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  This paper presents a new halftoning-based block truncation coding (HBTC) 

image reconstruction using sparse representation framework. The HBTC is a 

simple yet powerful image compression technique, which can effectively 
remove the typical blocking effect and false contour. Two types of HBTC 

methods are discussed in this paper, i.e., ordered dither block truncation coding 

(ODBTC) and error diffusion block truncation coding (EDBTC).  

The proposed sparsity-based method suppresses the impulsive noise on 
ODBTC and EDBTC decoded image with a coupled dictionary containing  

the HBTC image component and the clean image component dictionaries. 

Herein, a sparse coefficient is estimated from the HBTC decoded image by 

means of the HBTC image dictionary. The reconstructed image is 
subsequently built and aligned from the clean, i.e. non-compressed image 

dictionary and predicted sparse coefficient. To further reduce the blocking 

effect, the image patch is firstly identified as “border” and “non-border” type 

before applying the sparse representation framework. Adding the Laplacian 
prior knowledge on HBTC decoded image, it yields better reconstructed image 

quality. The experimental results demonstrate the effectiveness of  

the proposed HBTC image reconstruction. The proposed method also 

outperforms the former schemes in terms of reconstructed image quality. 
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1. INTRODUCTION  

Block truncation coding (BTC) and its variants have been playing an important role on image 

processing and computer vision applications, such as image/video compression [1-3], image  

watermarking [4, 5], data hiding [3, 6], image retrieval and classification [7-10], image restoration, [11-13] etc. 

Many efforts have been focused on further improving the performance of BTC and its variants, including  

the computational complexity reduction, decoded image quality improvement, and its applications, as reported  

in [1, 2, 7-9, 12, 13]. The BTC-based image compression finds a new representation of an image to further 

reduce the storage requirement, and achieve a satisfactory coding gain. It is classified as a lossy image 

compression, in which a given image block is processed to yield a new representation consisting of two color 

quantizers and the corresponding bitmap image. The two color quantizers and bitmap image produced at  

the encoding stage are then transmitted to the decoder. The typical BTC techniques determine the two color 

quantizers, namely low and high means, by maintaining the intrinsic statistical properties of an image such as 

https://creativecommons.org/licenses/by-sa/4.0/
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first moment, second moment, etc. The corresponding bitmap image is simply obtained by applying  

the thresholding operation on each image block with the mean value of this processed block. This bitmap image 

consists of two binary values (0 and 1), in which the value 0 is replaced with the low mean value, whereas  

the value 1 is substituted with high mean value, in the decoding process.  

The BTC-based image compression can provide low computational complexity, however, it often 

suffers from the blocking effect and false contour issues [1, 2, 7, 12]. These problems make it less satisfactory 

for human perception. A new type of technique, namely halftoning-based block truncation coding (HBTC), 

has been proposed to overcome these problems. Figure 1 depicts the schematic diagram of HBTC technique. 

The HBTC substitutes the BTC bitmap image with the halftone image produced from specific image halftoning 

methods such as void-and-cluster halftoning [1], dithering approach [7-9], error diffusion technique [2, 10, 11], 

dot diffused halftoning [12], etc. This technique compensates the false contour and blocking effect problems 

by enjoying peculiar dither effects from the halftone image. In addition, the HBTC offers a lower computational 

complexity during the process of the two color quantizers determination. Herein, the color quantizers are 

simply replaced with the minimum and maximum pixel values found in an image block. Two popular HBTC 

methods, namely the ordered dithered block truncation coding (ODBTC) [1] and error diffusion block 

truncation coding (EDBTC) [2], have been developed and reported in the literature. The ODBTC and EDBTC 

change the BTC bitmap image with the halftone image produced from the ordered dithering and error diffused 

halftoning methods, respectively. Both of the ODBTC and EDBTC schemes yield better image quality 

compared to that of the classical BTC method as reported in [1, 2]. The two methods can be applied  

to other image processing and computer vision applications, including low computational image  

compression [1, 2, 11], content-based image retrieval [7-10], recognition of color building [14, 15], blood 

image analysis [16], object detection and tracking [17], etc. 
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Figure 1. Schematic diagram of the halftoning-based BTC 

