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Abstract 
The development of the algorithms for single input multi output (SIMO) under-actuated systems 

with mismatched uncertainties is important. Hierarchical sliding-mode controller (HSMC) has been 
successfully employed to control SIMO under-actuated systems with mismatched uncertainties in a 
hierarchical manner with the use of sliding mode control. However, in such a control scheme,  
the chattering phenomenon is its main disadvantage. To overcome the above disadvantage, in this paper, 
a new compound control scheme is proposed for SIMO under-actuated based on HSMC and fuzzy logic 
control (FLC). By using the HSMC approach, a sliding control law is derived so as to guarantee the stability 
and robustness under various environments. The FLC as the second controller completely removes  
the chattering signal caused by the sign function in the sliding control law. The results are verified through 
theoretical proof and simulation software of MATLAB through two systems Pendubot and series double 
inverted pendulum. 
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1. Introduction 

Under-actuated systems are characterized by the fact that they have fewer actuators 
than the degree of freedom controlled [1]. Under-actuated systems are widely applied in 
practice as mentioned in [1, 2], free space flight robot, underwater robot, walking robot, mobile 
robot, Robot has flexible link, ships, helicopters etc. The studies of under-actuated mechanical 
systems are valuable in many applications. For example, if the under-actuated control system 
works well, the number of actuators can be reduced to make the system weight or system more 
compact. Advantages of studying under-actuated mechanical systems can also be found with 
walking robot, planes, spacecraft, etc. Sometimes, control algorithms for under-actuated 
systems can be used to restore partially broken system functions using the appropriate  
under-actuated control algorithm described in [3, 4]. The broken robot arm can still restore a 
functional part. Therefore, the development of control algorithms for under-actuated systems is 
very important. Their mathematical equations often include high nonlinear components and 
joints making their control designs difficult [5]. More recently, there has been a growing interest 
in under-actuated control systems in both theory and practice. 

In this study, we focused on a class of SIMO under-actuated systems. This class is 
quite large, consisting of rotating or parallel inverted pendulum sub-systems, pendubot, TORA, 
etc. These systems are used not only to study control methods, but also as a teaching tool in 
university on the world. There are many control methods given such as energy-based control, 
passive-based control, hybrid control, intelligent control, etc was described in  
the documents [6-19]. Most articles only suggest control laws for a particular system. In fact, a 
general state space expression may describe this series of this systems. Therefore, it is 
possible to design a general control rule too for this series of systems rather than a control rule 
for a particular system. 

The under-actuated SIMO system has uncertainty including matched and mismatched. 
Sliding mode control methods (SMC) can prevent matched uncertainty in the state of sliding 
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mode. Regarding the control of SIMO under-actuated system, the mismatched uncertainty 
becomes more challenging. This paper focuses on dealing with mismatched uncertainties and 
chattering signals based on a fuzzy sliding mode controller for a class of SIMO under-actuated 
systems. In the past few years the sliding mode controller (SMC) has been widely used for 
control design of under-actuated nonlinear systems. SMC is an effective approach with 
maintaining stability and performance of control systems with accurate model [20-27]. The main 
advantage of SMC is that the external perturbations of the under-actuated system are handled 
by invariant characteristics with the sliding conditions of the system. However, the basic 
problem still exists in controlling complex systems using sliding controllers. For example, 
chattering phenomenon and mismatched uncertainties is one of its disadvantages.  
This approach has further research about fuzzy controller designs associated with sliding 
controller called fuzzy sliding mode controller (FSMC) [28–35]. Controller that is a combination 
of fuzzy logic control (FLC) and SMC provides a simple method to design the system. This 
method still maintains SMC positive qualities but reduce chattering phenomenon. The main 
advantage of FSMC is the dramatic reduction in chattering in the system. However, in  
controller [20-24] the parameters of the controller are not calculated to specific limits, in 
controller [25] the mismatched uncertainties are not handling, in controller [26] the ability to 
remove chattering signals is not mentioned. Controllers in [28-33] can’t be applied to SIMO 
under-actuated systems with n subsystems and have not explicitly demonstrated the ability to 
remove chattering signals.  

