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Abstract 
As a new evolutionary algorithm, particle swarm optimization (PSO) achieves integrated evolution 

through the information between the individuals. All the particles have the ability to adjust their own speed 
and remember the optimal positions they have experienced. This algorithm has solved many practical 
engineering problems and achieved better optimization effect. However, PSO can easily get trapped in 
local extremum, making it fail to get the global optimal solution and reducing its convergence speed. To 
settle these deficiencies, this paper has proposed an adaptive chaos particle swarm optimization (ACPSO) 
based on the idea of chaos optimization after analyzing the basic principles of PSO. This algorithm can 
improve the population diversity and the ergodicity of particle search through the property of chaos; adjust 
the inertia weight according to the premature convergence of the population and the individual fitness; 
consider the global optimization and local optimization; effectively avoid premature convergence and 
improve algorithm efficiency. The experimental simulation has verified its effectiveness and superiority. 
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1. Introduction 

PSO is a new evolutionary algorithm developed in recent years and as a novel swarm 
intelligent search technique, it has attracted the attention of a great number of researchers who 
have applied it in every field actively because of the features of simple computation form, few 
parameter setting and quick search speed since it was proposed. As a kind of evolutionary 
algorithm, PSO starts from a random solution; searches the optimal solutionvia iterations and it 
evaluates the solution quality through fitness, but it is simpler than the rules of genetic algorithm 
(GA). It doesn’t have theoperationsof “crossover” and “mutation”of GA and it searches the 
global optimum by following the current optimal value [1]. This kind of algorithm has drawn the 
attention of the academic circle for the advantages of ease to realize, high accuracy and fast 
convergence and it has demonstrated its superiority in solving practical problems.  

In practical applications, since the initialization of the basic PSO is random, it has 
certain blindness. Although the random initialization can basically guarantee the uniform 
distribution of the initial population, it can’t guarantee the quality of every particle and it may 
cause some particles get far away from the optimal solution and affect the convergence speed 
of the algorithm [2]. PSO can easily get trapped in local extremum and it can’t have global 
optimal solution. The convergence speed of PSO is quite slow. It usually takes some time to 
reach the corresponding accuracy in solving practical problems. Sometimes it is not worthy to 
spend a long time to get a feasible solution[3]. The reason to cause this problem is that PSO 
doesn’t make full advantage of the information from the computation; instead, it only uses the 
information of global optimum and individual optimum in every iteration. Besides, the algorithm 
itself doesn’t have an optimization mechanism to eliminate the bad candidate solution so that it 
has a slow convergence speed [4],[5]. 

To solve the above-mentioned shortcomings of basic PSO, this paper has proposed 
adaptive chaos particle swarm optimization (ACPSO) based on the theory of chaos 
optimization. Generally, chaos refers to a random motion state to get from a deterministic 
formula and it is a common phenomenon in non-linear system. It is complicated and it has the 
characteristic similar to randomness. However, the seemingly chaotic chaos change is not 
totally chaos, on the contrary, it has certain inherent law. ACPSO performs chaotic initialization 
to the basic particle swarm with the unique ergodicity of chaos optimization; generates a series 
of initial solution groups and select the initial population from them, in this way, it effectively 
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improves the diversity of PSO and the ergodicity of particle search.The inertia weight in PSO 
adjusts itself according to the fitness value of every particle individual so as to enhance its 
“global coarse search” and “local coarse search” capacities and improve its convergence speed 
and accuracy. Determine the good or bad of the current particle according to the fitness value 
and conduct chaotic operation on some selected particles to help “inertia”particle jump out from 
the local solution region and quickly search the global optimal solution. The last part of this 
paper has verified the effectiveness and advancement of the algorithm proposed in this paper 
through experiment simulation. 
 
