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 Development of optical waveguide resonators have greatly expanded  

and continues to grow since they have kinds potential applications such  

as wavelength filtering, switching, coupling and multiplexing. One of 

resonators, coupled waveguides, ring resonators are designed and operated 

using various coupling configurations. Ring resonators can be particularly 

used as wavelength filter if the wavelength can fit a whole multiple time  

in the circumference of the ring. This article proposes to investigate  

the transmission spectra from the power source and amplify it in linearized 

ring resonator configurations and varies the input amplitude on five different 

wavelengths. With finite difference time domain method, the geometry and 

power source are simulated to obtain the better result and configuration.  

The results show the intensity phenomena of filtering in optical circuit. 
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1. INTRODUCTION 

Nowadays, the role of optical ring resonator has been widely used in photonic network, 

communication and kinds industrial application. It also has represented as the most promising optical circuit 

and photonic integration platforms. The basic ring resonator consists of a straight waveguide coupled to a fiber 

ring with radius, r [1-5]. A generic ring resonator consists of geometry symmetry, optical waveguide and 

dielectric structure which are looped back on it, such that a resonance system occurs when the optical path 

length of the resonator is exactly a whole number of wavelengths [6].  

The finite difference time domain (FDTD) method is commonly used in solving Maxwell equations. 

This is proved to be one of the important tools due to its simple implementation in software simulations.  

This mathematical method was used in a variety of photonics’ studies. By using FDTD method, Hagness et al. 

In [7] described the design and experimental realization of a simple ring resonator [6]. Modeling micro ring 

resonator is important due to the optical device offer a large free spectral range but also a narrow band [7, 8]. 

It is similar to fiber Bragg grating (FBG) [9-12], micro ring resonator has been proposed to biosensor 
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applications [13], such as for Alzheimer diagnosis [14]. Perception of 3D image also can be built by micro ring 

resonator. This 3D view is obtained by Panda ring arrangement [15, 16]. However, some existing ring resonator 

designs have not been able to solve the problem of more complex wave intensity propagation in an optical 

circuit including also increasing the output power [17]. For this reason, it is necessary to design a simulation 

for several considerations and adjustments in optical circuits that are still required. 

In this study we simulated linearized ring resonator configurations and vary the input amplitude  

on various wavelengths. The effect of input amplitude to power amplification for all configurations is evaluated 

and also varied to the input amplitude on different resonant wavelengths. It is necessary to analyze  

the effect of structures on ring resonator [18, 19] since power can be distributed while propagating through  

the structure for various performances. The output pattern of optical filter will vary due to particular orientation. 

Furthermore, it can be optimized the profile of the output waves. 

 

 

2. RESEARCH METHOD 

This research represents a model of resonator configuration commencing by setting up the wafer 

dimensions to 60 m in length and 20 m in width. The 2D wafer’s refractive index set to air’s refractive index 

which is 1.00. The waveguide being used to model this simulation is to set the isotropic constant refractive 

index which is its real value of 1.54 and no imaginary part. The device configuration is composed by a ring 

resonator and a plane waveguide as shown in Figure 1. The details of the configuration are as follows;  

the length of the linear waveguide has been set to 60.0 m and the width of fiber is 1.0 m. The waveguide is 

then coupled to double ring waveguide with radius of 3.25 m, both minor and major radius. The centers of 

the horizontal position for the upper and lower rings are located at approximately at 8 until 50 m by difference 

of 22 m between each other. While the vertical position of the upper ring is approximately 4.1 m and  

the vertical position are about -4.1 m. The orientation angle of each ring waveguide is set to 0. In this model, 

the default setting is used for the configuration of channel thickness tapering. The width of the ring is set to  

1.0 m and the depth is set similar to profile of plane waveguide. The vertical input plane is interfaced to  

the device as a power source. A continuous wave with wavelength of 1.55 m has been used as the initial 

properties of the input plane for the Gaussian input field transverse. The plane geometry is set and wave 

configuration is 0.4 m for its Z position being transverse in positive direction with 0 initial phase and  

the input power is 1.0V/m.  

