from it.

After the Data Information Signal build its output to the next system. The width of Data
Bus Output (data_out_info port) is determine by the Data Bus Output Size
(data_width_slice_out). The number of clocks needing to output all bits of the Data Information
Signal is determined by subtraction the Data Bus Output Size (data_width_slice_out constant)
from the Information Data Size (info_bits constant). The last output bits that produced from
remainder of subtraction are only updated at the Data Bus Output and others bits are zeros, as
result, the excess bits are ignored from received system. To repeat the Encoding operation,
the new_data_flag signal must be Reset to reset the values of counters, flags, and control signal
that needed to input new packet.

4. Results of the Designed System
Figures 3 and 4 shows how can input information data and output packet data with

hamming encoding. The information data input value is "1AA00"h as example. The following
steps describe the operations work:
a. The new_data_flag is equal to zero and new_info_packet is equal to one to initialize the

controls, flags, and counters Signals at rising edge of first clock pulse.
b. The new_data_flag is one and first byte is input from data_in port and stored at low byte of

data_info_new Signal at rising edge of clock. The values of input data at each rising edge in
sequentially are "00" h,"aa" h, and "01"h. The two counters (info_packet_in_count and
info_packet_location_in_count) are used to input data; the info_packet_in_count Signal
counter is used to determine number of clock pulses needing to input all data; Its value is
subtracted from data_bus_in_size parameter at each clock pulse; when its value less than
data_bus_in_size parameter or equal to zero, its Reset to zero and input remaining bits from
data_in port if found. info_packet_location_in_count Signal is used to determine the storing
location in data_info_new Signal; when its value one, the data_in port value's is stored in low
location depending on size of data_bus_in_size; then its increment until all data input on
data_info_new Signal.

c. The remaining bytes are input from data_in port and stored at data_info_new Signal at each
clock pulse until the remainder bits less than data_bus_in_size. In this case the remainder
bits only input and stored in high bits of data_info_new Signal. The value of data_info_new
signal is equal "1AA00"h.

d. When data completes input, the info_packet_read signal is one.
e. The next clock is used to encoding information by adding the location of hamming bits and

parity bit with zero values. The data_encode Signal is produced and done_encode signal is
one. The value of data_encode Signal is equal "352000"h.

f. The next clock uses to calculate the hamming bits values by using hamming code algorithm
and stored result in data_packet_out port. The parity bit is calculated and the final value of
data_packet_out Signal is equal "75208B"h. The value of ham_code Signal is equal "0f"h.

TELKOMNIKA ISSN: 1693-6930 

Design and implementation of single bit error correction... (Abdullah Mohammed A. Hamdoon)

1791

g. The next clock begins checking request_info_packet_out input port, if its value equal to zero,
the output is not ready, if its value equal to one the data is begin output directly in a number
of stages. The low bits that their size equal data_bus_in_size parameter are applied on
output. The values of output data at each rising edge in sequentially are "8b" h,"20" h, and
"75"h. The two counters (info_packet_out_count and info_packet_location_out_count) are
used to output all data. The two counters are operate as the two counters at the input data
and for the output data.

h. When all data output, info_packet_write Signal is one.

Figure 3. Test results on input information and output packet data for the encoding system

Figure 4. Test results the encoding system

Figures 5 and 6 show how to input packet data and output information data without
hamming encoding. The packet data input value is "75208B"h as example. The following steps
describe the operations work:
a. The new_data_flag is equal to zero and new_info_packet is equal to zero to Initialize

the controls, flags, and counters signals at rising edge of first clock pulse.
b. The new_data_flag is equal to one and first byte is input from data_in port and stored at low

byte of data_packet_new Signal at rising edge of clock pulse. The values of input data at

  ISSN: 1693-6930

TELKOMNIKA Vol. 17, No. 4, August 2019: 1785-1795

1792

each rising edge in sequentially are "8b" h,"20" h, and "75"h. The two counters
(info_packet_in_count and info_packet_location_in_count) are used to input data;
the info_packet_in_count Signal counter is used to determine the number of clock pulses
needed to input all data; Its value is subtracted from data_bus_in_size parameter at each
clock pulse; when its value less than data_bus_in_size parameter or equal to zero, its Reset
to zero and input remaining bits from data_in port if found. info_packet_location_in_count
Signal is used to determine the storing location in data_packet_new Signal; when its value
equal to one, the data_in port value's is stored in low bits locations depending on the size of
data_bus_in_size; then its increment until all data input on data_packet_new Signal.