 

 

Although the ODBTC and EDBTC significantly reduce the blocking effect and false contour issues 

occurred in classical BTC technique, the impulsive noise is always present at considerably high level. To reduce 

the impulsive noise and mitigate the boundary effect, an additional step can be applied for the HBTC decoded 

images. The noise filtering is a simple and naïve approach to suppress the appeared impulsive noise, in which 

a specific window size and kernel value are applied. The Gaussian filter is an example of noise filtering. It 

performs global filtering, i.e. all pixels are processed in the same manner regardless their statistical intrinsic 

properties. However, it has a limited effect in reducing the noise levels. An extended Gaussian filtering has 

been proposed in [13], namely variance classified filtering. This approach applies various kernel functions for 

various pixels, and the choice of kernel function is determined by the variance within an image block. In this 

particular method, a set of kernel functions can be iteratively offline-trained using the least-mean-squared 

(LMS) over various images training set. These set of kernel functions are recorded as a look-up-table (LUT) 

for further usage. As reported in [13], the variance classified filter yields a significantly better image quality 

compared to that of the global Gaussian lowpass filtering with the trade-off of higher storage requirement.  

The sparse representation learns an over-complete dictionary from a set of image patches as training 

data [18]. The K-Singular value decomposition (KSVD) sparse representation technique [19, 20] offers stable 

results over the existing convex relaxation approaches for the sparse coding learning and approximation. As 

reported in [19], the KSVD approach outperforms the matching pursuit [21], orthogonal matching pursuit [22], 

basis pursuit [23], and maximum a priori (MAP) approach [24]. The sparse representation has been 

demonstrated to yield a promising result in several image processing and computer vision applications such as 

image denoising [19, 25], image restoration [26, 27], etc.  
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In this paper, a new method on HBTC image reconstruction is developed using the sparsity-based 

approach. Herein, the impulsive noise levels are reduced by means of coupled dictionaries, in which one 

dictionary is created from the HBTC images, while the other is learned from clean images (uncorrupted 

images). In the sparse coding stage, the sparse coefficients are firstly estimated from the decoded image 

containing high impulsive noise levels. The reconstructed image is then predicted using the clean image 

dictionary with the predicted sparse coefficients.  

The rest of this paper is organized as follows. Section 2 delivers the VQ-based HBTC image 

reconstruction. Section 3 presents the sparsity-based HBTC image reconstruction. Extensive experimental 

results are reported at section 4. Finally, the conclusions are drawn at the end of this paper. 

 

 

2. VECTOR QUANTIZATION-BASED IMAGE RECONSTRUCTION 

This section elaborates the patch-based processing for HBTC image reconstruction using vector 

quantization (VQ) approach. Herein, the image patch refers to the processed image block. In this method, a 

single image patch (HBTC decoded image) is replaced with an image patch obtained from VQ codewords 

based on the closest matching rule [11]. In our proposed method, the closest matching is conducted under  

the Euclidean distance similarity criterion. The smaller score of Euclidean distance indicates the more similar. 

The selected image patch effectively improves the quality of HBTC decoded image. Different image patches 

require different processes based on their properties, i.e. “border” or “non-border” type. Figure 2 shows three 

possible border processing scenarios/constraints, i.e. horizontal, vertical, and corner borders. As shown in this 

figure, suppose that there are four different image blocks denoted as two gray image blocks and two white 

image blocks. These image blocks are produced from the HBTC process independently. Each image block is 

uncorrelated with the other. The characteristics of one image block is dissimilar with the other block even 

though they are adjacent neighbors. Herein, an image patch with border constraint refers to a set of pixels 

which lay on two or several different image blocks. The red part of Figure 2 (a) depicts a set of pixels laying 

on several image borders. Since these image pixels are in horizontal position, we regard it as an image patch 

with a horizontal border. Figures 2 (b) and (c) are examples of image patch in vertical direction and corner 

part, respectively. Image patches excluded in these three border constraints are considered as non-border  

image patches.  
 

