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 This paper introduces a new design of a cross-coupled microstrip bandpass 

filter (MBPF) based on hairpin defected ground structure (DGS) resonators 
using accurate coupling matrix (CM) technique for microwave 

communication systems. The article presents the equivalent circuit of  

the suggested MBPF based on the DGS equivalent circuit model derived 

from the equivalent inductance and capacitance that occurs despite  
the presence of the slots disrupting the current in the ground layer. The paper 

investigates also the different external coupling mechanisms that the feed 

configuration affects significantly the filter response. In this paper, a four 

order Chebyshev topology has been adopted for designing the filter to 
suppress harmonics and achieve a very compact size and a wide stopband 

with two transmission zeros. 
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1. INTRODUCTION  

High performance and lightweight filtering mechanisms often only satisfy the rigorous demands of 

modern microwave communication systems. The coupled microstrip bandpass filter has been widely realized 

and broadly used in several microwave systems to obtain high performance, small area and low charge and to 

meet strictly necessary transmission requirements. Several of these filters were documented using framework 

called the defected ground structures that are investigated by etching off a defective ground layer pattern [1]. 

An etched defect disrupt the distribution of the shield current in the ground layer [2]. Seeing as DGS cells 

have necessarily resonant properties, they were used to enhance the stop and pass-band characteristics in  

the filtering circuits. The DGS was suggested to improve the suppression of fictitious response of low-pass 

filters from microstrips and coupled band-pass filters from microstrip line. DGS is not seen as the central 

building blocks in all these reports; rather, they are used to impro ve the response of the already built 

instruments such as couplers and filters [3, 4]. The fast growth of modern wireless communication has 

increased the demand for compact, low cost and high-performance components. One of the essential 

components of modern wireless communication systems is the microstrip filter [5-7]. Microstrip low-pass 

filter of extremely-wide stopband is also a very important part in wireless transmission structures for  

the suppression of undesired higher frequency harmonics. The modern wireless communication demands 

compact filters with with low insertion loss and elevated passband return loss and large stopband 

disallowance. 

https://creativecommons.org/licenses/by-sa/4.0/
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In this context, this paper presents a design of a cross-coupling microstrip bandpass filter focused on 

hairpin-defected ground structure resonators using accurate matrix technique for microwave communication 

systems [8-10]. The com parable circuit of the suggested section of the DGS unit is derived use the field 

analysis technique [11, 12]. The results of the simulation create good consistency with the theoretical 

findings with a broad suppression of harmonics, a very compact size and a small stop band with two 

transmission zeros. 

 

 

2. MEMS HAIRPIN-DGS CELL FREQUENCY CHARACTERISTICS 

The Figure 1(a) demonstrates a DGS cell in the shape of a hairpin with a microstrip line 50-Ohm on 

top. The DGS is carved in the ground layer of bottom metal [ 13, 14]. The EM simulation is carried in for a 

substrate at a relative dielectric of εr = 3.38 and a thickness of h = 0.813 mm. The fifty-Ohm microstrip 

section is w = 1.85 mm in width and the hairpin-DGS dimensions are: a = 15.5 mm, b = 12.5 mm,  

c = 4.5 mm, f = 3 mm, g = 0.5 mm, wr = 1.5 mm as exposed in Figure 1 (b). DGS cells are analyzed using 

High Frequency Structure Simulation (ANSYS-HFSS) software [15, 16]. Figure 1 (c) indicates  

the characteristic of a one-pole low-pass filter with an attenuation pole frequency f0 at 5.2 GHz and a cutoff 

frequency of -3 dB fc as shown in Table 1. 
 

 

  
(a) 

 

(b) 

 

 
(c) 

 

Figure 1. Proposed Hairpin-DGS cell: (a) 3D view, (b) dimenssions, (c) simulated S-parameters 
 

 

3. FIELD ALLOCATION OVER THE CELL HAIRPIN-DGS  

This section aims at investigating the reliance of the corresponding circuit elements (inductance and 

capacity) on the substrate known as propagation of electromagnetic fields. The electric field is heavily 

concentrated in the gap in Figure 2 (a), so any change in the parameters of the gap influences the structure's 

effective capacitance [17, 18]. The calculated magnetic and electrical field densities using HFSS are seen in 

Figure 2 (b). Which can be seen, the magnetic field is focused across the central ground line, so the central 

ground line determines the inductance. The electric field is distributed across the engraved spaces, reflecting 

the capacitance [17-19]. The slot-head region regulates essentially the inductance [20, 21] while the linking 

shaped slot width "g" regulates the capacitance [22, 23]. 
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Figure 2. Electromagnetic field perturbation over the Hairpin-DGS cell:  

(a) electric field density, (b) magnetic field density 

 