c. The remaining bytes are input from data_in port and stored at data_packet_new Signal at
each clock pulse until the remainder bits less than data_bus_in_size. In this case
the remainder bits only input and stored in high bits of data_packet_new Signal. The value of
data_packet_new signal equal "75208B"h.

d. When data completes input, the info_packet_read signal value is one.
e. The next clock pulse is used to decoding information by remove the values and locations of

hamming bits and parity bit. Then, checking the error in the data_packet_new Signal.
The information data is stored in data_out_information signal. The ham_test signal is
produced by applying hamming algorithm on data_packet_new signal. The parity_bit signal
is produced by applying XOR on all bits of packet. If the ham_test signal value is equal to
zero The error_flag and the one_error_bit signals value is equal to zero, if one error found in
packet data, the error_flag and the one_error_bit signals value is equal to one and Error
correction is done on data_out_information signal, if ham_test signal value larger than value
of packet_bits signal or parity bit is equal to one, then more than one error found in packet
data, the error_flag signal value is one and the one_error_bit signal value is zero. At last,
The test_done signal value is one. The value of ham_test Signal is equal "00"h. The value of
parity_test Signal is equal to zero.

f. The next clock begins checking request_info_packet_out input port, if its value equal to zero,
data not output, if its value one and test_done signal value is one, then the data begins
output directly in a number of stages. The low bits that their size equal to data_bus_in_size
constant are applied on output. The values of output data at each rising clock in sequentially
are "00" h,"aa" h, and "01"h. The two counters (info_packet_out_count and
info_packet_location_out_count) are used to output all data. The two counters are operate
as the two counters at input data and for output data.

When all data output, info_packet_write Signal value is one.

Figure 5. Results with test of the decoding system

Table 5 demonstrate the description of the signals used in simulation the designed
system. Tables 6-8 show comparison of the hardware utilization of designed system of different
bits of Hamming code data information 22 bits in Table 5, 107 bits in Table 6 and 248 bits
in Table 7.

TELKOMNIKA ISSN: 1693-6930 

Design and implementation of single bit error correction... (Abdullah Mohammed A. Hamdoon)

1793

Table 5. Signals and Port Name Description of the Designed System
Signal or Port Name Description

clk it’s a clock that using for synchronous all operations

new_data_flag Its input control port using to enable input and output data when its value equal to one, and
Reset controls, flags, and counters Signals when its value equal to zero.

new_info_packet Its input control port to determine the current operation, if its value one, then the operation is
input information data and encoding it to packet data with hamming code algorithm. If its value
equal to zero, then the operation is input packet data and decoding it to information data with
hamming code algorithm checking and extraction.

data_in Its data input bus. Its width determine by the data_width_slice_in constant.

data_info_new It’s a signal to store all input information data from data_in port. Its width determine by
the information_bits constant.

data_encode It’s a signal to store the encoding information data of data_info_new signal. It has
the information data and hamming bits location with zero values. Its width determine by
the information_bits constant plus ham_bits constant.

data_packet_new It’s a signal to store all input packet data from data_in port. Its width determine by
the information_bits constant plus ham_bits constant.

data_packet_out It’s a signal to store the packet data signal that output. Its value is data_encode signal with
calculate hamming bits value. Its width determine by the information_bits constant plus
ham_bits constant

info_packet_read Its signal that its value is one when data is complete read. At RESET its value is equal to zero.

done_encode Its signal that its value is one when data is complete encoding. At RESET its value is zero.

ham_test It’s a signal that its value is produced from applying hamming code algorithm on
data_packet_new signal. If its value equal to zero there are no error in packet and error_flag
and one_error_bit signals are equal one, if its value not equal to zero

error_flag It’s a signal that its value is one when there is any error in data_packet_new signal.

one_error_bit It’s a signal that its value is one when there is one error in data_packet_new signal. If ham_test
signal value large than size of packet_bits constant value then error cannot correction and
one_error_bit value is equal to zero. If ham_test signal value less or equal size of packet_bits
constant and parity_test equal zero, then one bit error correction is applied and one_error_bit is
equal to one. If ham_test signal value less or equal size of packet_bits constant and parity_test
equal one, then cannot apply error correction one_error_bit is equal to zero.

parity_test It’s a signal that its value is zero when there is no parity error in data_packet_new signal.

test_done It’s a signal that its value is one when the test is completed on data_packet_new signal.

info_packet_write It’s a signal that its value is one when data is complete output. At RESET its value is equal to
zero.

request_info_packet
_out

It’s a input control port to give permission output data. If its value equal to zero, data not output.
If its value one and packet is ready to output, its output data at data_out_packet port in number
of stages depending on data_out_packet port size and data_packet_out signal size.

