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Abstract 
The particle swarm system simulates the evolution of the social mechanism. In this system, the 

individual particle representing the potential solution flies in the multidimensional space in order to find the 
better or the optimal solution. But because of the search path and limited speed, it's hard to avoid local 
best and the premature phenomenon occurs easily. Based on the uncertain principle of the quantum 
mechanics, the global search ability of the quantum particle swarm optimization (QPSO) algorithms are 
better than the particle swarm optimization algorithm (PSO). On the basis of the fundamental quantum 
PSO algorithm, this article introduces the grouping optimization strategy, and meanwhile adopts the 
dynamic adjustment, quantum mutation and possibility acceptance criteria to improve the global search 
capability of the algorithm and avoid premature convergence phenomenon. By optimizing the test 
functions, the experimental simulation shows that the proposed algorithm has better global convergence 
and search ability. 
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1. Introduction 

PSO algorithm is a new evolutionary computation technology, which belongs to the 
category of swarm intelligence algorithm. For PSO algorithm, the movement of particles fully 
embodies the characteristics of the swarm algorithm, and during the process of the movement, 
particles follow the optimal position found by them and the one of the entire population, 
eventually making the whole particle swarm gather at the optimal solution position. The particle 
swarm algorithm is simple in the concept and easy in adjusting parameters, so it has been 
widely used. However, because of the search path and limited speed, it's hard to avoid local 
best and the premature phenomenon occurs easily [1]. The emergence of the quantum particle 
swarm optimization algorithm solves the problem of limited search scope. Based on the 
uncertain principle of the quantum mechanics, the global search ability of the quantum particle 
swarm optimization algorithm is better than the particle swarm algorithm [2].  

For traditional PSO algorithms, the particle searches by flying. The flying process 
depends on the speed, however, with limited speed, the particle can only search within a limited 
search scope, and the limited search scope limits the particle in a fixed area without covering 
the whole feasible solution. Thus, the particle swarm can't search the global optimal solution 
with probability 1. QPSO bases on DELTA potential well model to determine that the particle 
state is similar with the quantum behavior [3]. For quantum particle swarm optimization 
algorithm, the particle state is determined by wave function. The quantum space is the whole 
feasible solution space, which satisfies the wave principle of quantum mechanics. The particle 
has the characteristics of uncertainty in the search space and it can search in the whole feasible 
solution space, therefore, we conclude that the quantum particle swarm optimization algorithm 
has such advantages as the strong global search ability, etc [4],[5]. 

Based on QPSO algorithm, this article introduces a new search strategy. During the 
search process, each particle no longer updates its own position only by learning its current 
local optimal value and global optimal value, but by learning its current local optimal value and 
other particles’ current local optimal value and global optimal value. This paper first introduces 
the basic particle swarm optimization algorithm, and then expounds the quantum theory, the 
principle of quantum particle swarm optimization algorithm and the implementing steps of this 
algorithm, and finally, by analyzing through the experimental simulation, this article proves that 
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QPSO optimization ability and convergence are better than other improved PSO and standard 
PSO. 
 
 
2. Basic Particle Swarm Optimization Algorithm Model 

Particle swarm optimization algorithm is the result of research on birds’ feeding 
behavior, and it is an optimization tool based on iteration. We can imagine such a situation: 
there is a piece of food at one point in a region, and a flock of birds randomly searching for food. 
Every bird does not know the specific position where the food is, but knows how far the food is 
[6]. The best way to find the food is to find the nearest area where the bird is from the food. First 
of all, imagine each bird into a particle and its position stands for one solution of the question. 
The merits of the particles are determined by the fitness value of the optimization function, and 
the particle movement is decided by its flight direction and distance. The particles follow the 
current optimal particles to search in the solution space [7]. 

For PSO algorithm, the random initialization is firstly conducted, and then the target 
space will be searched by the iterative condition of the algorithm till the optimal solution is found. 
During each iterative process, the algorithm updates itself by tracking two "extreme values". The 
first extreme value is the optimal solution found by the particle itself, and this optimal solution is 
called the optimal extreme value ( )ip  of the individual particle; the other is the current optimal 

solution found by the entire population, and this extreme value is called the global optimal 

extreme value  gp . Its mathematical model is: 

Suppose the target search space is D  dimension, the group size is M , the potential 
solution particle form is 1 2( )Mx x x x ， ， ， , in which 1 2( )i i i iDx x x x ， ， ， is the D  dimension 

position vector of the No.i particle ( 1 2 )i m ，， ， . Calculate current ix fitness value according to 

the preset fitness function (related to the problem to be solved), i.e. the merits of measurable 
particle position, 1 2( )i i i iDv v v v ， ， ， is the flight speed of the particle i , i.e. the distance of the 

particle moves 1 2( )i i i iDp p p p ， ， ， is the optimal position the particle has searched till now,

1 2( )g g g gDp p p p ， ， ， is the optimal position the entire particle swarm has searched till now, in 

which g  is the subscript of the particle located in the best global position, and {1 2 }g M ，， ， . 