 
2. Overview of Standard Particle Swarm Optimization 

The initial purpose of Doctor Ebethart and Doctor Kennedy was to establish a model in 
a 2D space to schematize the motion of the bird flock. Assuming such a scenario that a group of 
birds randomly search food in a region where there is only a piece of food. However, all of the 
birds don’t know where the food is. All they know is how far they are from the food. Then what is 
the optimal strategy to find the food? The simplest and the most effective strategy is the search 
the surrounding area of the bird which is the closest to the food. PSO is inspired from this kind 
of model and it is used to settle optimization problems. The bird has been abstracted as the 
particle with no quality and volume and it has been extended to N-dimensional space where the 
position of particle i  is expressed as vector  1 2, , ,i i i iNX x x x  and its flying speed as vector

1 2( , , )i i i iNV V V V ， . Every particle has a fitness value determined by the objective function and 

it knows the current optimal position  ip and the current position, which can be seen as its own 

flying experience. In addition, every particle also knows the optimal position  gp ( gp  is the 

optimal value of ip ) all particles in the group has found. The particle decides its next motion 

according to its own experience and the optimal experience of its companions. 
For the kth  iteration, every particle in the PSO changes according to the formula below: 
 

       1
1 2

k k k k
id id id id gd idv v c rand p x c rand p x                                               (1) 

 
1 1k k k

id id idx x v                                                                                                        (2) 
 

In Formulas (1) and (2), 1, 2, , ,i M M  is the total particles in the group. k
idv  is the dth

sub-vector of the position vector of the iteration particle i  in the kth iteration. idp is thedth

component of the optimal position ip of the particle i .  gdp is the dth component of the optimal 

position gp in the group. 1c & 2c  are weight factors and ()rand is the random function to generate 

a random number within the range of (0,1). Formula (1) mainly computes the new speed of 
particle i  through 3 parts: the speed of particle i at a former moment; the distance between the 
current position of particle i  and its optimal position as well as the distance between the current 
position of particle i  and the optimal position of the group. Particle i  computes the coordinate 
of its new position through Formula (2). Particle i  decides its next motion position through 
Formulas (1) and (2). From the angle of sociology, the first part of Formula (1) is called memory 
item, standing for the influence of the last speed and direction, the second part is the self 
cognition item, a vector pointing from the current point to the optimal point of the particle, 
representing that the particle motion comes from its own experience and the third part is called 
group cognition item, namely a vector from the current point to the optimal point of the group, 
reflecting the coordination and information sharing between the particles. Therefore, the particle 
determines its next motion through its own experience and the best experience of its partners 
[6],[7]. In Figure 1, the example of 2D space describes the principle that the particle moves from 
position KX  to 1KX   according to Formulas (1) and (2).  

 



TELKOMNIKA  ISSN: 1693-6930  
 

A Self-Adaptive Chaos Particle Swarm Optimization Algorithm (Yalin Wu) 

333

 
 

Figure 1. Schematic diagram of particle motion 
 
 
In 1998, Shi and other people revised Formula (1) and introduced inertia weight factor 

w .  
 

       1
1 2

k k k k
id id id id gd ikv w v c rand p x c rand p x                                             (3) 

 
w , non-negative, is called inertia factor. The bigger w  is, the stronger the global 

optimization ability is and the local optimization ability is, if w is small, and it is good for local 
search. Initially, Shi took w  as constant, but in the later experiment, it can be found that the 
dynamic w can obtain an optimization result better than the fixed value. Dynamic w  can change 
linearly in the search process of PSO and it can also change according to certain measure 
function dynamically of the performance of PSO. At present, the linearly decreasing weight 
strategy (LDW) proposed by Shi has been used frequently, namely  

 
   max min

min
k w w

w w N k
N


                                                                               (4) 

 
In this formula, N  is the maximum iterations and maxw & minw  are the maximum and 

minimum inertia weights respectively. 
The introduction of inertia weight factor can greatly improve the performance of PSO 

and it can also adjust the global and local search capacities according to different search 
problems, making PSO solve many practical problems. Formulas (2) and (3) are called 
standard PSO [8].  