 

4. MODELING PARAMETER EXTRACTED OF HAIRPIN-DGS CELL              

A simplified equivalent circuit model for the hairpin-slot of DGS structure for the suggested filter is 

presented in Figure 3. The LP and CP parameters can be derived from the hairpin-DGS cell's transmission 

characteristics using traditional techniques [24]: 
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from Figure 1 (b), fc with GHz is the cut-off frequency of the stopband response of the slot at -3 dB and f0 

with GHz is its zero transmision. Efficiency Cgap refers to the coupling between the central ground line and 

the metallization of the internal metal arms contribution [25], whereas C2 contributes to the internal metal 

arms efficiency contribution. C1 refers to the contribution made by the hairpin-DGS cell to ability without 

any of the influence of the internal metal arms. C1, C2 and Cgap can be determined from three distinct model 

transmission properties of three hairpin-DGS cell variations. The open loop square filters variations are 

shown in Figures 4, 5 and 6.   

 

 

  
(a) (b) 

 

Figure 3. Hairpin-DGS cell: (a) HFSS elements, (b) extracted equivalent circuit elements 
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4.1. First variation 

Without the inner metal, so C2  = 0 and Cgap = 0 resulting in: 
 

C1 = Cv1 = 1.4719 pF                                                         (3) 
 

where Cv1 for the first variation is the standard circuit parameter from (1). 

 

4.2. Second variation 

Without the difference between the center ground transmission line and the internal metal arms 

(respectively Cgap = ∞ ) leading in:  
 

C2 = C1 - Cv2    (4) 
 

when Cv12 for the second variation is the standard circuit parameter (1), C2 = 4,338 pF. 
 

4.3. Third variation  

To the gap between the center ground transmission line and the internal metal arms leading in:  
 

Cgap =
C2

(
C2

(Cv3−C1)
−1)

                                                  (5) 

 

where Cv3 is the standard circuit parameter for 3rd variation from (1), Cgap = 3.318 pF. The equivalent circuit 

parameters for C1 = 1.4719 pF, C2 = 4.338 pF, Cgap = 3.3182 pF, Lp = 2.845 nH are extracted as shown  

the Table 1. The thorough equivalent hairpin-DGS cell circuit can be seen in Figure 7. 
 

 

Table 1. Data derived and measured for the three Hairpin-DGS cell variations 
 1st variation 2nd variation 3rd variation 

fc in GHz 1.9 1.2 1.39 

f0 in GHz 2.38 1.33 1.61 

C in pF Cv1= 1.4719 Cv2 = 5.81 Cv3 = 3.352 

 

 

 
(a) 

 

 
(b) 

 

Figure 4. Hairpin-DGS cell 1st variation:  

(a) topology of the conceptual hairpin cell-DGS, (b) results S-parameters 
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(a) 

 

 
(b) 

 

Figure 5. Hairpin-DGS cell 2nd Variation:  

(a) topology of the conceptual hairpin cell-DGS, (b) results S-parameters 
 

 

 
(a) 

 

 
(b) 

 

Figure 6. Hairpin-DGS cell 3rd Variation:  

(a) topology of the conceptual hairpin cell-DGS, (b) results S-parameters 
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(a) (b) 

 

Figure 7. Hairpin-DGS cell: (a) equivalent circuit, (b) simulated S-parameters 
 

 

5. DESIGN OF THE SECOND ORDER MBPF USING HAIRPIN-DGS CELL                  

In order to achieve a useful design microstrip bandpass filter, two of the hairpin-DGS cells 

(resonators) already identified were combined. The MBPF is simulated with a center frequency f0= 1.34 GHz 

and a fractional bandwidth FBW = 11.8% with return loss RL = 20 dB. Both resonators are symmetric and 

isolated by a distance S as seen in Figure 8. Two fifty-Ohm microstrip lines symmetrically feed the DGS 

hairpin resonators. The nature of the feed used influences the filter response.  

A symmetrical Chebyshev response is obtained by using the feed arrangement seen in Figure 9.  

The external quality factor is obtained by changing the expanded stub. The resonant frequency of the cavity 

is sensible to the length of the stub. Figure 10 shows the response of the one transmission zero because  

the feeding lines pass very close to the second resonator and are poorly coupled. The transmission zero 

location can be operated by increasing the feed lines to fifty-Ohm. Two transmission zeros are obtained as 

shown in Figure 11, due to the cross-coupling between the input and the output ports. By changing  

the distance between the fifty microstrip feed lines, the location of the transmission zeros can be controlled. 
 