data_out_packet Its data output bus. Its width determine by the data_width_slice_out constant.

info_packet_in_cou
nt

It’s a counter signal uses to determine the number of stages needing to input all data
(information or packet) from data_in port. Its value equal to the information_bits constant value
if information data input or information_bits constant plus ham_bits constant value if packet data
input. At RESET its value is equal information_bits if new_info_packet equal to one, else is
equal information_bits plus ham_bits.

info_packet_locatio
n_in_count

It’s a counter signal uses to determine locations of bits storing in data_info_new signal from
data_in port. When its value is one, the input data from data_in port is stored at low bits
locations of data_info_new signal or data_packet_new signal; if its value is two, the input data
from data_in port is stored at next low bits locations of data_info_new signal or
data_packet_new signal. The size of low bits locations depending on size of
data_width_slice_in constant. At RESET its value is equal to one.

info_packet_out_co
unt

It’s a counter signal uses to determine the number of stages needing to output all data
(information or packet) to data_out_packet port or data_out_info port. Its value equal to the
information_bits constant value if information data output or information_bits constant plus
ham_bits constant value if packet data output. At RESET its value is equal to information_bits
plus ham_bits if new_info_packet equal one, else is equal information_bits.

info_packet_locatio
n_out_count

It’s a counter signal uses to determine the locations of bits output from data_packet_out signal
to data_out_packet port if packet output operation, or determine the locations of bits output from
data_information_out signal to data_out_info port if information output operation. When its value
is one, the low bits locations of data (data_packet_out or data_information_out signal) is output
to output port (data_out_packet or data_out_info port) respectively; when its value is two, the
next the low bits locations of data (data_packet_out or data_information_out signal) is output to
output port (data_out_packet or data_out_info port) respectively;. The size of low bits locations
depending on size of data_width_slice_out constant. At RESET its value is equal to one.

  ISSN: 1693-6930

TELKOMNIKA Vol. 17, No. 4, August 2019: 1785-1795

1794

Figure 6. Results with test of the decoding system

Table 6. Utilization Summary of Designed System with Hamming Code
of 22 Bit of Information Data

Device Utilization Summary

Logic Utilization Used Available Utilization

Number of Slice 158 4,656 3%

Number of Slice Flip Flops 163 9,312 1%

Number of 4 input LUTs 238 9,312 2%

Number of bonded IOBs 40 232 17%

Number of GCLK 1 24 4%

Table 7. Utilization Summary of Designed System with Hamming Code
of 107 Bit of Information Data

Device Utilization Summary

Logic Utilization Used Available Utilization

Number of Slice 545 4,656 11%

Number of Slice Flip Flops 573 9,312 6%

Number of 4 input LUTs 883 9,312 9%

Number of bonded IOBs 78 232 33%

Number of GCLK 1 24 4%

Table 8. Utilization Summary of Designed System with Hamming Code
of 248 Bit of Information Data

Device Utilization Summary

Logic Utilization Used Available Utilization

Number of Slice 2004 4,656 43%

Number of Slice Flip Flops 1525 9,312 16%

Number of 4 input LUTs 3700 9,312 39%

Number of bonded IOBs 80 232 34%

Number of GCLK 1 24 4%

5. Conclusion
In this paper, the implemented algorithm of Hamming Code has been designed to

customized data information as embedded system. The implemented system has been
achieved to select different parameters (22 bits), (107 bits) and (248 bits) of information data
with hardware resource utilization about 3%, 11% and 43% respectively of FPGA slices and
17%, 33% and 34% respectively of input/output with ability to develop the designed system for
any number of bits as data information, the obtained resulted was tested with (ISE) simulator
and it met the required for the designed system. The end user need to understand the algorithm
parameters of the designed system that will need it to modify and then the algorithm will be
fined the error and correct it with one bits. The above results can be enhanced with advanced
board of FPGA device.

file:///E:/ISE%20Projects/hammingen_p5_1024_SECOND/ham_en_map.xrpt?&DataKey=IOBProperties
file:///E:/ISE%20Projects/hammingen_p5_1024_SECOND/ham_en_map.xrpt?&DataKey=IOBProperties
file:///E:/ISE%20Projects/hammingen_p5_1024_SECOND/ham_en_map.xrpt?&DataKey=IOBProperties

TELKOMNIKA ISSN: 1693-6930 

Design and implementation of single bit error correction... (Abdullah Mohammed A. Hamdoon)

1795

References
[1] Forouzan BA. Data Communication and Networking. Fourth edition. McGrawHill Ltd. 2007: 267-299.
[2] St. Onge LM, Areibi S. VHDL for Digital Design. Technical Report 2003-01P School of engineering,

university of Guelph, Canada. 2003.
[3] Perry DL. VHDL Programming by Example. Fourth Edition. McGraw-Hill Ltd. 2002.
[4] Mohammed ZG, Hamdoon AMA, Aziz MS. Scheduling lecturer system based on FPGA. IEEE

International Conference on Advances in Sustainable Engineering and Applications (ICASEA).
2018: 54-58.