To overcome these disadvantages, in this paper author study the hierarchical robust 
fuzzy sliding mode controller (HRFSMC) for a variety of SIMO under-actuated systems with 
mismatched uncertainties. This controller applies to n subsystems, parameters are limited 
specifically and chattering signal elimination capabilities are demonstrated by clear theories. 
The hierarchical robust sliding control (HRSMC) method is first introduced as explained  
in [25, 26]. Then the author describes the procedure of designing the hierarchical robust fuzzy 
sliding mode controller (HRFSMC) for SIMO under-actuated systems with mismatched 
uncertainties. The simulation results show that the proposed controllers operate well. The paper 
presents the results and suggests that hierarchical robust fuzzy sliding mode controller have 
better performance than hierarchical robust sliding mode controllers. 
 
 

2. The Hierarchical Robust Sliding Mode Controller (HRSMC) 
Consider the state space expression of a series under-actuated SIMO systems with 

mismatched uncertainties include subsystems the following normal form: 
 

 

{
  
 

  
 
�̇�1 = 𝑥2
�̇�2 = 𝑓1 + 𝑏1𝑢 + 𝑑1
�̇�3 = 𝑥4
𝑥4 = 𝑓2 + 𝑏2𝑢 + 𝑑2
⋮
�̇�2𝑛−1 = 𝑥2𝑛
�̇�2𝑛 = 𝑓𝑛 + 𝑏𝑛𝑢 + 𝑑𝑛

 (1) 

 

therein 𝑋 = [𝑥1, 𝑥2, . . . , 𝑥2𝑛]
𝑇 is state variable vector; if  and ib (𝑖 = 1,2, . . . , 𝑛) are nonlinear 

functions of the state vector; u  is the input control signal. In (1) can represent classes of 

systems with n, fi and bi is different, di is mismatched uncertainties, include system uncertainties 

and external disturbances, and 
id  is limited by |𝑑𝑖| ≤ �̄�𝑖 where 

id  is a known positive constant; 

If 𝑛 = 2, (1) can represent Pendubot, the cart single inverted pendulum system. If  

𝑛 = 3 represent for cart double inverted pendulum system; if 4n = , it could be considered a cart 

triple inverted pendulum system and so on, based on the physical structure, the series of  
under-actuated systems can be divided into multiple subsystems. For example, a triple inverted 
pendulum system can be divided into four sub-systems: the upper pendulum, the middle 
pendulum, the lower pendulum, and cart. The such system in (1) created from n subsystems. 
The ith subsystem consists of its state variables and state space expressions as follows: 
 

{
�̇�2𝑖−1 = 𝑥2𝑖
�̇�2𝑖 = 𝑓𝑖 + 𝑏𝑖𝑢

  (2)  
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According to [25] the design of hierarchical sliding control (HSMC) is shown in Figure 1. 
The sliding surface of the ith subsystem is defined as follows: 

 

𝑠𝑖 = 𝑐𝑖𝑥2𝑖−1 + 𝑥2𝑖 (3)  
 

with ic is positive constant and limit of ic as presented in [25] is 0 < 𝑐𝑖 < 𝑐𝑖0 

 

with 𝑐𝑖0 = |𝑙𝑖𝑚
𝑋→0

(𝑓𝑖/𝑥2𝑖)| (4) 

 

derivative is  follow t time in (3) we have: 

 

�̇�𝑖 = 𝑐𝑖�̇�2𝑖−1 + �̇�2𝑖 = 𝑐𝑖𝑥2𝑖 + 𝑓𝑖 + 𝑏𝑖𝑢 (5) 
 

 get �̇�𝑖 = 0in (5) the control voltage of the ith subsystem is as follows: 
 