 

   
(a) (b) (c) 

 

Figure 2. Types of image patch processing: (a) horizontal, (b) vertical, and (c) corner border 
 

 

The VQ-based method removes the impulsive noise on the border and non-border cases by means of 

a trained visual codebook, as explained below. This method replaces the HBTC decoded image patch with  

the visual codebook generated from clean images. The clean images can be simply obtained from natural 

images, i.e. some images without HBTC processing. Suppose 𝑇 = {𝑖𝑘(𝑥, 𝑦)} are the clean images which are 

used as the training set, where 𝑘 = 1, 2, … , 𝐾. The symbol 𝐾 denotes the number of training image patches. 

The VQ clustering iteratively processes this clean image set to produce the representative visual codebook  

𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑁𝑐
}, containing 𝑁𝑐 codewords. 

Let 𝑜(𝑥, 𝑦) be a halftoned-based BTC decoded image patch. The VQ-based approach firstly identifies 

whether the image patches are of border or non-border type. If an image patch is classified as non-border, then 

it is processed with the non-border visual codebook. Conversely, when the image patch is classified as a border 

patch, then it is processed with either horizontal, vertical, or corner border visual codebook. Figure 3 illustrates 

the VQ-based approach for HBTC decoded image reconstruction. Figure 4 displays some examples of  

the visual codebook over horizontal, vertical, and corner borders. After border and non-border image patch 

determination, this image patch is then processed using VQ-closest matching as defined below: 
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𝑐∗ = arg min
𝑐=1,2,…,𝑁𝑐

‖𝑜(𝑥, 𝑦) − 𝐶𝑐
𝜃‖

2

2
 (1) 

 

where 𝐶𝑐
𝜃 denotes the selected visual codebook, and 𝜃 indicates whether the current processed image patch is 

of “border” or “non-border” type. The symbol 𝑐∗ represents the visual codeword index with the lowest 

distortion (the most similar) to the image patch 𝑜(𝑥, 𝑦). 

 

 

 
 

Figure 3. Schematic diagram of VQ-based image reconstruction 

 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 4. Visual codebook generated from: (a) horizontal, (b) vertical, and (c) corner borders 

 

 

The selected visual codeword 𝐶𝑐∗
𝜃  replaces the image patch 𝑜(𝑥, 𝑦) by considering border or  

non-border information. The image patch replacement is denoted as: 

 

�̃�(𝑥, 𝑦) = 𝐶𝑐∗
𝜃  (2) 

 

where �̃�(𝑥, 𝑦) is the restored image patch on position (𝑥, 𝑦). Notably, the VQ-reconstruction is still 

implemented as a pixel-by-pixel process, not as block-wise process. Consequently, the replacement process is 
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an overdetermined problem. The averaging process over several restored images patches yields a single HBTC 

reconstructed image. This process is denoted as: 

 

�̃�(𝑥, 𝑦) =
∑ �̃�(𝑥,𝑦)

∑ 𝑅(𝑥,𝑦)𝑇𝑅(𝑥,𝑦)
 (3) 

 

where 𝑅(𝑥, 𝑦) denotes the operator of image patch processing [18, 19, 26]. This operator denotes the number 

of certain pixels employed on the closest matching process and image patch substitution. This operation 

indicates the number of currently processed pixels used in the image patch computation. The size of matrix 

𝑅(𝑥, 𝑦) is identical to the size of image patch or VQ codewords. The result of  �̃�(𝑥, 𝑦) in (3) is intuitively 

identical to that of the simple averaging computation in arithmetics. Thus, the image patch averaging  

operation is employed at the end of the VQ-based image reconstruction to yield a single value in  

the overdetermined system. 

 

 

3. SPARSITY-BASED IMAGE RECONSTRUCTION 

This section presents the proposed HBTC image reconstruction methods using a sparsity-based 

approach. Herein, the image patch is firstly extracted from HBTC decoded image. The sparsity-based approach 

simply replaces this decoded image patch with the closest match of clean image dictionary. This method also 

considers the border constraint on HBTC image reconstruction. 

