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Abstract 
 This paper presents a nature-inspired meta-heuristic, called a stochastic fractal search based 

method (SFS) for coping with complex economic load dispatch (ELD) problem. Two SFS methods are 
introduced in the paper by employing two different random walk generators for diffusion process in which 
SFS with Gaussian random walk is called SFS-Gauss and SFS with Levy Flight random walk is called 
SFS-Levy. The performance of the two applied methods is investigated comparing results obtained from 
three test system. These systems with 6, 10, and 20 units with different objective function forms and 
different constraints are inspected. Numerical result comparison can confirm that the applied approach has 
better solution quality and fast convergence time when compared with some recently published standard, 
modified, and hybrid methods. This elucidates that the two SFS methods are very favorable for solving  
the ELD problem. 
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Nomenclature 
mi, ni, oi     fuel cost coefficients of the ith unit 
pi, qi     valve point effects coefficients of the ith  unit  
mil, nil, oil   fuel cost coefficients for fuel type l of the ith unit 
pil, qil     valve point effects coefficients for fuel type l of the ith unit 
C00,C0i,Cij coefficients of transmission power loss matrix 

PTTL    losses of the transmission line 

Pi
max  

       maximum power output of the ith unit 
Pi

min
       minimum power output of the ith unit 

PiMi
min

       minimum power output for fuel Mi of the ith unit 
Pi    power output of the ith unit 
N     total number of generators 
PSLD    total system load demand 

 
 
1. Introduction 

Economic load dispatch (ELD) problem is becoming more important in power system 
operation and control. The prime objective of the ELD problem is to minimize the total fuel cost 
by economically distributing power of generating units to electric load. In addition, load demand, 
all physical and operational constraints are required to be within predetermined bounds.  
In traditional ELD problem, a fuel cost function of generators is considered as the single 
quadratic cost function with linear constraint [1]. In practical, realistic ELD problem must take 
complex and nonlinear characteristic with many equality and inequality constraints into account 
to provide the completeness for the ELD problem formulation. 
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Thus, fuel cost curve of thermal units should be presented as non-smooth presented 
form, a piecewise function when thermal units are supplied by multi-fuel sources like coal, 
natural gas, and oil [2]. Also, to get more precise cost model, the valve-point effects and  
the prohibited zones must also be taken consideration [3, 4]. The complexity of the problem 
dramatically increases once both multi-fuel option and valve-point effects are considered 
simultaneously. Generally, the ELD problem on later is more and more difficult when taking 
many power systems and generator constraints into account. Over the past decades, there 
were many applied methods with the task of solving ELD problem such as Lambda Iteration 
method [5], Dynamic Programming (DP) [6], Gradient Method [7], Lagrangian Relaxation 
algorithm [8], and Hopfield neural network based numerical method (HNNNM) [9].  
For the classical methods above, parameters of these algorithms are surveyed and selected 
after many trial run times, which helps to find a global solution in a short time. However,  
the process of setting parameters takes much time. As complex ELD problem has non-convex 
features and various nonlinear constraints, the mentioned classical methods cannot afford to 
handle and result in low convergence. A series of novel methodologies have been born called 
meta-heuristic method to deal with these disadvantages such as Genetic algorithm (GA) [10], 
Firefly algorithm [11], Particle Swarm Optimization (PSO) [12], Differential Evolution (DE) 
algorithm [13], Anti-predatory particle swarm optimization (APPSO) [14], Biogeography-Based 
Optimization (BBO) [15], and Ant Lion algorithm (ALO) [16]. Because of their outstanding 
characteristics, such meta-heuristic methods proved their efficiency for solving  
the aforementioned difficulties. Consequently, meta-heuristic methods have been received 
much more curiosity by researchers. Besides, a large number of scientists in many engineering 
fields have been constantly strived and selected the strong points of methods to modify/improve 
them into the promising methods such as Colonial Competitive Differential Evolution  
(CCDE) [17], Efficient Real-Coded Genetic algorithm (ERCGA) [18], Improved Real-Coded 
Genetic algorithm (IRCGA) [19], and Modified Cuckoo Search algorithm (MCSA) [20]. As 
known, obtained results of the meta-heuristic family are better than that of the standard methods 
although they may still exist some weaknesses. Hence, improving meta-heuristic ones is  
the expectation of researchers with the goal of finding the best solution quality in exploring and 
exploiting search space effectively.  