Electromagnetically, as the electric field propagates along the ring resonator, the fundamental 

relations amongst the incident field, E1, transmitted field, E2, and circulating fields E3, E4 of a single resonator 

are inferred by combining the relations for the coupler with that of the feedback path [8]. In the spectral domain 

as depicted in Figure 2, the electric field propagates to the the coupling region corresonding to the source of 

field through the subsequent unitary matrix is given by; 

 

(
𝐸4(𝜔)
𝐸2(𝜔)

) = (
𝑟 𝑖𝑡
𝑖𝑡 𝑟

) (
𝐸3(𝜔)

𝐸1(𝜔)
)

 

(1) 

 

where the lumped self- and cross-coupling coefficient, r and t are assumed to be autonomous of frequency and 

fulfill the relations of r2 + t2 =1 [8]. If the feedback path (of length, 2𝜋𝑅) connects the output from port 4 

backward into input port 3 where the electric field is stated by  

 

𝐸3 = 𝑒𝑥𝑝(−𝜋𝛼𝑟𝑖𝑛𝑔𝑅) 𝑒𝑥𝑝(2𝑖𝜋𝑘𝑅) = 𝑎 𝑒𝑥𝑝( 𝑖𝜙)𝐸4  (2) 

 

The value of 𝑎 represents the single-pass amplitude transmission and   is the single-pass phase shift.  

In (1) and (2) are solved to obtain the solution of for the ratio of the circulating field to the electric field incident;  

 
𝐸3

𝐸1
=

𝑖𝑡𝑎 𝑒𝑥𝑝(𝑖𝜙)

1−𝑟𝑎 𝑒𝑥𝑝(𝑖𝜙)
 (3) 

 

The ratio of the circulating intensity to the source of incident intensity, or the buildup factor Ɓ, defined 

by the squared modulus of the results as (4). 

 

𝛣 =
𝐼3

𝐼1
= |

𝐸3

𝐸1
|
2

=
(1−𝑟2)𝑎2

1−2𝑟𝑎 𝑐𝑜𝑠 𝜑+𝑟2𝑎2
 (4) 
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The last outcomes may allude to the circumstance in which the incident intensity is resonant with  

the ring (∅ = 𝑚2𝜋) where the losses or attenuation are not considered (𝑎 = 1). This passive ring resonator 

under these conditions obtains the maximum ratio of circulating power to incident power. For cross-coupling 

values of 10% (𝑡2 = 0.1), the intensity in the ring can be 40 times higher than the intensity incident  

on the resonator in the input waveguide. Based on the intensity in the optical ring resonator that can be higher 

than that of in the bus, ring resonator can be utilized for other optic applications and nonlinear ones with 

moderate input intensities [5]. 

 

 

 
 

Figure 1. The schematic diagram of ring resonator configuration 

 

 

 
 

Figure 2. Electric field correlates with an all-pass ring resonator 

 

 

3. RESULTS AND ANALYSIS 

3.1.   Single ring resonator and linear waveguide 

Figure 3 describes results of light intensity before and after propagating the ring structure of single 

ring resonator. This study is conducted by five various wavelengths; =1.0 m, =1.25 m, =1.55 m,  

=2.9 m, =4.25 m and the input power is set at V/m. Based on the results, from Figure 3 (a) it is found that 

the trend line is nearly symmetric at wavelength from 0.9 m until 1.1 m and a peak is found to rise at 

=1.0m. There seems that the filter rises gradually and the gain is high at this range. Figure 3 (b) describes 

that the trend line is not symmetric compared in Figure 3 (a). The filter is slightly exponential and the gain is 

high but the wavelength filter is short to be used in practical application as an optical filter [19]. Figure 3 (c) 

shows that the peak at wavelength 1.55 m is sharp and this produces a good filter in optical waveguide 

application. Besides, it depicts a comb wave rapidly and the gain is relatively high at this range compared in 

Figures 3 (a) and (b). As we increased the value of  until 2.9 m and 4.2 m, it was found that the value of 

output power is less compared to input power which being supplied to the system shown in Figures (d) and (e). 

Contrary to expectation, it is assumed that the power is being reticulated as it propagates through the ring 

structure [6]. 