𝑢𝑒𝑞𝑖 = −(𝑐𝑖𝑥2𝑖 + 𝑓𝑖)/𝑏𝑖 (6) 
 

according to Figure 1, the I th sliding class is determined: 
 

𝑆𝑖 = 𝜆𝑖−1𝑆𝑖−1 + 𝑠𝑖  (7) 
 

there in 1 (i 1, 2, ... n)i − = is constant and 0 0 0S = = . Take i n=  according to [25, 26] hierarchical 

robust sliding control law as follows: 
 

𝑢 = 𝑢𝑛 + 𝑢𝑐𝑛 =
∑ (∏ 𝑎𝑗

𝑛
𝑗=𝑟 )𝑛

𝑟=1 𝑏𝑟𝑢𝑒𝑞𝑟

∑ (∏ 𝑎𝑗)𝑏𝑟
𝑛
𝑗=𝑟

𝑛
𝑟=1

−
𝑘𝑛𝑆𝑛+𝜂𝑛 𝑠𝑔𝑛 𝑆𝑛

∑ (∏ 𝑎𝑗
𝑛
𝑗=𝑟 ) 𝑏𝑟

𝑛
𝑟=1

+
∑ (∏ 𝑎𝑗

𝑛
𝑗=𝑟 )𝑛

𝑟=1 �̄�𝑟

∑ (∏ 𝑎𝑗)𝑏𝑟
𝑛
𝑗=𝑟

𝑛
𝑟=1

 (8) 

 

from (7) and (8) we have a hierarchical slider control structure schematic shown in Figure 2. 
 
 

  
 

Figure 1. Hierarchical structure of  
the sliding surfaces 

 

Figure 2. Architecture schematic of HRSMC  
control system 

 
 

3. The Hierarchical Robust Fuzzy Sliding Mode Controller (HRFSMC) 
The design of the hierarchical robust fuzzy sliding mode controller (HRFSMC) for a 

series of under-actuated systems with mismatched uncertainties is derived from the following 

idea. In control rule of the under-actuated system represented by (8) with sgn nS  function, this is 

the main cause of chattering in the system. A method of removing the chattering signal is to 

replace the fixed parameter in (8) by a variable value through the fuzzy controller. Value n will 

change under the extent of sliding surface.When nS  is extremely small, namely the state 

variables move closer to zero then n  will also decrease to zero to make the sgn nS  function no 

longer affect the nu  control signal. We have: 

 

𝑙𝑖𝑚
𝜂𝑛→0

𝜂𝑛 𝑠𝑔𝑛 𝑆𝑛 = 0 (9) 
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However, if n is small from the beginning, the uncontrolled signal will move very slowly 

towards the equilibrium position. But if 𝜂𝑛 from the beginning is extremely large, the state 
variables of the system will quickly advance to the equilibrium position, but at equilibrium 
position, the system will fluctuate greatly. Therefore, the value 𝜂𝑛 initial should be large enough 
so that un can pull the system to equilibrium position. When the system is in equilibrium then  
the smaller 𝜂𝑛 is the better it is. To implement the above idea, the author changes the value of 
𝜂𝑛 based on value of sliding surface Sn. We will compute 𝜂𝑛 through a fuzzy controller, the input 
of the fuzzy controller is the value of the Sn sliding surface. The structure of hierarchical robust 
fuzzy sliding mode controller (HFSMC) is shown in Figure 3. The fuzzy rules in  
the "Fuzzy logic controller" block are shown in Table 1. 

 
 

 
 

Figure 3. Architecture schematic of the HRFSMC controller for under-actuated systemsv 
 
 

Table 1. Rule in the Fuzzy Block 
The number of fuzzy rules 𝑺𝒏 𝜼𝒏 

1 A A 
2 B B 
3 C C 
4 D D 
5 E E 
6 F F 
7 G G 

 
 

The membership functions of linguistic labels A, B, C, D, E, F, G for the term 𝑆𝑛 are 
shown in Figure 4. The membership functions of linguistic labels A, B, C, D, E, F, G for the term 
𝜂𝑛 are shown in Figure 5. The membership function in Figure 4 and Figure 5 is norm form. To 
modify the parameters of the fuzzy controller, selecting the value of the post-processing block 
𝑘1 shown in Figure 3 is necessary. The 𝑘1 parameter determines the ability to disappear  

the chattering signal in the system. The choice of the 𝑘1 parameter can be performed by a 
search algorithm, such as a genetic algorithm or herd algorithm, or a simple false test. 