 
 

3. Chaos Optimization Algorithm and Its Ergodic Property 
In non-linear system, chaos is a common motion phenomenon with such excellent 

characteristics as ergodicity, randomness and “regularity”.Chaotic motion can experience all the 
states in the state space without repetition according to certain “rule” within certain motion 
range. Even a tiny change in the initial value can cause huge changes in the post motion, which 
is called the strong sensitivity of the initial value. The researches have used these features of 
chaos and proposed chaos optimization algorithm, which can easily jump out of the local 
solution region and which can have high computation efficiency [9].  

The most typical chaotic system is sought from Logistic formula and its iterative formula 
is as follows:  

 

     1 01 , 0,1 , ,0 1, 0,4n n nx S x x n N x                                                   (5) 
 

When 4  , the orbit  0,1,...,nx n N is chaotic. It can be seen from Fig.2 that the two 

orbit points close to each other in the initial state diverge after only 3 iterations. After several 
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iterations, since the errors of these two orbits increase continuously, it is difficult to identify 
which state the system is in and Logistic map is totally in the chaotic state [10].  

 
 

 
 

Figure 2. The logistic map when 4   

 
 

Randomly take an initial point  0 0,1x  , the orbit of Logistic map is chaotic among (0,1), 

that is to say, regardless of N formerly known iterative points, the position of the ( 1)thN   

iterative point can’t be predicted. In fact, for  0 0,1x  , there is a sub-orbit nkx  of  nx  to make

nkx x . 

Although the chaotic dynamic system has a complicated “chaotic” state, it can be 
found that the certain chaos has regularity and ergodicity in statistics by observing this system 
with the perspective of statistic. As indicated in Figure 3, perform 1500 iterations with 

10 0.41795x   and 20 0.81042x   as the initial values and get two chaotic sequences 1nx  and

 2nx . A dot in the figure stands for a point in the space with its coordinate as 1 2( )j jx x， . 

 
 

 
 

Figure 3. Ergodicity of logistic map 
 
 

From the above figure, it is clear that chaotic variable is sensitive to the initial value, as 
evidenced by the fact that the chaotic trajectories of these two close initial values in the state 
space are completely different. Chaotic variable can experience all the states in the state space 
without repetition according to its own “rule”. Chaotic variable is as chaotic as random variable. 
When 4  , the total chaotic iterative formula map of Logistic moves unstably in the range of 

[0,1] and when it experiences a long-time dynamic motion, it will reflect the characteristic of 
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randomness [11],[12]. Although chaotic variable is random, with the initial value determined, its 
chaotic variable has also been determined and the highlighted randomness is the inherent 
regularity of chaotic motion. The specific steps of chaos optimization algorithm can be indicated 
by Figure 4:  

 
 

 

 
Figure 4. Procedures of chaos optimization algorithm 

 
 

4. Adaptive Chaos Particle Swarm Optimization & Example Test 
Because PSO uses the randomly-generated particle, it may have unsearched dead 

zones for multimodal function. Since chaos optimization algorithm has the excellent feature of 
ergodicity, this paper initializes by using chaos optimization in the early phase of the 
optimization of the particle swarm and selects the initial particle population. The specific process 
includes two parts: the 1st part is to perform global search with the basic particle swarm 
optimization while the 2nd part is to implement local search according to the result of PSO by 
using chaos optimization.  

 
 

4.1. Chaotic Local Search 
Chaotic local search (CLS) is mainly to improve the search performance of the particle 

and avoid the particle to get trapped in local extremum. Take Logistic map as example. CLS 
firsts maps the particle variable into chaotic variable and ten transforms the chaotic variable into 
particle variable after the iteration. The basic formulas of these two transformations are as 
follows: 

 

 
 

min,

max, min,

k
k i i

i
i i

x x

x x





                                                                                                   (6) 
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requirements 
 

 Whether to reach the termination 

condition of the algorithm 
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     1 1
min, max, min,

k k
i i i i xx x x x                                                                                (7) 

 
Here, ,min ix and ,max ix  represent the upper and lower bounds of the ith partical 

respectively.  k
ix is the decision variable (namely the individual extremum of the particle swarm) 

within the range of  , , ,min i max ix x  while  k
i  is the chaotic variable with its value in the range of 

(0,1). 
The specific steps of CLS are as follows:  

(1) Assume that 0k   and transform  k
ix  into  k

i  through Formula (6). 