For the minimization problem, the better the fitness value of the function is, the smaller 
the objective function value is. During each iteration process, the particle updates the speed and 
position according to following formulas: 
 

   1
1 1 2 2

k k k k
id id id id gd idv v c r p x c r p x                                                                          (1) 

 
1 1k k k

id id idx x v                                                                                                      (2) 

 
In which, 1 2i M ，， ， ； 1 2d D ，，， , k  is the iterative number of the algorithm, 1r and 

2r are random numbers between [0,1], which mainly implements the diversity of the population. 

1c and 2c are learning factor of the algorithm ( acceleration factor), and their function lies in to 

make the particle able to study and summarize by itself, and also able to approach the best 
point of itself and the population [8],[9]. 

In order to improve the convergence of particle swarm optimization algorithm, Shi and 
Eberhart proposed the inertia weight factor in 1998, and the calculation formula is changed into: 
 

   1
1 1 2 2

k k k k
id id id id gd idv v c r p x c r p x                                                             (3) 

 
1 1k k k

id id idx x v                                                                                      (4) 

 
In which,   is called the inertial factor which mainly weighs the search ability of the 

algorithm. The global search ability is stronger when 1.2  ; while the local search ability is 
weaker when 0.8  , and new area can always be searched. With the increase of the number 
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of iterations,  shall decrease continuously, and generally  is supposed as the linear 
decreasing function. Figure 1 shows the adjustment concept of one search point and the 
individual search idea in the solution space [10]. 

 
 

 
 

Figure 1. Search sketch chart of particle in solution space 
 

 
PSO adopts the inertia weight to balance the global search and local search. Large 

inertia weight tends to be adopted in global search, while small inertia weight tends to local 
search. By dynamically changing the inertia weight, we can realize that the search ability is 
dynamically adjusted. 

 
 

3. Quantum Particle Swarm Optimization Algorithm 
3.1. Related quantum theory  
3.1.1. Quantum’s uncertainty principle  

The quantum concept is usually used in the physics. The quantum is an inseparable 
fundamental individual and a mechanical unit of the energy in the micro system. Its basic 
concept is that all tangible property "can be quantized."Quantization" means that its physical 
quantity value would be some specific values rather than any value. 

Quantum in the microscopic world has many features of micro objects that cannot be 
explained in the macroscopic world, and these features are mainly manifested on quantum’s 
state properties, such as quantum state’s superposition, quantum state’s entanglement, 
quantum state of being unable to be cloned, quantum’s "wave-particle dualism" and quantum 
state’s uncertainty etc. These strange phenomena come from the interaction among micro 
objects in the microscopic world, i.e. the so-called quantum coherence characteristic. 

Uncertainty principle is a core theory of quantum mechanics, and it is expressed as: it is 
impossible to know strength and position of the particle at the same time, and the more 
accurately we know one of them, the more inaccurate the other one, this is the inherent feature 
of the quantum world and the reflection of the wave-particle dualism contradiction of the matter. 
The quantum world is the world that is controlled by the probability, and there is no accurate 
prediction but the probability that one matter will happen. Because of such characteristics of 
quantum, the wave function is adopted to describe the quantum behavior in quantum mechanics 
[11],[12]. 

 
 

3.1.2. Schrodinger equation and wave function 
Schrodinger equation mainly consists of the time-dependent Schrodinger equation and 

the time-independent Schrodinger equation. The time-dependent Schrodinger equation 
depends on the time, which is specially used to calculate how one quantum system’s wave 
function evolves over the time. The time-independent Schrodinger equation does not depend on 
time, which is used to calculate a stationary state quantum system and corresponds to the eigen 
wave function of a certain eigen energy [13]. 