 
 

 
 

Figure 4. Membership function of each input 

 
 

Figure 5. Membership function of each output 
 
 

4. Denonstrate Stability and Capability of Eliminating Chattering Signal of Hierarchical 
Robust Fuzzy Sliding Mode Controller (HRFSMC) 

Two theorems will be proved in this section. Theorem 1 is to analyze the asymptotic 

A B C D

µ

E F G

-1 0-0.333-0.667 0.333 0.667 1 Sn



TELKOMNIKA  ISSN: 1693-6930 ◼ 

 

Hierarchical robust fuzzy sliding mode control for a class… (Duc Ha Vu) 

3031 

stability of all sliding layers. Theorem 2 involves analyzing the ability of eliminating chattering 
signal of the HFSMC controller. Theorem 1: consider the classes of the under-actuated  
system (1). If the control rule is chosen as (8) and the ith layer of sliding surface is defined as (7) 

(𝑖 = 𝑛), then the asymptotic stability. Proof: The Lyapunov function of 𝑖𝑡ℎ (𝑖 = 𝑛) layer of sliding 
surface is selected: 

 

�̄�𝑛 = �̄�𝑛
2/2 (10) 

 

by considering the stability of the 𝑖𝑡ℎ layer (𝑖 = 𝑛) of sliding surface, from [26] we take: 
 

�̇̄�𝑛 = [∑ (∏ 𝑎𝑗
𝑛
𝑗=𝑟 )𝑛

𝑟=1 �̄�𝑟 +∑ (∏ 𝑎𝑗
𝑛
𝑗=𝑟 )𝑛

𝑟=1 𝑏𝑟𝑢𝑒𝑞𝑟] − 𝑘𝑛𝑆𝑛 − 𝜂𝑛 𝑠𝑔𝑛 𝑆𝑛 (11) 
 

differentiate �̄�𝑛 with respect to time t in (10), then from (11) we obtain: 
 

�̇̄�𝑛 = �̄�𝑛 . �̇̄�𝑛 = 𝑆𝑛[∑ (∏ 𝑎𝑗
𝑛
𝑗=𝑟 )𝑛

𝑟=1 𝑑𝑟] − |𝑆𝑛||∑ (∏ 𝑎𝑗
𝑛
𝑗=𝑟 )𝑛

𝑟=1 �̄�𝑟| − 𝜂𝑛|𝑆𝑛| − 𝑘𝑛𝑆𝑛
2 (12) 

 

let integrate the two sides of (12) we obtain: 
 

∫ �̇̄�𝑛
𝑡

0
𝑑𝜏 = ∫ [𝑆𝑛[∑ (∏ 𝑎𝑗

𝑛
𝑗=𝑟 )𝑛

𝑟=1 𝑑𝑟] − |𝑆𝑛||∑ (∏ 𝑎𝑗
𝑛
𝑗=𝑟 )𝑛

𝑟=1 �̄�𝑟| − 𝜂𝑛|𝑆𝑛| − 𝑘𝑛𝑆𝑛
2]

𝑡

0
𝑑𝜏 (13) 

 

with 
 

�̄�𝑛(0) = �̄�𝑛(𝑡) + ∫ [𝑆𝑛 [∑(∏𝑎𝑗

𝑛

𝑗=𝑟

)

𝑛

𝑟=1

𝑑𝑟] − |𝑆𝑛| |∑(∏𝑎𝑗

𝑛

𝑗=𝑟

)