 

3.2.   Input amplitude of 1 V/m, 5 V/m and 10 V/m 

Figure 4 depicts that the higher input amplitude produces the narrower band wave as this one of  

the ideal characteristics for an optical filter of =1.55 m. However, at higher input amplitude, we cannot 

clearly observe the gap between the input source and output source compared to the lower input amplitude.  

It is evident from the results; the trend line for various setting of input amplitude is similar to 1 V/m, 5 V/m 

and 10 V/m. These findings suggest that the power gain is generally good until it reaches =1.55 m. At  

2.9 m, the output power is 90 to 180 phase difference due to power delays although power amplification is  

high [16]. As we increased the value of , they cannot act as a good optical filter since it has wide broadband.  

For lower value of , it can filter certain required wavelength since the peak is steep at certain range compared  

to bigger . These are due to the factor of higher wavelength carries high power energy [20]. Four serial-single  

ring resonators is a good filter compared to single ring resonator. However, the double ring resonator shows 

the sharp peak results. When increasing the input amplitude 1-10 V/m, the effect of phase difference and group 

velocity affect the filter wave profile mainly at high wavelength source [21]. The gain is sharp but for high 

input voltage the wave seems not sinusoidal, it suspects due to the effects of ring cannot completely acts  
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as the resonator since several geometrical parameters are changed. It is the effect of nonlinear phenomena 

occurring in the light wave as it propagates through the bus and ring structure. 

 

 

   
(a) (b) (c) 

 

  
(d) (e) 

 

Figure 3. The transmission spectrum of single ring resonator with input amplitude of 1V/m;  

(a) at =1.0 m, (b) at =1.25 m, (c) at =1.55 m, (d) at = 2.9 m and (e) at = 4.25 m.  

Horizontal line indicates wavelength in µm 
 

 

  
(a) (b) 

 

 
(c) 

 

Figure 4. The transmission spectrum for single ring resonator for  = 1.55 m with  

(a) input amplitude of 1 V/m, (b) 5 V/m and (c) 10 V/m 
 

 

3.3.  Power amplification of light for linearized-double ring resonator 

Figure 5 shows the power amplification for optical light in linearized-double ring resonator if it is evaluated 

the input amplitude of 1-10 V/m for wavelength range from 1 until 4.25 m, as depicted in the curves, the dot lines 

and dashed lines represent the model and demonstration data respectively. These phenomena occur due to time delay 

when the light propagates in the ring [22], hence the energy losses are produced as it circulates in the ring. 

Furthermore, during the wave propagates in a circulation ring, there are phase difference due to time delay between 
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the first and the next wave. For a larger wavelength, it carries low energy and it requires longer period to circulate in 

the ring [23]. Therefore, the higher wavelength sources as inversely proportional to frequency are able to reduce 

energy losses along the circulation and propagation in optical media [16, 22]. In future works, it is necessary to 

establish a relationship filtering phenomenon in micro ring resonator and metamaterial ring resonator [24-26]. 

 

 

  
(a) 

 

(b) 

 

  
(c) 

 

(d) 

 

 
(e) 

 

Figure 5. The power amplification of light intensity for double ring resonator;  

(a) at  = 1.0 m, (b) 1.25 m, (c) 1.55 m, (d) 2.9 m and (e) 4.25 m 

 

 

4. CONCLUSION 

Numerical demonstration to design ring resonator and the influence of power sources in linearized 

coupled-ring resonator have been successfully investigated. This was commenced to the analysis of a single 

bus ring coupled with another resonator. It shows that the graph at wavelength of 1550 nm, the transmission 

spectrum from the output port at this specific wavelength is sharp and this produces it a good filter in optical 

waveguide application. After that, the effect of various input amplitude for  = 1.55 m reveals that the higher 

input amplitude produces, the narrower band wave is released, as this one of the important characteristics for 

an optical filter. However, if we increase the input energy, it is uneasy describes the gap between input and 

output optical spectrum. These are also compared to the transmission spectrum of double-ring configurations 

to identify the optimum that match to fulfill the ideal optical filter. 
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