In addition, the combination between two or more methods is also known as a unique 
way to create powerful hybrid algorithms such as Genetic Algorithm with an ant colony 
approach (GAAPI) [21], Particle Swarm Optimization based Differential Evolution (PSODE) [22], 
Distributed Sobol Particle Swarm Optimization and Tabu Search algorithm (DSPSO-TSA) [23], 
Differential Evolution-Particle Swarm Optimization-Differential Evolution (DPD) [24], 
Biogeography-Based Optimization, and modified Differential Evolution (aBBOmDE) [25].  
In recent years, various optimization methods have been successfully applied to deal with  
the realistic ELD problem in large-scale power system including Crisscross Optimization  
(CSO) [26], Dimensional Steepest Decline method (DSD) [27], an Improved Orthogonal Design 
Particle Swarm Optimization (AIODPSO) algorithm [28], Double Weighted Particle Swarm 
Optimization (DWPSO) [29], and Modified Crow Search algorithm (MCSA) [30].  

In this paper, a nature-inspired Stochastic Fractal Search (SFS) algorithm is applied to 
determine the minimum cost of the ELD problem. SFS was first recommended by Salimi [31] 
and applied to optimize twenty-three benchmark functions with a quite good solution quality.  
In the paper, our purpose is to investigate the efficacy and robustness of the SFS method on 
various standard IEEE systems through using two different random walk generators for diffusion 
process. Firstly, SFS with Gaussian random walk is called SFS-Gauss and secondly, SFS with 
Levy Flight random walk is called SFS-Levy. In addition, the achievement of SFS method has 
also competed against other ones available in the literature.  

 
 

2. Problem Formulation 
2.1.  Formulation of the Smooth ELD Problem 

The traditional fuel cost function is often represented as a single quadratic polynomial 
function polynomial function in (1):  

 
2

( )
i

F P o P n P mi i i i i i= + +    (1) 
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the (1) can indicate that the fuel cost for each MWh is different for different power output of 
thermal generating unit. Thus, the major target of the ELD problem is to reduce  
the total fuel cost of all thermal generating units and it can be described as the following model: 

 

1

( )
N

i
i

MinF F Pi
=

= 
 (2) 

 
2.2. Formulation of the Non-smooth ELD Problem 
2.2.1. ELD Problem Considering Valve-point Effects 

In the practical power system, thermal units often use many valve for adjusting their 
power output. This makes the fuel cost function become discontinuous form as shown in (3). 

 

( )2 min
(P ) sinp qF o P n P m P Pi i i i i i i i i i= + + + − 

 
   (3) 

 
2.2.2. ELD Problem Considering Multi-fuel Options 

Since the generators are supplied by various fuel sources such as coal, natural gas,  
oil etc., the total fuel cost function of each unit can be represented by a piecewise quadratic cost 
function as follows: 

 

2 min max,for fuel1,P ,1 1 1 1

2 min max,for fuel 2,2 2 2 2 2(

2 min max,for fuel ,

)i
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o P n P m Mi P P PiMi iMi i iMi ii iiMi
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
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
 + +  



 + +  


=
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  (4) 

 
2.2.3. ELD Problem Considering Both Valve-point Effects and Multiple Fuel Options 

The ELD problem will be practical and more accurate if both valve-point effects and 
multiple fuel options are considered as the following [22]. 
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2 min min maxsin(q ( )) , for fuel 2,2 2 2 2 2 2 2 2(

2 minsin(q ( )) , for fuel, ,

)i

o P n P m p P P P Pi i i i i i i ii ii i

o P n P m p P P P P Pi i i i i i i ii i i i
i

o P n P m p P P MiiMi iMi i iMi iMi iMi ii iMi

F P

+ + +   −  

+ + +   −  

+ + +   −

=

K

min maxP P Pi iiMi








  