𝑛

𝑟=1

�̄�𝑟| − 𝜂𝑛|𝑆𝑛| − 𝑘𝑛𝑆𝑛
2]

𝑡

0

𝑑𝜏 

≥ ∫ (𝜂𝑛|𝑆𝑛| + 𝑘𝑛𝑆𝑛
2)

𝑡

0
𝑑𝜏 (14) 

 

hences 
 

𝑙𝑖𝑚
𝑡→∞

∫ (𝜂𝑛|𝑆𝑛| + 𝑘𝑛𝑆𝑛
2)

𝑡

0
𝑑𝜏 ≤ �̄�𝑛(0) < ∞ (15) 

 

the barbalat lemma exists 
 

𝑙𝑖𝑚
𝑡→∞

(𝜂𝑛|𝑆𝑛| + 𝑘𝑛𝑆𝑛
2)𝑑𝜏 ≤ �̄�𝑛(0) < ∞ (16) 

 

from (16), it means that 𝑙𝑖𝑚
𝑡→∞

𝑆𝑛 = 0then the 𝑛𝑡ℎlayer of sliding surface is asymptotically stable. 

Theorem 2: Consider a variety of under-actuated systems (1), If the control rule is 
defined as (8) and the fixed parameter 𝜂𝑛 in (8) is substitute by a replacement cost based on  

the magnitude of 𝑆𝑛 sliding surface through the fuzzy controller, the chattering signal in  
the system will be completely eliminated.  

Proof: From (8), it is clear that the main component causing the chattering phenomenon 
in the system is the function 𝜂𝑛 𝑠𝑔𝑛 𝑆𝑛. To overcome this phenomenon, we add a fuzzy 

processing element in the Controller to eliminate the 𝑠𝑖𝑔𝑛. The sliding surface 𝑆𝑛 is fuzzy as 
shown in Figure. 4. The fuzzy rule system is shown in Table 1 as follows: 

 

𝑅1 : If 𝑆𝑛 is A Then 𝜂𝑛
1  = A 

𝑅2 : If 𝑆𝑛 is B Then 𝜂𝑛
2 = B 

𝑅3 : If 𝑆𝑛 is C Then 𝜂𝑛
3 = C 

𝑅4 : If 𝑆𝑛 is D Then 𝜂𝑛
4 = D 

𝑅5 : If 𝑆𝑛 is E Then 𝜂𝑛
5 = E 

𝑅6 : If 𝑆𝑛 is F Then 𝜂𝑛
6 = F 

𝑅7 : If 𝑆𝑛 is G Then 𝜂𝑛
7 = G 

 

by the focal defuzzification method parameter 𝜂𝑛 is defined: 
 

𝜂𝑛 =
∑ 𝛽𝑖𝜂𝑛

𝑖7
𝑖=1

∑ 𝛽𝑖
7
𝑖=1

 (17) 
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in there 𝛽𝑖 is the correctness of the 𝑖𝑡ℎrule: 
 

𝛽1 = 𝜇𝐴(𝑆𝑛)  
𝛽2 = 𝜇𝐵(𝑆𝑛)  
𝛽3 = 𝜇𝐶(𝑆𝑛)  
𝛽4 = 𝜇𝐷(𝑆𝑛) (18) 

𝛽5 = 𝜇𝐸(𝑆𝑛)  
𝛽6 = 𝜇𝐹(𝑆𝑛)  
𝛽7 = 𝜇𝐺(𝑆𝑛)  

 

from (17) and (18) we obtain: 

𝑙𝑖𝑚
𝑆𝑛→0

𝜂𝑛 = 𝑙𝑖𝑚
𝑆𝑛→0

∑ 𝛽𝑖𝜂𝑛
𝑖7

𝑖=1

∑ 𝛽𝑖
7
𝑖=1

= 0 (19) 

 

from (19) deduce 
 

𝑙𝑖𝑚
𝑆𝑛→0

𝜂𝑛 𝑠𝑔𝑛 𝑆𝑛 = 0 (20) 