Wave function is the function used to describe the Broglie wave of the particle in the 

quantum mechanics. The wave function is expressed in  ,x t


, which is usually a complex 
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function and its absolute value’s square equals the possibility p  that the particle occurs around 

the position x  at time point t : 
 

        2
*, , , ,p x t x t x t x t    

   
                                                                      (5) 

 

Wave function  ,x t


 satisfies the following time-dependent Schrodinger equation:  

 

  �  
,

,
x t

iћ H x t
t


 






                                                                                  (6) 

 

In which, ћ is Planck constant, �H  is Hamilton operator, and 
 

�  
2

2

2

ћ
H V x

m
   


                                                                                  (7) 

 

m is the quality,  V x


 can be acquired by substituting the system’s potential energy into 

the equitation(6). In the one-dimension space, the time-dependent Schrodinger equation when 

one single particle moves at the potential  V x


 is: 

 

       
2 2

2

,
, ,

2

x t ћ
iћ x t V x x t

t m x

 
    

 


  

                                                       (8) 

 
The time-independent Schrodinger equation is: 
 

       
2 2

22 E E E

ћ
x V x x E x

m x


     


                                                             (9) 

 

In which, E  is the energy,  E x  is the correspondent function of E . 

 
3.2. QPSO search strategy  

The particle swarm system simulates the evolution of the social mechanism. In this 
system, the individual particle representing the potential solution flies in the multidimensional 
space in order to find the better or the optimal solution. Particles fly according to the current 
position and speed, i.e. searches around itself by a fixed track. For PSO algorithm, the analysis 
of the particle flight track proves that when the inertia weight 0  , the PSO algorithm search 
process is essentially a local search algorithm, and at that time, the formula (1) becomes: 

 

         1 1 2 21i i i i ix t x t c r pbest x t c r gbest x t     
                                      

(10) 

 
Suppose 1 1 1 2 2 2 1 2, ,c r c r        , 1c and 2c are learning coefficients of PSO algorithm, 

1r and 2r are random numbers that satisfy the uniform distribution among (0,1). So, the above 

formula can be abbreviated into: 
 

      1 21 1i i ix t x t pbest gbest      
                                                            

(11) 

 
When ipbest and gbest are stationary, formula (11) is a simple linear difference equation 

and its solution is: 

     0 1
t

i i i ix t p x p    
                                                                           

(12) 
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Here, for 1 2i
i

pbest gbest
p

 



 , the formula (12) shows that when 1 1  , under the 

condition that t  ,   1 2ipbest gbest
x t

 



 , i.e. the algorithm convergence. 

ip is referred to the local attractor of the particle i . If QPSO algorithm convergence can 

be guaranteed, it requires that each particle should converge to its own local attractor ip : 
 

 1i ip pbest gbest                                                                                        (13) 
 

Here, 1


  

 

From formula (13), we can see that the local attractor ip  is located at the super 

rectangle with the individual best position ipbest and the group best position gbest as the vertex, 

and the position of the local attractor ip changes along with the change of ipbest . When the 

algorithm converges, the particle swarm also converges to the local attractor ip , at that time, the 

particle individual best position ipbest , the group best position gbest and the local attractor ip

overlap in one point. Therefore, it is assumed that during the algorithm iteration process, there 
exists the attract potential field in some form at the local attractor ip , and all particles in the 

population is attracted by ip , and approach gradually to ip with the algorithm iteration and 

eventually overlap with ip , that is also the reason why particle swarm is able to maintain the 

aggregation [14]. 
 

3.3. Algorithm description  
For classical mechanics, the flying track of the particle is fixed, but for the quantum 

mechanics, we can see from the Heisenberg uncertainty principle that for a particle, its position 
and speed cannot be determined at the same time, and the track makes no sense. Therefore, if 
the particle in PSO algorithm has the quantum behavior in the quantum mechanics, then the 
PSO algorithm will work in different ways. The algorithm flow chart of this article is as follows 
[15],[16] as Figure 2. 