 (5) 

 
2.3.  Constrains 
2.3.1. Generating Capacity Limit 

A real power output of units is generated that must be lied in the range of their lower 
and their upper limit as: 

 
min max

i i i
P P P     (6) 

 
2.3.2. Power Balance Constraint 

The formula of the generator power balance constraint with considering the total 
transmission power losses are presented by: 

 

1

0
N

i SLD TTL

i

P P P
=

− − =        (7) 

 
where PL is calculated by the Kron’s loss formula expressed as: 
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3. Stochastic Fractal Search 

The SFS algorithm that was formulated by Salimi in 2014, is a variant of Fractal Search 
by adding two update processes. So, the structure of SFS comprises of three update phases 
such as diffusion phase, the first update phase and the second update phase. As results, three 
new solution generations are created by SFS in each iteration. In SFS, the task of diffusion 
phase is to find solutions in small search space whilst the task of two update phases is to 
search solutions in large search space. Basically, SFS has a population corresponding to  
the number of points where each point Yd is represented as an optimal solution d (d=1, Np).  
At the beginning, all the points are randomly created and their fitness function are calculated to 
find the best solution Ybest among all solutions in the population. Then, SFS continues to perform 
the iterative search process with three phases above. The detail of three phase is  
described as follows: 

 
3.1. Diffusion Phase 

Based on the previous points, the first new solutions are produced by using one of two 
random walks as Levy flight and Gaussian. In this phase, each solution (point) Yd diffuses 
around its position into a number of new diffusion solutions Ydi where di=1,..,Ndf. The diffusion 
can be mathematically formulated as follows:  

 
3.1.1. Diffusion Phase with Levy Flight 

The equation of the diffusion phase using Levy flight random walk is  
performed in (9): 

 
Levy Levy

di d dY Y Y = +      (9) 

 
where α > 0 is scale factor; ε is a normally distributed random numbers restricted to (0,1);  

Yd denoted the dth solution in the current population and ∆𝑌𝑑
𝐿𝑒𝑣𝑦

 is described by [20]: 
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( )
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d d best
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where randx and randy are two normally distributed stochastic variables.  
 
3.1.2. Diffusion Phase with Gaussian Walk 

The process of creating solution following Gaussian random walk is performed by: 
 

1 2(1 )Gau

di d d d dY b GW b GW=  + −       (12) 

 
where bd is a binary number (0 or 1) dependent on comparison of a random number randd and 
walk factor w (0≤w≤1) as follows:  
 

1      

0   

d

d

if rand w
b

otherwise


= 


                    (13) 

 

and one out of 𝐺𝑊𝑑
1 and 𝐺𝑊𝑑

2 is used to create solutions, described (14): 
 

( )1 (Y , )d best d best dGW normrnd Y Y = +  −                     (14) 
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( )2 ,d d dGW normrnd Y =                     (15) 

 
where 𝛿 is uniformly distributed random numbers; 𝜎𝑑 is the standard deviation.  

At the end of creating the new solutions, all new solutions are appraised by computing 
the fitness function and then the evaluation between each old solution and Ndf new solutions at 
each point is done in order to retain a better solution with the best fitness, named Yd. 

 
3.2. The First Update Phase 

First of all, all current points are assigned to a value of probability Pad, which is 
determined by:  

 

d

d

p

Rank
Pa

N
=    (16) 

 
according to (16), the point with the best fitness has the highest probability and ranks at the last 
position otherwise stands at the first position. After ranking for all points, each point Yd in group 
is updated by the comparison of the probability Pad and a random number α1 (0<α1<1).  
If Pad < α1, the dth point is updated like (17), otherwise it doesn’t remain changed. 
 

1 1 2( )
d

new

dY Y rand Y Y= −  −                     (17) 

 
where 𝑌𝑑1

𝑛𝑒𝑤the new modified position of Yd; Y1 and Y2 is symbolize randomly selected points in 

the group. Through the first update phase, it is easily seen that all of points with a bad quality 
are often updated while the points with a better quality have low possibility to be newly updated. 
After performing the second generation, once again, mechanism of the comparison is  
re-performed to select the better solution between old solution and new solution at each point, 
named Yd. 
 