(2) According to the current  k
i , determine the chaotic variable  1k

i
  of the next 

iteration.  

(3) According to Formula (7), transform  1k
i

  into the decision variable  1k
ix  .  

(4) Evaluate the new  1k
ix  .  

(5) If the new solution is superior to the optimal solution before the local search of the 
particle swarm or it reaches the preset maximum iterations, output the solution which is found 
from chaotic local search; otherwise, make 1k k  and return to Step (2) [13],[14].  

 
 

4.2. The Steps and Procedures of Adaptive Particle Swarm Optimization 
By integrating the search process of the two phases of chaos particle swarm 

optimization, the overall search steps of this algorithm are as follows:  
(1) Set the size of the particle population N and the maximum number of iterations and 

initialize the position and speed of the particle randomly within the feasible value range.  
(2) Evaluate the fitness of every particle; set the objective fitness value of the 1st 

particle as the global optimal value and its initial position is its own individual extremum value.  
(3) Update the particle speed and position according to Formulas (2) and (3).  
(4) Evaluate the particle fitness; compare the particle fitness value with the previous 

value and update the superior objective function fitness value as the current individual 
extremum value; compare the current optimal particle fitness with the previous and update the 
superior objective fitness value as the current global optimal value.  

(5) Keep the former N/5 particles of the population. 
(6) Update these particle positions by using chaos local search and the CLS results. If it 

meets the termination standard, output the currently optimal solution.  
(7) Narrow down the search space and randomly generate 4N/5 new particles in the 

narrowed search space.  
(8) Form a new population with the particles through CLS update and the new particles 

of 4N/5. 
(9) Make 1k k   and return to Step (3). 

 
 
4.3. Algorithm Testing & Result Analysis 

This paper has used four classical testing functions in the experiments so as to test the 
performance of ACPSO and it also compares the testing result of ACPSO with those of DE and 
PSO. 

In order to investigate the algorithm expandability, the variable dimensions for every 
function to be used in the testing are 20 dimensions. In the experiment, operates every 
circumstance 30 times and seek the mean optimal value as the basis of performance 
comparison. The parameters selection in these experiments are for PSO and ACPSO, w  
reduces from 0.8 to 0.3 with the evolutionary algebra, the scaling factor and crossover factor of 
DE are 0.5 and 0.9 respectively.     

(1) Function 1f  (Griewank Function) 
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  2
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nn
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x
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i 

 
   

 
   

 
   min * 0,0, 0 0f x f   

Griewank function reaches its global minimal point when i 0x  and it reaches the local 

minimal points when , 1, 2, , , 1, 2, ,ix k i i n k n     . The computation results of these 

algorithms are demonstrated in Table 1.  
 
 

Table 1. The Mean Fitness Value for Griewank Function 
Algorithm PSO DE ACPSO 

Variable Dimension n=20 n=20 n=20 
Mean Optimal Value 3.36 4.52 0.81 

 
 
When the variable dimension 20n  , the changing curve of the mean fitness value for 

Griewank function with the iterations is as indicated in Figure 5.  
 
 

 
 

Figure 5. Iterations on Griewank function 
 
 
(2) Function 2f   (Rastrigrin Function) 

 

   2

1

10cos 2 10 , 5.12
n

i i i
i

f x x x x


       

 
   min * 0,0, ,0 0f x f   

 
As a multimodal function, Rastrigrin function reaches the global minimal point when

i 0x  .There are about 10n local minimal points within   5.12,5.12 , 1, 2, ,iS x i n     . See 

the computation results of these algorithms in Table 2.  
 