 

  
(a) (b) 

 

Figure 8. Coupled hairpin-DGS MBPF: (a) 3D view, (b) layout 
 

 

6. DESIGN AND SIMULATION OF THE NOVEL HAIRPIN-DGS MBPF 

6.1. External quality factor and coupling parameters   

Figure 12 illustrates the various coupling configurations that are appropriate for the design of MBPF 

cross-coupling resonator. The shapes a, b and c are the result of various orientations of a couple of  

hairpin-DGS resonators isolated by distance S using a substrate with a relative dielectric εr = 3.38 and a 

thickness h = 0.813 mm. The coupling coefficients [4, 6] shown in the Figure 12 are determinated using the 

EM HFSS by coupling the configuration to a fifty-OhmΩ feed line. From distance frequencies the coupling 

coefficients can be calculated. 

s shown in Figure 13, the external quality factor [4 ] is built at the other part of a substrate by a  

fifty-Ohm microstrip line with a relative dielectric εr =3.38, the external quality factor value is derived from 

the ANSYS HFSS simulator. These resonant frequencies do not significantly change whenever the feed line 

is slightly moved by a distance d. 
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Figure 9. Compact second order coupled resonators MBP filter (with the first feeding configuration) 
 

 

 
 

Figure 10. Compact second order coupled resonators MBP filter (with the second feeding configuration) 
 

 

 
 

Figure 11. Compact second order coupled resonators MBP filter (with the third feeding configuration) 
 

 

6.2. Simulation of the improved hairpin-DGS MBPF 

A multilayer structure is used to increase the efficiency of the traditional band-pass filter. The novel 

scheme is similar to the current filter but, as shown in Figure 14, the cross-coupled resonators are shifted to 

the bottom layer as hairpin-DGS. This suggested geometrical concept is based on using many layered layers. 

This was observed to increase the efficiency and to reduce the overall filter size. The filter is simulated with 

f0 = 1.2 GHz and FBW = 91.7 %. In this situation a four-order filter was guessed, the coupling matrix 

extracted for the coupling and the external quality factor from the optimization scheme [5 ] are as continues 

to follow: 
 

m = [

0
−0.1577

0
0.0008

−0.1577
0

−0.1236
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0
−0.1236

0
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0.1564

0

]                                                 (6) 

 

Qin = Qout= 5.9126  
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(a) 

 

 

 

(b) 

 

  

(c) 

 

Figure 12. Coupling coefficients for the different hairpin-DGS clees: (a) magnetic Attraction, 

(b) electric attraction and (c) mixed attraction 

 

 

The suggested hairpin-DGS MBPF was designed to simulate on even a substrate (relative dielectric 

εr of 3.38 and a thickness h of 0.813 mm). The EM simulation results of the cascaded MBPF and  

the compact multilayer bandpass performed using HFSS are shown in Figure 15. The simulated quality of  

the suggested four order MBPF is presented in Figure 15 (b). The EM simulated results indicate a center 
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frequency of 1.2 GHz, a FBW of 91.7%, a typical insertion loss of 1.05 dB and a typical return loss of  

13.8 dB. That can be seen from Figure 15 (b) that the simulated results indicate best uniformity with 

simulation results Figure 15 (a). The simulated compact multilayer MBPF with hairpin-DGS has a middle 

frequency of 1.2 GHz and a suppression grade of 20 dB between 1.9 and 3.5 GHz; the passband insertion los 

s is around 1.05 dB. This demonstrates that the suggested compact multilayer coupled hairpin-DGS MBPF 

has significantly enhanced efficiency as opposed to the cascaded MBPF without the hairpin-DGS. 
 

 

 

 

(a) 

 

 

 

(b) 

 

Figure 13. External quality factor changes: (a) 1st feeding position, (b) 2nd feeding position 
 

 

 
 

Figure 14. 3D visualization of the cascaded MBP filter transition (left) to  

compact multilayer MBP filter (right) 
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(a) 

 

 

(b) 

 

Figure 15. Simulation results: (a) of the cascaded MBP filter without hairpin-DGS,  

(b) to compact multilayer MBP filter with hairpin-DGS 

 

 

7. CONCLUSION  

In this work a new design of a cross-coupled microstrip bandpass filter based on hairpin defected 

ground structure resonators using accurate coupling matrix technique has been proposed for microwave 

communication systems. The paper describes the filter equivalent circuit model and investigates the influence 

of its geometrical parameters on its resonance and cutoff frequencies. The paper demonstrates that  

the feeding configuration affects significantly the filter response after having investigated its different 

external coupling mechanisms. A new four order MBP filter using coupling matrix extraction with a middle 

frequency of 1.2 GHz and a FBW of 91.7% has been achieved by moving the cross coupled resonators to  

the bottom ilter layer forming hairpin-DGS resonators to improve the efficiency of the MBP filter and 

Removes the harmonics. 
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