3.3. The Second Update Phase 

Similar to the first update stage, the first step in the second update stage is also to 
determine rankd and Pad for each solution d and then Pad is compared to a random number 
within 0 and 1 for determining if the solution is newly updated. In case that considered solution d 
is accepted to be newly updated, there are two models to be used as follows: 

 

( )2 3'      0.5new

d d best dY Y Y Y if rand= −  −                     (18) 

 

( )2 3 4'       > 0.5new

d d dY Y Y Y if rand= +  −       (19) 

 
where random selected points Y3, Y4 and the best point Ybest are obtained from the first phase; ε’ 
is random number in the range (0,1). 
 
 
4.  Implementation of SFS for Solving ELD Problem 
4.1.  Constraint Violation Handling Technique 

A punishment function technique is employed in the ELD problem to deal with constraint 
violations by using two variable types such as dependent variable and control variable.  
From (7), P1d corresponding to power output of the 1st unit of the dth solution is selected to be a 
dependent variable. Other variables from Pd2 to PdN are control variables and included in each 
solution d. Thus, these control variables are supposed to be given and then the dependent 
variable needs to be determined. The value of P1d obtained has no assurance that satisfies its 
limit power as (6). Therefore, the violation of the dependent variable must be penalized if one 
occurs and is calculated by:  
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1d 1max 1d 1max

1min 1d 1d 1,min

1min 1d 1max0

d

P P if P P

PUN P P if P P

if P P P

 − 


= − 


 

   (20) 

 
where PUNd is the violation of solution d 

Thus, in order to optimize the ELD problem related to the cost function (1)-(5), 
punishment function PUNd must be considered in fitness function in the case of occurring 
violation of value of P1d. Accordingly, the fitness function is determined as  
the following (21): 

 

2

1

( ) ( )
N

d d i d
i

F F P K PUN
=

= +                      (21) 

 
where K is factor for handling constraint violation. 
 
4.2. The Detail of SFS’s Proceduref the ELD Problem 

Step 1: Set parameters including the number of population Np, the number of diffusion 
population Ndf and the maximum number of iterations MI. 
Step 2: Initializing population Yd (d=1,  .., Np). The maximum and minimum of each point are 
Ymin= [Pimin] and Ymax= [Pimax] where i=2, …, N. Thus, each point Yd is randomly initialized based 
on the constraint: Ymin ≤ Yd ≤ Ymax  
Step 3: Calculate fitness function Fd following (21) and find the best point Ybest in group. 
- Set 𝐼𝑡𝑒𝑟𝑐𝑢𝑟 = 1.  
Step 4: 
- The diffusion phase is executed by using either Levy Flight or Gaussian walk. 
- Check bounds for new solutions and correct them if violated;  
- Calculate fitness function. 
- Compare old solution and new solutions at each point to keep the best one, called Yd 
Step 5:  
- The new solutions are produced by using the first update phase.  
- Check bounds for new solutions and correct them if violated. 
- Calculate fitness function. 
- Compare old solution and new solutions at each point to keep better one, called Yd 
- Select the current best solution in group. 
Step 6:  
- The new solutions are produced by using the second update phase.  
- Check bounds for new solutions and correct them if violated. 
- Calculate fitness function. 
- Compare old solution and new solutions at each point to keep better one. 
Step 7: Save the best point Ybest for the current iteration. 
Step 8: Check stopping condition.  
If 𝐼𝑡𝑒𝑟𝑐𝑢𝑟 < 𝑀𝐼, 𝐼𝑡𝑒𝑟𝑐𝑢𝑟 = 𝐼𝑡𝑒𝑟𝑐𝑢𝑟 + 1 and back to step 4. Otherwise, stop the procedure.  
 