The sparsity-based method utilizes two learned coupled dictionaries. An image patch is firstly 

determined and investigated whether it falls into the border or non-border region as already introduced in  

the VQ-based processing. Figure 5 displays the HBTC image reconstruction using sparsity-based approach. 

Figure 6 gives some example of learned dictionary. Similarly, to the VQ-based post processing approach,  

the sparsity-based method utilizes both non-border dictionary and border dictionary. The learned dictionary is 

generated from a set of image patches by considering the non-border and border constraints. The border 

dictionary can be classified as horizontal, vertical, and corner border. Each dictionary contains HBTC decoded 

dictionary and clean image dictionary. 
 

 

 
 

Figure 5. Schematic diagram of sparsity-based image reconstruction 
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Figure 6. Learned dictionaries generated from horizontal, vertical, and corner border as indicated in  

the first to the last row. The left and right columns denote the coupled dictionaries generated from 

halftoned-BTC and clean image patch, respectively 

 

 

Let 𝑇 = {𝑖𝑘(𝑥, 𝑦), 𝑜𝑘(𝑥, 𝑦)} be a training set. This set contains 𝐾 clean image patches 𝑖𝑘(𝑥, 𝑦) and 

their corresponding HBTC decoded image patches 𝑜𝑘(𝑥, 𝑦). The following optimization procedure learns two 

dictionaries, i.e. clean image dictionary (𝐷𝑐) and HBTC image dictionary (𝐷ℎ), from training set 𝑇. To obtain 

the sparse coefficients 𝛼, please refer [19] for further detailed explanation of optimization process. This process 

is denoted as: 

 

min
𝐷𝑐,𝐷ℎ,𝛼

{‖𝑖 − 𝐷𝑐𝛼‖2
2 + ‖𝑜 − 𝐷ℎ𝛼‖2

2} + 𝜆‖𝛼‖1 (4) 

 

where 𝛼 denotes sparse coefficients and 𝜆 is sparse regularization term. Since two dictionaries 𝐷𝑐 and 𝐷ℎ share 

the same spare coefficient 𝛼, the optimization in (4) can also be performed as: 

 

min
𝐷,𝛼

{‖𝑌 − 𝐷𝛼‖2
2} + 𝜆‖𝛼‖1 (5) 

 

where 𝐷 = [𝐷𝑐; 𝐷ℎ] and 𝑌[𝑖𝑇, 𝑜𝑇]𝑇 denote the concatenated dictionary and concatenated image patch, 

respectively. The dictionary 𝐷 contains the clean and HBTC decoded component dictionaries. The matrix 𝑌 

consists of the clean and HBTC decoded image patches. The KSVD [19] or the other dictionary learning 

algorithms can be exploited to effectively solve this optimization problem in (5). After deciding the border or 

non-border region, the next step is to determine the sparse coefficient of the HBTC image patch 𝑜(𝑥, 𝑦) with 

a sparse coding step. The sparse coefficient 𝑜(𝑥, 𝑦) can be predicted with a help of 𝐷𝜃ℎ as follow: 
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min
𝛼∗

{‖𝑜(𝑥, 𝑦) − 𝐷𝜃ℎ𝛼‖
2

2
} + 𝜆‖𝛼‖1 (6) 

 

where 𝐷𝜃ℎ denotes the HBTC decoded image under border or non-border region 𝜃. The symbol 𝛼∗ represents 

the predicted sparse coefficient. Several specific algorithms, such as matching pursuit (MP) [21], orthogonal 

matching pursuit (OMP) [22], Basis Pursuit (BP) [23], maximum a posteriori (MAP) [24], or others, can be 

exploited to predict 𝛼∗. By means of clean image dictionary 𝐷𝜃𝑐 with border or non-border region 𝜃, the HBTC 

decoded image can be replaced and aligned as follow: 

 

min
�̃�(𝑥,𝑦)

{‖𝑅(𝑥, 𝑦)�̃�(𝑥, 𝑦) − 𝐷𝜃𝑐𝛼∗‖
2

2
} (7) 

 

where �̃�(𝑥, 𝑦) denotes the HBTC reconstructed image. Similarly, to the VQ-based post processing approach, 