 

Table 2. The Mean Fitness Value for Rastrigrin Function 
Algorithm PSO DE ACPSO 

Variable Dimension n=20 n=20 n=20 
Mean Optimal Value 25.36 100.62 3.98 

 



                   ISSN: 1693-6930 

TELKOMNIKA  Vol. 13, No. 1, March 2015 :  331 – 340 

338

When the variable dimension 20n  , the changing curve of the mean fitness value for 
Rastrigrin function with the iterations is as indicated in Figure 6. 

 

 
 

Figure 6. Iterations on Rastrigrin function 
 
 
(3) Function 3f (Ackley Function) 

 

   2

1 1

1 1
20 exp 0.2 exp cos 2 20 , 32

n n

i i i
i i

f x x x e x
n n


 

                
   

 
   min * 0,0, 0 0f x f   

 
Ackley function reaches the global minimal point when 0ix  . The computation results 

of these algorithms are shown in Table 3.  
 
 

Table 3. The Mean Fitness Value for Ackley Function 
Algorithm PSO DE ACPSO 

Variable Dimension n=20 n=20 n=20 
Mean Optimal Value 1.18 2.03 1.21 

 
 
When the variable dimension 20n  , the changing curve of the mean fitness value for 

Ackley function with the iterations is as indicated in Figure 7. 
 

 
 

Figure 7. Iterations on Ackley function 



TELKOMNIKA  ISSN: 1693-6930  
 

A Self-Adaptive Chaos Particle Swarm Optimization Algorithm (Yalin Wu) 

339

(4) Function 4f (Rosenbrock Function) 

 

      2 22
1

1

100 1 , 50
n

i i i i
i

f x x x x x


      

 
   min * 1,1, 1 0f x f   

 
Rosenbrock is a non-convex pathological quadratic function and its minimal point is 

easy to find, but it is greatly difficult to converge to global minimum. The computation results of 
the several algorithms can be seen in Table 4.  

 
 

Table 4. The Mean Fitness Value for Rosenbrock Function 
Algorithm PSO DE ACPSO 

Variable Dimension n=20 n=20 n=20 
Mean Optimal Value 3.14 4.21 3.5e-3 

 
 
When the variable dimension 20n  , the changing curve of the mean fitness value for 

Rosenbrock function with the iterations is as indicated in Figure 8.  
 
 

 
 

Figure 8. Iterations on Rosenbrock function 
 
 
It can be seen from the above experimental test that ACPSO is superior to PSO and DE 

in all test function performance. It not only has fast convergence speed, but also has strong 
global search ability. In the four testing functions, the mean optimal fitness of ACPSO is the 
minimum, therefore, it has higher accuracy and stability than PSO and DE and its advantage is 
more obvious in the cases of higher dimensions and relatively sharp function value changes 
while the effect of PSO falls significantly. From the mean experimental result, it is clear that the 
mean fitness and standard deviation of DE are big, therefore, this algorithm has bigger 
fluctuations, the bigger the dimensions, the more unstable it is. It can be seen from the above 
experimental result that ACPSO is a suitable tool to solve the global optimization problems of 
complicated functions. For the high-dimensional and multi-extreme-point functions, the global 
minimum of certain accuracy can be obtained at fewer computation cost.  

 
 

5. Conclusion 
This paper has analyzed the constitution and optimization principle of particle swarm 

optimization and it has pointed out that the basic particle swarm optimization can easily get 
trapped in local optimal solution in the optimum iteration and that its convergence speed is very 
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slow in the late stage since it generates the particles representing variable value randomly. 
Therefore, this paper integrates chaos optimization algorithm in the particle swarm optimization 
and proposes adaptive particle swarm optimization to solve objective optimization problems. 
This algorithms uses the chaos principle, enhances the diversity of variable value; computes the 
corresponding fitness value to every particle , namely the objective function value of the 
problem, through particle swarm optimization; selects variable value to perform chaos 
optimization according to its value in order to help the variable to jump out from the local 
extremal region and self-adaptively adjusts its inertia weight coefficient according to the 
objective function value of the problem to improve the global and local search capacities of the 
algorithm. 
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