 
5. Numberical Results 

In this section, we present two issues as follows: 1) Analysis of the efficiency of  
the SFS method based on the simulation results applying Levy Flight or Gauss walk for  
the diffusion phase; 2) Comparing results from three various standard IEEE test systems with  
6 units, 10 units and 20 units to evaluate performance of SFS methods. Three test systems are 
solved by running SFS on Matlab 2016 a and a computer with 2.4 GHz processor  
and 4 GB of RAM. 

 
5.1. Appling Levy Flight or Gaussian Random Walk for the Diffusion Phase 

In [31], author described that the diffusion phase of SFS could use Levy Flight or 
Gaussian random walk. However, all applications for solving benchmark functions, Gaussian 
random walk was only selected. In order to fully investigate the characteristics of SFS,  
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we examine its characteristics via applying Levy Flight or Gauss walk in the diffusion phase via 
three test systems. They comprise of 6-unit test system considering with and without line 
transmission losses, 10-unit test system with both multi fuels and valve point effect, and 20 unit 
test system with transmission losses. Such investigation process of using Levy Flight or Gauss 
walk has a very important role because it helps researchers easily to know the effectiveness of 
SFS to application for different systems. This investigation will be implemented based on two 
cases including the influence of walk factor ꞷ on the obtained results of SFS_Gauss and impact 
of the number of population and the number of iterations on the results of  
SFS_Gauss and SFS_Levy.  

 
5.1.1. Survey 1: the Influence of the Walk Factor 

For the first case, walk factor of SFS_Gauss is set from 0 to 1 with a step of 0.25 to 
analyze its impact on the tested results from convex or non- convex test systems.  
If 𝜔 is select to 0, (15) is used to create the new solutions in the diffusion phase. If is  
select to 1, (14) is employed to produce the new solutions. Otherwise, both. (14-15) are utilized 
for the solution creating process. To see the changes clearly, some parameters like the number 
of populations and number of iterations need to be established suitably for different test 
systems. Particularly, the number of populations and number of iterations are respectively set  
to 5 and 30 for 6-unit system, 10 and 50 for 20-unit system, and 20 and 500 for 10-unit system.  
The obtained results from these systems are summarized in Tables 1, 2 and 3.  

As shown in these tables, when the value of  is varied from 0 to 1 with the step  
size of 0.25, the minimum costs of various three test systems decreased from a high value to a 
low value. Specifically, for 6-unit system without transmission losses, the minimum costs are 
respectively 31446.8981 $/h, 36003.5396 $/h and 40679.0466 $/h for cases 1.1, 1.2, and 1.3 
corresponding to ω=0. These costs could be minimized and equal to 31445.6233 $/h, 
36003.1278 $/h, and 40675.9824 $/h as setting 𝜔=1. Similarly, when the value of is 0, costs of 
10-unit system and 20-unit system are 31446.8981$/h and 62460.87 $/h, respectively. When 
the value of is 1, those of 10-unit and 20-unit test systems are 331445.6233 $/h and 62456.91 
$/h, respectively. From such analysis, it points out that (14) has better performance than (15) on 
result obtained from the method. Furthermore, if only (14) is applied, the obtained results are 
the most effective. 

 
 

Table 1. The Obtained Results from 6-Unit System  
without Transmission Losses with Different ω 

ω 
Case 1.1: PD=600W Case 1.2:  PD=700W Case 1.3: PD=800W 

Min. cost ($/h) 

0 31446.8981 36003.5396 40679.0466 
0.25 31445.6455 36003.2984 40676.0351 
0.5 31445.6404 36003.2043 40676.0080 
0.75 31445.6270 36003.2016 40675.9861 

1 31445.6233 36003.1278 40675.9824 

 
 

Table 2. The Obtained Results from 10-Unit System  
with Multi Fuels and Valve Point Effect with Different ω 
ω Min. cost ($/h) Aver. cost ($/h) Max. cost ($/h) 

0 623.8911 624.4027 626.6973 
0.25 623.8327 624.0381 626.381 
0.5 623.8366 623.981 626.3098 
0.75 623.8287 624.0505 626.4194 
1 623.8274 624.1806 631.1825 

 
 

Table 3. The Obtained Results from 20-Unit System  
with Transmission Losses with Different ω 