�̃�(𝑥, 𝑦) is an overdetermined system. Thus, the �̃�(𝑥, 𝑦) can be solved using the ordinary least squared method 

(averaging process) as follow: 

 

�̃�(𝑥, 𝑦) = {∑ 𝑅(𝑥, 𝑦)𝑇𝑅(𝑥, 𝑦)}−1 ∑ 𝑅(𝑥, 𝑦)𝑇 𝐷𝜃𝑐𝛼∗ (8) 

 

The image patch is extracted using 𝑅(𝑥, 𝑦) operator. It can be expected that the HBTC image 

reconstruction will yield better image quality since it utilizes the clean image dictionary. In addition,  

the centralized sparse representation [26] can also be embedded into the sparse representation module to further 

improve the quality of the HBTC decoded image. It is based on the observation that the original image (without 

HBTC compression) and the HBTC decoded image, 𝛼𝑥 − 𝛼𝑦, have high probability to fit the Laplace 

distribution. The prospective readers are suggested to refer to [26] for the full description of centralized sparse 

representation. Figure 7 depicts the distribution of sparse coding between the original image and HBTC 

decoded image. Thus, incorporating the Laplacian prior knowledge on the sparse representation framework 

may produce better   quality on the HBTC reconstructed image. The centralized sparse representation [26] can 

be deployed into the proposed method by considering a border or non-border region. 

 

 

  
(a) (b) 

 

Figure 7. The distribution of sparse coding from HBTC reconstructed image obtained from:  

(a) ODBTC decoded image, and (b) EDBTC decoded image 

 

 

4. EXPERIMENTAL RESULTS 

This section demonstrates the effectiveness and usefulness of the proposed method. Figure 8 shows 

the training and testing sets utilized for the experiment. The training set consists of sixteen grayscale images, 

whereas the testing set contains twenty grayscale images. The training and testing images are with various 

image conditions such as high-frequency, low-frequency, dark and light brightness, etc. The proposed method 

also employs a set of training image sets as similarly used in [13] to generate several visual codebooks and 

dictionaries. The training image set consists of twenty grayscale images over various conditions such as various 

illumination conditions, different lighting, frequency and activity, etc. Each training image is of size 
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512 × 512. We extract image patches from all training images using overlapping strategy. Herein,  

the overlapping strategy refers to the process in which the current processed image patch is moved to the new 

position under one pixel different. In this occasion, one image pixel may be processed several times since 

several image patches employ this pixel.  

In a result, we obtain more than five million image patches as training set for codewords generation 

and codebooks learning in the VQ and sparsity-based approach, respectively. This amount of dataset is 

sufficient to satisfy the variability aspect of image patch in the training process. Thus, the proposed method 

can be directly applied to a general case even though the training data is not from the same or specific dataset. 

The peak-signal-noise-ratio (PSNR) score evaluates the performance of proposed method and former schemes 

objectively. The PSNR is formulated as: 

 

𝑃𝑆𝑁𝑅 = 10log10
2552

1

𝑀𝑁
∑ ∑ [𝐼(𝑥,𝑦)−�̃�(𝑥,𝑦)]2𝑁

𝑥=1
𝑀
𝑦=1

 (9) 

 

where �̃�(𝑥, 𝑦) and 𝐼(𝑥, 𝑦) denote the HBTC decoded image and original image, respectively. Higher value of 

PSNR indicates higher similarity between two images, making it more preferable for human vision. Thorough 

experiment, the image blocks are set as 8 × 8 and 16 × 16 for both ODBTC and EDBTC methods. The image 

quality improvement after post processing is considered based on the increasing PSNR value obtained after 

applying the post-processing step to the HBTC decoded image against the case of not applying that step. 

 

 

  
(a) (b) 

 

Figure 8. A set of images used in this experiment as: (a) training set, and (b) testing set 

 

 

4.1. Effectiveness of the proposed method 

This subsection reports the experimental results on the HBTC decoded image reconstruction.  