For quantum mechanics, the particle state is described by the wave function  ,X t  

which is the complex function of coordinate and time, in which,  , ,X x y z  is the position vector 

of the particle in three-dimensional space. The wave function’s physical meaning is: the square 
of the wave function module is the possibility density when one particle occurs at a certain point 
X  in the space at the time point t , i.e.: 

 
2
dxdydz Qdxdydz                                                                                      (14) 

 

In which,Q is the probability density function. Probability distribution density function 

satisfies the normalization condition: 
 

2
1dxdydz Qdxdydz

 

 
                                                                                (15) 

 
Suppose the particle swarm system is a quantum system, and each particle has the 

quantum behavior, and the wave function is used to describe the particle state. According to the 
analysis of the convergence behavior of particles in PSO algorithm, there must be attract 
potential in some form centered by ip . So,  potential well can be set up at ip  and its potential 

energy function is expressed as: 
 

     iV x X p Y     
                                                                          

 (16) 
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Figure 2.  Algorithm flow chart 
 

 
In which, iY X p  , m  is the quality of the particle, so Hamiltonian operator of such 

question is as follows: 
 

�  
2 2

22

ћ d
H Y

m dY
  

                                                                                  
 (17) 

 

The particle’s time-independent Schrodinger equation in   potential well is: 
 

 
2

2 2

2
0

2

d m
E Y

Y ћ

                                                                                  (18) 

 
In which, E  is the particle energy. 

By solving the corresponding wave function of this equation, we can get: 
 

 
21

,
Y

L
ћ

Y e L
mL





                                                                                  (19) 

 

Its possibility density function Q  is: 

   
22 1
Y

LQ Y Y e
L




 
                                                                                 

(20) 

 
Possibility distribution function F  is: 
 

  Initialization population 

Initialization particle historical best 
and global historical best 

Update all particles in the population 

Evaluate the particle fitness function 
in the population 

Update the particle historical best 

Update the global historical best of particle swarm 
 

Meet end condition? 

Yes 

Output optimal solution 

No 
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 
2

1
Y

LF Y e


                                                                                  (21) 
 

Quantum state function  Y only calculates the probability density function   2
Y  or 

 Q Y when the particle occurs at ip . Monte Carlo stochastic simulation can be adopted to 

determine the particle position: 
 

1 1
ln

2i ix p
u

    
 

                                                                              (22) 

 

In which,   is the random number among (0,1), and L is the characteristic length of 
potential well. In order to make the particle position change along with the time and also able to 
converge, the characteristic length in formula (22) must also change along with the time, namely 

( )L L t . In this way formula (22) can be rewritten as: 
 

   
 
1

1 ln
2
i

i i
i

L t
x t p

u t

 
     

 
                                                                           (23) 

 
From formula (22), we can see that L is the search scope of particles, and the larger L  

value is, the larger the particle search scope. However, if the L  is too large, it will lead the 
entire particle swarm to diverge and lower the particle swarm convergence speed and ability, if 
L  value is too small, it will lead the premature convergence of particle swarm and also fall into 
the local best. The following two methods can be adopted to evaluate L  value choice: 

The first method is: 
 

     2i i iL t p t x t �                                                                         (24) 

 
Then, for 1t  generation, the position evolution equation of number i in j dimension 

can turn into: 

         
1

1 lnij ij ij ij
ij

x t p t p t x t
u t


 

      
 

� �                                                  (25) 

 
The second method is to introduce the mean best position which is defined as the 

average of all individual particles’ best position, namely: 
 

1 2
1 1 1 1

1 1 1 1
, , ,

M M M M

i i besti iD
i i i i

mbest pbest pbest p pbest
M M M M   

 
   

 
                    (26) 

 

Then, 'L s evaluation method may be changed into: 
 

   2i iL t mbest x t �                                                                                    (27) 

 
Corresponding particle evolution formula is changed into: 
 

       
1

1 lnij ij j ij
ij

x t p t mbest x t
u t


 

      
 

� �

                                                  

(28) 

 
In which,  is called the contraction-expansion coefficient, and it is the only parameter 

except the group size and iteration number in the QPSO algorithm.  is used to control the 

convergence speed of particles, when 1.75  , the algorithm can guarantee the convergence, 

and generally the linear decreasing gradient from 1 to 0.5 is selected.  
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4. Test and Analysis 
4.1. Standard test function 

Use the following four standard functions to validate the effectiveness of the improved 
algorithm, and four functions all have the minimum value, and the minimum value is 0. 

(1) Sphere function 1F  
 

  2

1

n

i
i

f x x


   

 
Function optimal value is 0, and the corresponding global best solution is at the origin, 

namely, when 0ix  , the value is minimum. The function feature is smooth, continuous, 

symmetrical and unimodal in the curved surface, and there is no interaction between function 
variables and the gradient information always points to the global best point. 