ω Min. cost ($/h) Aver. cost ($/h) Max. cost ($/h) 

0 62460.87 62477.9943 62504.9535 
0.25 62457.05 62459.1811 62484.3307 
0.5 62457.06 62458.7540 62473.4330 
0.75 62456.95 62459.0491 62466.2881 
1 62456.91 62460.9454 62487.6297 
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5.1.2. Survey 2: the Impact of the Number of Population and Number of Iterations on  
          Obtained Results 

For the second survey, we scrutinize the impact of Np and MI on the results of 
SFS_Gauss and SFS_Levy for 10-unit and 20-unit test system. Np is fixed and chosen  
to be 20 for 10-unit system and 10 for 20-unit system while MI is altered from 100 to 550 for the 
comer, and from 50 to 250 for the latter. Moreover, according to the survey 1, SFS_Gauss had 
good solutions if only (14) is used for producing new solutions. So, we only use (14)  
corresponding to ω=1. And statistical results from 10-unit system and 20-unit system are  
shown in Tables 4 and 5. 

 In accordance with Tables 4 and 5, the minimum cost of SFS_Gauss and SFS_Levy 
are more and more changeful when MI is changed. For the case with non-smooth objective 
function, the best cost of SFS-Gauss and SFS-Flevy are 623.8252 $/h and 623.8235 $/h, 
respectively. For the case with smooth objective function, those of SFS-Gauss and SFS-Flevy 
are 62456.6331 $/h and 62456.6338 ($/h), respectively. It is clearly recognized that the best 
cost of SFS-Gauss is always better than that of SFS-Flevy at the same number of iterations for 
20-unit system. In contrast to the case above, the best cost of SFS-Flevy outperforms than that 
of SFS-Gauss with the same manner for 10-unit system.  

This implies that SFS_Levy is suitable for solving non-convex economic load dispatch 
problem with many local optimum solutions because its strong characteristic is to search 
solutions in large space, while SFS_Gauss is appropriate for disentangling convex one as it is 
powerfully capable for finding solutions in small space.  

 
 

Table 4. Statistical Results of Survey 2 for 10-Unit System 
SFS_Gauss SFS_Levy  

Np 

 
MI 

SFS_Gauss SFS_Levy  
Np 

 
MI 

Min. cost ($/h) Min. cost ($/h) 

623.9072 623.9348 20 100 623.8360 623.8264 20 350 
623.8474 623.8888 20 150 623.8340 623.8272 20 400 
623.8340 623.8442 20 200 623.8270 623.8285 20 450 
623.8318 623.8316 20 250 623.8252 623.8240 20 500 
623.8268 623.8279 20 300 623.8293 623.8235 20 550 

 
 

Table 5. Statistical Results of Survey 2 for 20-Unit System 
SFS_Gauss SFS_Levy 

Np MI 
Min. cost ($/h) 

62456.7717 62458.3038 10 50 
62456.6343 62456.6841 10 100 
62456.6331 62456.6338 10 150 
62456.6331 62456.6331 10 200 
62456.6331 62456.6331 10 250 

 
 

5.2. Comparison and Discussion 
In section, the SFS method performance is evaluated by comparing the minimum costs 

with other available methods. For fair comparison, some parameters such as Np and MI along 
with the number of function evaluations Fes are also reported in tables.  

 

5.2.1. Case Study 1: 6-Unit Test System 
This study solves 6-generating unit taking with or without line transmission losses into 

account. Load demand level of 600, 700, and 800 MVA in turn for both test circumstances are 
scrutinized. Problem data for various load demand levels of the first test system can be reached 
in Moustafa et al. [11]. In such study, we set Np to 10 and MI to 50 for testing all the cases with 
or without transmission losses. Tables 6 and 7 report the numerical results achieved  
by FFA [11], MFA [11], VSSFA [11], MFFA [11], SFS_Gauss and SFS_Levy.  