The performance of the proposed method is visually judged based on the image quality of the post processing 

results. The proposed method yields better reconstructed image quality compared to the original HBTC 

decoded images. Herein, a single image is firstly encoded using either the ODBTC or the EDBTC method to 

yield two color quantizers and a bitmap image. These two methods simply set the image block size as  

8 × 8. Then, the decoding process is further applied to the two color quantizers and the bitmap image to obtain 

the ODBTC or EDBTC decoded image. The post processing is conducted on the ODBTC or EDBTC decoded 

image to further examine the performance of the proposed reconstruction method in terms of specific imaging 

tasks such image compression, retrieval and classification, etc. 

Firstly, we compare the VQ and sparsity-based approaches with other schemes such as lowpass 

filtering and variance-classified filtering. The lowpass filtering approach employs a Gaussian kernel of size 

11 × 11 with 𝜇 = 0 and 𝜎 = 1 to suppress the halftoning impulsive noise [13]. On the other hand,  

the variance-classified filtering approach uses 13 optimized kernels of size 7 × 7 [13]. The VQ-based technique 

exploits the 1024 optimal visual codebooks, while the sparsity-based method utilizes 1024 dictionary atoms. 

The sparsity-based image reconstruction employs two learned dictionaries. In this approach, the first dictionary 

is for suppressing the impulsive noise while the other dictionary for reducing the noise occurred in the HBTC 
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image border. The second dictionary considers the condition of HBTC image border such as mixing horizontal, 

vertical, and corner borders. For each image border, a coupled dictionary will be produced containing  

the HBTC decoded and clean image components. The sparse coefficient is predicted from the ODBTC or 

EDBTC decoded image by means of HBTC dictionary, while the post processing image is composed and 

aligned using the clean image dictionary with predicted sparse coefficient. The image patch is initially 

classified as of “border” or “non-border” type. 

Figure 9 depicts the image quality comparison after applying the post processing methods on ODBTC 

decoded image. As shown in this figure, the VQ-based technique produces better image quality in comparison 

with the lowpass filtering approach. Some impulsive noises are successfully reduced by applying lowpass 

filtering, but the resolution of the reconstructed image is deteriorated due to the blurring effect of  

the lowpass filters. The sparsity-based method offers the best ODBTC reconstructed image compared to  

the other schemes as demonstrated in Figure 9. The post processing technique for EDBTC decoded image is 

reported in Figure 10. Similarly, to the ODBTC case, the sparsity-based method for EDBTC decoded images 

outperforms the lowpass filtering and VQ-based post processing. Thus, the sparsity-based method can be 

regarded as a satisfactory post processing technique for improving the HBTC decoded image quality. Using 

the proposed method, the HBTC is expected to achieve low computational complexity in the HBTC encoding 

stage and, at the same time, produce satisfactory decoded image at the HBTC decoding side.  

 

 

  
(a) 

 

(b) 

  
(c) (d) 

 

Figure 9. Effectiveness of the proposed method in OBTC image reconstruction using: (a) lowpass 

filtered technique, (b) VQ-based image reconstruction, (c) sparsity-based image reconstruction using 

two learned dictionaries, and (d) the original ODBTC decoded image with image block size 8 × 8 
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(a) 

 

(b) 

  
(c) (d) 

 

Figure 10. Effectiveness of the proposed method in EBTC image reconstruction using: (a) lowpass 

filtered technique, (b) VQ-based image reconstruction, (c) sparsity-based image reconstruction using 

two learned dictionaries, and (d) the original EDBTC decoded image with image block size 8 × 8 

 

 

4.2. Proposed method performance using two dictionaries 

In this experiment, the performance of the proposed method and other schemes is objectively assessed 

in terms of PSNR score. The image block sizes are set as 8 × 8 and 16 × 16 for both ODBTC and EDBTC 

techniques. The sparsity-based method simply exploits two dictionaries, i.e. the impulsive noise dictionary and 

the image border dictionary. Each dictionary consists of a couple dictionaries (HBTC image dictionary and 

clean image dictionary). The experimental setting for low-pass and variance-classified filtering remains 

identical to that of section 4.1. 