 

according to theorem 1 we have: 
 

𝑙𝑖𝑚
𝑡→∞

𝑆𝑛 = 0  (21)  

 

from (20) and (21) we deduce: 
 

𝑙𝑖𝑚
𝑡→∞

𝜂𝑛 𝑠𝑔𝑛 𝑆𝑛 = 0  (22) 

 

according to (22) when time t  tends to , function sgnn nS  is completely eliminated in control 

rule (8). Thus, chattering signal at the equilibrium position has been completely eliminated in  
the hierarchical robust fuzzy sliding controller (HFSMC). 
 
 

5. Simulation Result 
The Pendubot and cart double inverted pendulum systems are two typical  

under-actuated systems, usually used to verify the feasibility of new control methods. Their 
mathematical equations have the same expressions as (1) with different 𝑓𝑖, 𝑏𝑖, and 𝑛, 𝑑𝑖 is 
mismatched uncertainties, include system uncertainties and external disturbances, and 𝑑𝑖 is 

limited by |𝑑𝑖| ≤ �̄�𝑖 where �̄�𝑖 is a known positive constant. In this section, the control method 
presented will be applied to enhance the control of the Pendubot system and the cart double 
inverted pendulum system. The simulation results show that this control method is feasible. 

 
5.1. Pendubot 

The pendubot system shown in Figure 6 is made up of two subsystems: Link 1 (notation 
number 1) with one actuator and link 2 (notation number 2) without actuator. Its control objective 
is to control link 1, link 2 balance and stability at the desired position. The symbols in Figure 6 
are defined as follows: 𝜽𝟏 is the angle of link 1 to the horizontal line, 𝜃2 is the angle of link 2 for 

link 1. 𝑚𝑖 , 𝑙𝑖 and 𝑙𝑐𝑖 is the mass, length and distance to the center of link i. Here 𝑖 = 1,2; 𝜏1 is  
the control moment. Taking 2n = in (1) the state space equation of the pendubot system is  

as follows: 
 

{

�̇�1 = 𝑥2
�̇�2 = 𝑓1 + 𝑏1𝑢 + 𝑑1
𝑥3 = 𝑥4
�̇�4 = 𝑓2 + 𝑏2𝑢 + 𝑑2

  (23) 

 
Here 𝑥1 = 𝜃1 − 𝜋/2 is the angle of the link 1 for the vertical line, 𝑥3 = 𝜃2 is the angle of 

the link 2 for link 1; 𝑥4 is the angular velocity of link 2. 𝑢 = 𝜏1 is the input control signal. 

Expressions 𝑓1, 𝑓2, 𝑏1 and 𝑏2 are shown in [24], 𝑑1 and 𝑑2 are the mismatched uncertain term 

with known bound called �̄�1 and �̄�2. Both components of the mismatched uncertain 𝑑1 and 𝑑2 
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are set to 0.1 × [2 × rand()-1]. where rand() is Matlab command to generate a random number 

in the range (0,1). So, the bounds of the mismatched uncertain tems �̄�1 and �̄�2 can be defined 
as 0.2. In comparison between the HRSMC controller and the HRFSMC controller, the 
parameters of the pendubot are chosen according to [24] and [9]: 

 

𝑞1 = 0.0308kg.m2, 𝑞2 = 0.0106kg.m2  

𝑞3 = 0.0095kg.m
2, 𝑞4 = 0.2086kg.m2 

𝑞5 = 0.0630kg.m
2, 𝑔 = 9.81m.s-2  

 

according to (4), the boundary of 𝑐1, 𝑐2 is calculated as follows: 
 

{
𝑐10 = 𝑔|(𝑞3𝑞5 − 𝑞2𝑞4)/(𝑞1𝑞2 − 𝑞3

2)| = 66.97

𝑐20 = 𝑔|[𝑞5(𝑞1 + 𝑞3) − 𝑞4(𝑞2 + 𝑞3)]/(𝑞1𝑞2 − 𝑞3
2)| = 68.68

  

 
the HRSMC controller parameter of the 𝑐1 = 5.807, 𝑐2 = 7.346, 𝑎1 = 1.826, 𝑘2 = 3.687 and 

𝜂2 = 1.427. Initial state vector𝜃0 = [
𝜋

2
+ 0.1,0.1, −0.1,−0.2]

𝑇

. The desired state vector  

is 𝜃𝑑 = [0,0,0,0]
𝑇. 