From Table 6, it can be seen that minimum fuel and standard cost values attained by 
SFS_Gauss and SFS_Levy are much lower than those of other methods. In addition, 
SFS_Gauss, and SFS_Levy only use Np=10, MI=50 and Fes=1500 while other ones need to 
employ Np=50 MI=150 and Fes=3750. It easily confirms that SFS_Gauss and SFS_Levy are 
faster than those of variants of FA. Even as with the case including transmission losses 
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exhibited in Table 7, SFS_Gauss and SFS_Levy still display its supremacy about the best cost 
with the shortest execution time. Consequently, it can clinch that SFS_Gauss and SFS_Levy 
are the best methods for these cases.   

 
 

Table 6. Numerical Analysis for the 6-Unit Test System without Transmission Losses 

Methods  

Case 1.1: PD=600W Case 1.2: PD =700W Case 1.3: PD =800W 
Np 

  

MI 
  

Fes 
  Min. cost($/h) 

Std. 
cost($/h) 

Min. 
cost($/h) 

Std. 
cost($/h) 

Min. 
cost($/h) 

Std. 
cost($/h) 

FFA [11] 31489 243.8401 36075 243.8401 40739 121.8807 25 150 3750 
MFA [11] 31447 2.928535 36006 2.928535 40676 2.696977 25 150 3750 
VSSFA [11] 31576 244.0893 36036 244.0893 40701 77.10171 25 150 3750 
MFFA [11] 31481 95.84878 36021 95.84878 40740 110.8561 25 150 3750 
SFS-Gauss 31445.62 0.005524 36003.12 0.005524 40675.97 0.057181 10 50 1500 
SFS-Levy 31445.62 0.146149 36003.12 0.146149 40675.97 0.02478 10 50 1500 

 
 

Table 7. Numerical Analysis for the 6-Unit Test System with Transmission Losses 

Methods 
  

Case1.4: PD=600W Case 1.5: PD =700W Case 1.6: PD =800W 
Np  MI  Fes  Min. cost($/h) 

Std. 
cost($/h) 

Min. 
cost($/h) 

Std. 
cost($/h) 

Min. 
cost($/h) 

Std. 
cost($/h) 

FFA [11] 32122 159.5433 37004 186.8881 41939 167.7257 25 150 3750 
MFA [11] 32098 4.706938 36914 3.322966 41898 2.347077 25 150 3750 
VSSFA [11] 32159 159.4889 36960 96.77619 41976 68.85434 25 150 3750 
MFFA [11] 32109 103.4451 36978 35.98231 41930 33.53627 25 150 3750 
SFS-Gauss 32094.68 0.00005 36912.14 0.000138 41896.63 0.000563 10 50 1500 
SFS-Levy 32094.68 0.013828 36912.14 0.057937 41896.63 0.020958 10 50 1500 

 
 
5.2.2. Case Study 2: 10-unit Test System 

This portion applied 10-unit system with valve-point loading, multiple fuel options and 
without transmission to size up the real performance of the SFS on non-convex problem.  
The data such as upper and lower powers of the units and fuel cost coefficients are come from 
the previous study as in [17, 23]. In such study, the load of all thermal units is 2700 MW.  

Table 8 describe the comparison of results performed by SFS method and other 
thirteen ones in terms of minimum cost, population, the maximum iterations, and the number of 
function evaluations. As seen from the table, the best fuel cost of DWPSO [29] is 622.74 $/h 
and is better than those of other methods. After rechecking this value by substituting  
the optimum dispatch solutions of DWPSO into function objective, the exact cost is 624.23 $/h.  

 
 

Table 8. Comparison of Results in Case Study 2 

Methods 
Min. 

cost ($/h) 
Np MI Fes Methods 

Min. 
cost ($/h) 

Np MI Fes 

APPSO(1) [14] 624.16 20 200 4.000 CSO [26] 623.82 100 1000 100.000 

APPSO(2) [14] 624.01 20 200 4.000 DSD [27] 623.83 - - - 

CCDE [17] 623.83 35 200 7.000 
AIODPSO-
Global [28] 

623.83 40 - 15.000 

ERCGA [18] 623.83 - - - 
AIODPSO-
Local [28] 