Table 1 presents the performance of the proposed sparsity-based method on HBTC image 

reconstruction against low-pass and variance-classified filtering, VQ-based post-processing and absence of 

post-processing. In this table, the compared value (denoted as PSNR score) is the average value of PSNR over 

all testing images. The variance classified filtering technique offers better image reconstruction compared to 

that of the lowpass filtering. Whereas the VQ-based approach is superior compared to filtering methods 

(lowpass filtering and variance-classified filtering). As shown from this table, the sparsity-based method yields 

the best performance for ODBTC and EDBTC decoded image over image block size 8 × 8 and 16 × 16. Thus, 

the sparsity-based method with two learned dictionaries is suitable to improve the image quality of HBTC 

decoded image. 
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Table 1. Performance of the proposed method with two learned dictionaries in terms of PSNR score, one 

dictionary is from noisy image patch, and the other dictionary is from image patch extracted on the border 

Method 
ODBTC EDBTC 

8 × 8 16 × 16 8 × 8 16 × 16 

Without Post Processing 19.23 16.10 20.14 16.54 

Lowpass Filtered [13] 29.14 28.46 30.76 30.11 

Variance Classified [13] 29.48 28.63 31.63 30.82 

VQ-Based 33.96 33.89 34.68 34.37 

Sparsity-Based 34.77 34.63 34.85 34.80 

 

 

4.3. Proposed method performance using several dictionaries 

This experiment examines the usefulness of the proposed sparsity-based post processing method under 

four learned dictionaries. In this experiment, the sparsity-based method generates four learner dictionaries, in 

which all dictionaries are for suppressing impulsive noise, and for dealing with horizontal, vertical, and corner 

border. Each dictionary is comprised of two dictionaries coupled to each other, namely the HBTC image 

dictionary and the clean image dictionary. The performance is simply investigated in terms of average PSNR 

score over all testing images. Table 2 shows the performance comparison between the proposed method using 

four learned dictionaries and former existing schemes. Herein, the image block size is set at 8 × 8 and 16 × 16 

for both ODBTC and EDBTC techniques. As it can be seen from this table, the sparsity-based method produces 

the best average PSNR value compared to the other schemes. The sparsity-based method with four learned 

dictionaries offers better reconstructed image compared to the sparsity-based scheme with two learned 

dictionaries. The sparsity-based technique is suitable for the HBTC decoded image reconstruction task.  

 

 

Table 2. Performance of the proposed method with four learned dictionaries, one dictionary is from noisy 

image patch, and the other dictionaries are from image patch extracted on  

the horizontal, vertical, and corner border 

Method 
ODBTC EDBTC 

8 × 8 16 × 16 8 × 8 16 × 16 

Without Post Processing 19.23 16.10 20.14 16.54 

Lowpass Filtered [13] 29.14 28.46 30.76 30.11 

Variance Classified [13] 29.48 28.63 31.63 30.82 

VQ-Based 34.01 33.92 34.74 34.45 

Sparsity-Based 34.98 34.71 34.91 34.83 

 

 

4.4. Proposed method performance incorporating laplacian prior knowledge 

In this experiment, the sparsity-based method injects the Laplacian prior knowledge in order to 

generate four learned dictionaries. Herein, the sparse coding noise is assumed to obey the Laplace  

distribution [26]. Thus, the centralized sparse representation is more suitable for learning the dictionaries by a 

given set of training images. The performance is measured in terms of average PNSR value over all testing 

images. Table 3 reports the performance comparisons, where the proposed method considers the Laplacian 

prior to generate the learned dictionaries and to perform the closest matching between the HBTC decoded 

image patch with the learned dictionaries. The proposed method with Laplacian prior outperforms the former 

existing schemes as reported in Table 3. The proposed sparsity-based method with Laplacian prior also offers 

better average PNSR value compared to that of the sparsity-based without Laplacian prior. Thus,  

the sparsity-based method with Laplacian prior is the best candidate for the HBTC image reconstruction. 