 
 

 
 

Figure 6. Structure of the pendubot system 
 
 

The HRFSMC controller parameters of the pendubot system are selected the same as 
parameters of HRSMC controller. However, the HRFSMC controller has an additional 
parameter selected as 𝑘1 = 0.01 and 𝑘1 = 5. To see that the HRFSMC controller is more 

efficient than the HRSMC controller. We have simulated in 2 cases 𝑘1 = 0.01 and 𝑘1 = 5 of 
HRFSMC controller when compared with HRSMC controller. With smaller 𝑘1 value, the ability to 
remove chattering signals of HRFSMC controller will be better than HRSMC controllers. But to 
achieve this capability, the system will respond more slowly, the transition value will be larger. In 
contrast to the larger 𝑘1 value, HFSMC controller responds more quickly, larger transient value 
will have a larger chattering. To clarify this issue, let's look at the simulations below. 

Figures 7, 8, 9, 10 compare simulation results of two controllers HRSMC and HRFSMC 
pendubot systems with 𝑘1 = 0.01. It shows that angle of link1, link2 of HRSMC and HRFSMC 
controllers converge to the equilibrium position for about 0.6 and 1.5 seconds. The action torque 
on link 1 of the HRFSMC controller has an oscillation which is completely disappeared 
compared with action torque on link 1 of the HRSMC controller. The angles link 1 and link 2 of 
the HRFSMC controller has an oscillation which is completely disappeared compared with 
angles link 1 and link 2 of the HRSMC controller. However, the HRSMC controller responds 
faster than the HRFSMC controller with 𝑘1 = 0.01. 

Figures 11, 12, 13 compare simulation results of two controllers HRSMC and HRFSMC 
pendubot systems with 𝑘1 = 5. It shows that angle of link1, link2 of HRSMC and HRFSMC 
controllers converge to the equilibrium position for about 0.6 seconds. The action torque on  
link 1 of the HRFSMC controller has an oscillation which is greater compared with action torque 
on link 1 of the HRSMC controller. The angles link 1 and link 2 of the HRFSMC controller has an 
oscillation which is greater compared with angles link 1 and link 2 of the HRSMC controller. 
However, the HRFSMC controller responds faster than the HRSMC controller with 𝑘1 = 5. 
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(a) 

 

 
(b) 

 
Figure 7. The angle link 1 of pendubot when using HRSMC controller and the HRFSMC 

controller with 𝑘1 = 0.01 (a) 𝜃1 in time series format; (b) Zoomed-in time frame of 𝜃1 (2–3 s) 
 
 

 
(a) 

  

 
(b) 

 
Figure 8. The angle link 2 of pendubot when using HRSMC controller and the HRFSMC 

controller with 1 0.01k = (a) 2  in time series format; (b) Zoomed-in time frame of 2  (2 – 3s) 
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Figure 9. Action torque on link 1 of the pendubot when using the HRSMC controller 
 
 

 
 

Figure 10. Action torque on link 1 of the pendubot using the HRFSMC controller with 𝑘1 = 0.01 
 
 

 
(a) 

 

 
(b) 

 

Figure 11. The angle link 1 of pendubot when using HRSMC controller and the HRFSMC 

controller with 1 5k =  (a) 1  in time series format; (b) Zoomed-in time frame of 1  (2 – 3s) 



           ◼          ISSN: 1693-6930 

TELKOMNIKA  Vol. 17, No. 6, December 2019:  3027-3043 

3036 

 
(a) 