(2)Rosen rock function 2F  
 

     2 22
1

1

100 1
n

i i i
i

f x x x x


   
 

 

The function optimal value is 0, which is a unimodal function, and each component of 
the corresponding global optimal solution is 1, namely, when 1ix  , the value is minimum. The 

characteristics of function is smooth in the curved surface, and there is narrow ridge area on the 
curved surface is smooth, and the ridge area is very sharp at the top, and the area nearby the 
best point is banana-shaped. There is a strong correlation between variables, and the gradient 
information often misleads the algorithm search direction, and the algorithm is difficult to search 
the global best solution. 

(3)Rastrigrin function 3F  
 

    2

1

10cos 2 10
n

i i
i

f x x x


  
 

 
Function optimal value is 0, and the corresponding global best solution is at the origin, 

namely, when 0ix  , the value is minimum. This function is a nonlinear multimodal function, 

and has many a local best point. There perhaps are 10n local best points within the scope of
( 5.12, 5.12)ix   ， 1 2i n ，， ， , and it is difficult to find its global optimal solution. For the 

optimization algorithm, this function is such a function that is extremely difficult to be optimized. 
Optimization algorithm is vulnerable to fall into a certain local best point on the path to the global 
best point. 

(4)Griewank function 4F  
 

  2

1 1

1
cos 1

4000

nn
i

i
i i

x
f x x

i 

 
   

 
 

 
 
Function optimal value is 0, and the corresponding global best solution is at the origin, 

namely, when 0ix  , the value is minimum. Product terms between variables of function have 

strong influence on each other, and it is a strongly nonlinear multimodal function. The local best 

points are distributed regularly and located at , 1,2, , , 0,1,2, ,ix k i i n k n      . As the 

question dimension number increases, the local best point number of the function gradually 
reduces. The function curved surface will be close to the Sphere function. 

These four benchmark test functions respectively have their different characteristics, 
which can fully test the optimization performance of the algorithm. 1F and 2F are unimodal 

functions, 3F and 4F function are multimodal functions. 1F is the simple unimodal and can be used 

to test the algorithm’s convergence precision, although 2F is the unimodal function, its global 

best point is located at a narrow gap and extremely difficult to search, 3F  and 4F are typical 
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multimodal functions and have a large number of local extreme value, which can effectively test 
the global convergence of the algorithm. 

 
4.2. Test and analysis 

Based on tests, this paper makes a contrast between the particle swarm optimization 
algorithm with the linear declining weight (LinWPSO) and the standard particle swarm 
optimization algorithm (Basic PSO). QPSO algorithm’s parameter setting is as follows: learning 
coefficient 1 2.0c  , 2 2.0c  ,and the group size 30m  ,the maximum speed max 5v  , the 

maximum evolution algebra max 1000T  , the inertia weight    max
min max min

max

T t
w t w w w

T


   ,

max 0.9w  , min 0.4w  . The parameter setting of LinWPSO algorithm is same with QPSO, and t is 

the current evolution algebra. In order to eliminate the randomness of the algorithm, each 
optimization test function is calculated independently 50 times, and the average is taken as the 
final result. Figures 3-6 show the mean best fitness value evolution curve of 4 benchmark 
functions by three algorithms. 

From the figures, we can see the improved algorithm QPSO in this section, to a certain 
extent, overcomes the defect of the particle swarm optimization algorithm in the premature 
convergence, and improves the algorithm’s optimization searching ability; in addition, QPSO 
algorithm can better converge at the global optimal point with fast convergence speed. At the 
same time, with the increase of iteration times during the process of calculation, the global 
searching ability is gradually strengthened, and the convergence precision of the algorithm is 
better. 
 
 

 
 
Figure 3. Sphere function Figure 4. Rosenbrock function 
 
 

 
 
Figure 5. Rastrigrin function Figure 6. Griewank function 

 



                   ISSN: 1693-6930 

TELKOMNIKA  Vol. 13, No. 1, March 2015 :  321 – 330 

330

5. Conclusion 
This article firstly introduces the basic principles and model analysis of PSO algorithm, 

and then expounds the quantum theory and the ideological source of QPSO algorithm, and 
deduces basic evolution formula of QPSO algorithm, compares the QPSO algorithm, LinWPSO 
and BPSO algorithm through the experimental simulation, and also analyzes QPSO algorithm 
features, with the view to show that quantum particle swarm optimization algorithm has good 
robustness and search efficiency. 
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