 

 

Table 3. Performance of the proposed method by incorporating laplacian prior on sparse coding stage 

Method 
ODBTC EDBTC 

8 × 8 16 × 16 8 × 8 16 × 16 

Without Post Processing 19.23 16.10 20.14 16.54 

Lowpass Filtered [13] 29.14 28.46 30.76 30.11 

Variance Classified [13] 29.48 28.63 31.63 30.82 

VQ-Based 34.01 33.92 34.74 34.45 

Sparsity-Based 35.00 34.82 35.03 34.97 

 

 

4.5. Computational time comparison 

This subsection delivers the performance comparisons in terms of computational time. In this 

experiment, a single image reconstruction is conducted to measure computational burden in terms of CPU time. 
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The execution time is measured in units of seconds. To make a fair comparison, the computing environments 

are identically selected over all post-processing methods. Herein, the experiments are performed under 

Personal Computer with Intel Core 2 Quad CPU @2.40 GHz and 4.0 GB RAM memory. All image 

reconstruction methods are developed and run in the Matlab R2010b. 

Table 4 summarizes the computation time comparisons. Our results suggest that the lowpass filtering 

approach needs the lowest computation time since it simply performs filtering in blind strategy.  

The lowpass filtering ignores the image characteristic and noise statistics therefore requiring the lowest effort 

in the filtering process. The variance classified filtering requires higher computational time compared to that 

of lowpass filtering since it needs to investigate an underlying image statistic and characteristic. The variance 

classified filtering computes the statistical metric of the variance to determine a suitable filter coefficient 

thereby requiring relatively higher computational time. The VQ-based approach requires longer computational 

time compared to the low-pass and variance-classified filtering in the HBTC image reconstruction.  

The VQ-based method employs the closest matching and image patch substitution in the image reconstruction 

stage. In addition, the VQ-based approach also performs the image patch averaging at the end of  

the reconstruction process. On the other hand, sparsity-based method requires the highest computational time 

to reconstruct the HBTC decoded image. This method estimates the sparse coefficient and replaces the image 

patch based on the predicted sparse coefficient. The sparsity-based approach also requires an additional 

overhead computing cost on the least-square calculation at the end of the image reconstruction procedure. Even 

though the sparsity-based approach is associated with the highest computational time, it produces the best 

reconstructed image for the HBTC decoded image. This effect can be considered as a trade-off between  

the quality of the HBTC decoded image and the processing time. 

 

 

Table 4. Computational time comparison (in seconds) between the proposed method  

and former scheme in the halftoning-based BTC image reconstruction 

Method 
ODBTC EDBTC 

8 × 8 16 × 16 8 × 8 16 × 16 

Lowpass Filtered [13] 3.161 3.162 3.163 3.162 

Variance Classified [13] 3.412 3.405 3.45 3.466 

VQ-Based 20.803 23.99 21.536 23.89 

Sparsity-Based 35.12 35.88 35.44 35.12 

 

 

5. CONCLUSION  

A new method has been presented for improving HBTC image quality under sparse representation 

framework. The HBTC image often contains impulsive noise which may distort human vision perception of 

this decoded images. It induces unpleasant condition for human visual perception. To further alleviate  

the impulsive noise, the HBTC decoded image is then predicted, aligned, and modified using two learned 

dictionaries, i.e. HBTC and clean image dictionaries. In the proposed method, the sparse coefficient is simply 

estimated from the HBTC decoded image by means of HBTC image dictionary. Subsequently,  

the reconstructed image is composed from the clean image dictionary with the predicted sparse coefficient. 

The HBTC image patch is initially classified as border or non-border image patch before applying the sparse 

representation. The experiment finding suggests that the proposed method yields a promising performance 

compared to former existing schemes. As documented in the experimental results, the proposed method can 

provide superior results compared to the former related schemes. To further reduce the computational time, 

several techniques such as the fast codewords matching, simple sparse coding calculation, etc., can be exploited 

for the proposed method. The Euclidean distance computation can be replaced with linear time closest matching 

technique. The sparse coding and estimation techniques can be replaced with the recent advance technique on 

sparse representation technique for the proposed sparsity-based method. To reduce computational time,  

the proposed method can be implemented in the parallel computation framework, in which different image 

blocks are processed independently. 
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