623.83 40 - 15.000 

IRCGA [19] 623.83 - - - DWPSO [29] 622.74 200 1000 200.000 
PSODE [22] 623.83 50 500 25.000 MCSA  [30] 623.83 100 100 10.000 
DSPSO-TSA[23] 623.84 30 100 3.000 SFS-Gauss 623.8252 20 500 30.000 
DPD [24] 623.83 99 250 24.750 SFS-Levy 623.8240 20 500 30.000 

 
 

It is clearly seen that such cost is higher than that reported in Samir Sayah [29]. For this 
aspect, 623.8252 $/h and 623.8240 $/h are the best costs of SFS-Gauss and SFS-Levy and 
these values are approximate or smaller than those of other methods. If considering the number 
of function evaluations, we see that the Fes value of almost all methods is completely different. 
The Fes value of SFS_Gauss and SFS_Levy is 30.000 which is smaller than that of CSO [26] 
and DWPSO [29] and higher than those of remaining ones. Moreover, the convergence features 
of SFS_Gauss and SFS_Levy illustrated in Figure 1 reveal that SFS-Gauss converges to local 
optimal solutions faster than SFS-Levy from the 1st iteration to the 150th iteration, and then its 
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fitness does not change much to the 500th iteration. Otherwise, SFS-Levy can decreases fuel 
cost gradually from the 280th iteration to the last one. Clearly, SFS_Levy is more effective for 
nonconvex objective function problem.   

 
 

 
 

Figure 1. The convergence curves of SFS_Gauss and SFS_Levy in case study 2 
 
 

5.2.3. Case Study 3: 20-Unit Test System 
In the study, the twenty generating units with transmission line losses has been 

deliberated to value the effectiveness of SFS_Gauss and SFS_Levy for clinching the ELD 
problem. The input data for the case is accessible from [16] and the total load demand  
is 2500 MW. The result comparison summary is presented in Table 9. 

 
 

Table 9. Comparison of Results in Case Study 3 
Methods Min. cost ($/h) Np MI Fes 

BBO [15] 62456.793 50 400 20000 
ALO [16] 62456.633 30 500 15000 
MCSA [20] 62456.633 10 500 10,000 
aBBOmDE [25] 62456.701 - - 35000 
SFS-Gauss 62456.633 10 150 4500 
SFS-Levy 62455.634 10 150 4500 

 
 

The best fuel cost achieved by SFS-Gauss is 62456.633 $/h, which is better than that of 
SFS-Levy. In Table 9, it is also seen that SFS_Gauss and SFS_Levy completely devastate 
other ones such as BBO [15] and aBBOmDE [25] but share the standing position with ALO [16] 
and MCSA [20]. Besides, SFS-Gauss and SFS-Levy only use Fes=4500 and the value is 
smaller than that of the four mentioned methods. So, this underlines that SFS_Gauss and 
SFS_Levy are very favorable tool for this case. Figure 2 delineates the convergence features of 
SFS algorithms. As perceived in the figure, SFS-Gauss can improve the fuel cost significant 
from the 115th iteration to the last one but SFS_Levy just reduce gradually.  
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Figure 2. The convergence curves of SFS_Gauss and SFS_Flevy in case study 3 
 
 

6. Conclusions 
In this paper, efficient optimum solutions of the ELD problem have been uncovered  

by executing two forms of the stochastic fractal search algorithm. The focal contributions 
presented in the paper can be encapsulated as the following aspects:  

− Analyze the performance of the SFS method when applying two distribution random walk in 
the diffusion phase which is one out of three basic mechanisms of the original SFS method. 

− Point out the selection of the most effective formula for producing new SFS solutions using 
Gauss walk.   

− Reveal the most suitable form of the SFS for applying the non-smooth or smooth ELD 
problem.  

 Moreover, the SFS methods have been investigated via three case studies with 
different objective function forms and different constraints. The results obtained by the SFS 
method has been compared to those of other existing techniques. These comparative results 
show that the SFS method is an effective optimization tool for addressing convex or  
non-convex ELD problem in a power system.  
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