[5] Peckol JK. Embedded Systems a Contemporary Design Tool. First Edition. 2007: 597-648.
[6] Bhattacharya R. Model & Platform Based Design of Embedded Systems. Texas A&M University

College Station. TX 77843-3141. 2006.
[7] Moreira JC, Farrell PG. Essentials of Error-Control Coding. John Wiley & Sons Ltd. 2006: 41-77.
[8] Wang A, Kaabouch N. FPGA based design of a novel enhanced error detection and correction

technique. 2008 IEEE International Conference on Electro/Information Technology. 2008;
3(5): 25–29.

[9] Lee H, Sung J, Kim E. Reducing Power in Error Correcting Code using Genetic Algorithm,
Proceeding of World Academy of Science, Engineering and Technology. 2007; 21: 179-182.

[10] Yan C, Du L, Wang Z. Design of ECC Controller and its Validation Based on FPGA. TELKOMNIKA
Indonesian Journal of Electrical Engineering. 2014; 12(10): 7253-7261.

[11] Tambatkar S, Menon SN, Sudarshan V, Vinodhini M, Murty NS. Error Detection and Correction in
Semiconductor Memories using 3D Parity Check Code with Hamming Code. IEEE Int. Conf. on

Communication and Signal Processing (ICCSP). 2017: 974–978.
[12] Ray J, Koopman P. Efficient high Hamming distance CRCs for embedded networks. Proc. Int. Conf.

Dependable Syst. Networks. Philadelphia PA. 2006: 3–12.
[13] Hamzah SBA. Hamming Code Using Field Programmable Gate Array (FPGA). Doctoral dissertation.

Universiti Teknikal Malaysia Melaka; 2014.
[14] Irudayaraj IR, Haroon PSA, JU, Bilagi SS. Design and Verification of Improved Hamming Code

(ECC) Using Verilog. Proc. of ISETE Int. Conf. Bengaluru. 2017: 14–18. ISBN: 978-93-86291-63-9.
[15] Juan ROS, Jeong MW, Cha HW, Kim HS. FPGA Implementation of Hamming Code for Increasing

the Frame Rate of CAN Communication. IEEE Asia Pacific Conf. Circuits Syst (APCCAS).
2017: 684–687.

[16] Zhang T, Ding Q. Design of (15, 11) Hamming Code Encoding and Decoding System Based on
FPGA. IEEE Int. Conf. on Instrumentation, Measurement, Computer, Communication and Control

(IMCCC). 2011: 704–707.
[17] Shep N, Bhagat PH. Implementation of Hamming Code Using VLSI. Int. Journal of Eng. Trends

Technol. 2013; 4(2): 186–190.
[18] Tam S. Single Error Correction and Double Error Detection. Xilinx Application Note. 2006; 645: 1–12.
[19] Raha P, Vinodhini M, Murty NS. Horizontal-Vertical Parity and Diagonal Hamming Based Soft Error

Detection and Correction for Memories. IEEE Int. Conf. on Computer Communication and Informatics
(ICCCI-2017). 2017: 1-5.

[20] Xilinx, Inc. Spartan 3E Starter Kit Board. User Guide UG230 (v1.2). June 20, 2011.
[21] Xilinx, Inc. Spartan-3E FPGA Family: Functional Description. Data Sheet DS312-2(v4.2). Desember

14, 2018: 10-114.
[22] Lee EA, Seshia SA. Introduction to Embedded Systems a Cyber-Physical Systems Approach.

Second Edition. MIT Press Ltd. 2017: 135-372.
[23] Xilinx, Inc. Using the ISE Design Tools for Spartan-3 FPGAs. Data Sheet XAPP473 (v1.1).

May 23, 2005.
[24] Chu PP. FPGA Prototyping by VHDL Examples Xilinx Spartan-3 Version. John Wiley & Sons Ltd.

2008: 11-106. ISBN 978-0-470-18531-5.
[25] Haskell RE, Hanna DM. Introduction to Digital Design Using Digilent FPGA Boards Block

Diagram/VHDL Examples. Rochester: LBE Books, LLC Ltd. 2009: 1-112