 

 
(b) 

 

Figure 12. The angle link 2 of pendubot when using HRSMC controller and the HRFSMC 
controller with 𝑘1 = 5 (a) 𝜃2 in time series format; (b) Zoomed-in time frame of 𝜃2 (2 – 3s) 

 
 

 
 

Figure 13. Action torque on link 1 of the pendubot when using the HRSMC controller and  
the HRFSMC controller with 𝑘1 = 5 

 
 

5.2. The Cart Double Inverted Pendulum System 
The cart double inverted pendulum system is coupled by two pendulum in a moving cart 

as shown in Figure 14. The system consists of three subsystems: the upper pendulum,  
the under pendulum and cart. Its control objective is to keep stable to equilibrium two upright 
vertical pendulum and to bring the cart to its equilibrium position [22].  

The symbols in Figure 14 are defined as follows: 𝜃1 is the angle of the inverted 

pendulum with vertical line. 𝜃2 is the angle of the inverted pemdulum with vertical line, which is 
the control force. Taking 𝑛 = 3 in (1), the state-space expression of the cart inverted pendulum 
system is defined as follows: 
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{
 
 

 
 
�̇�1 = 𝑥2
�̇�2 = 𝑓1 + 𝑏1𝑢 + 𝑑1
�̇�3 = 𝑥4
�̇�4 = 𝑓2 + 𝑏2𝑢 + 𝑑2
�̇�5 = 𝑥6
�̇�6 = 𝑓3 + 𝑏3𝑢 + 𝑑3

  (24)  

 

Here 𝑥1 = 𝜃1;𝑥3 = 𝜃3;𝑥5 = 𝑥; 𝑥2 is angular velocity of under pendulum; 𝑥4 is the angular 

velocity of the pendulum; 𝑥6 is the angular velocity of the cart; u  is the control signal, 𝑓𝑖and 

𝑏𝑖(𝑖 = 1,2,3)) is defined in [31]. 𝑑1, 𝑑2 and 𝑑3 are the mismatched uncertain term with known 

bound called �̄�1, �̄�2 and �̄�3. Both components of the mismatched uncertain 𝑑1, 𝑑2 and 𝑑3 are set 
to 0.1 × [2 × rand()-1]. where rand () is Matlab command to generate a random number in  

the range (0,1). So, the bounds of the mismatched uncertain tems �̄�1, �̄�2 and �̄�3 can be defined  
as 0.2. 

In comparison between the HRSMC controller and the HRFSMC controller,  
the parameters of the cart double inverted pendulum are chosen according to [30]. Mass of cart 
𝑀 = 1 kg Mass of below pendulum 𝑚1 = 1 kg. Mass of above pendulum. The length of  

the above inverted pendulum 𝑙1 = 0.1 𝑚. The length of the below inverted pendulum 𝑙2 = 0.1 𝑚.  

The gravitational acceleration 𝑔 = 9.81m.s-2. According to (4) the boundary lines of 𝑐1, 𝑐2, 𝑐3 are 
computed as follows: 

 

{
 
 
 

 
 
 𝑐10 = 𝑔 |

𝐴2(𝐵/3−𝑚2𝑙2/4)

(𝑚2/4−𝐴/3)(𝐵
2−𝐴𝐶)−𝑚2(𝐵−𝐴𝑙1)

2/4
|

= 294.39

𝑐20 = 𝑔 |
𝐴2(𝐶−𝐵𝑙1)/2

𝑙2[(𝑚2/4−𝐴/3)(𝐵
2−𝐴𝐶)−𝑚2(𝐵−𝐴𝑙1)

2/4]
|

= 98.31

𝑐30 = 𝑔 |
𝐴𝐵(𝐵/3−𝑚2𝑙1/4)+𝐴(𝐶𝑚2−𝐵𝑚2𝑙1)/2

(𝑚2/4−𝐴/3)(𝐵
2−𝐴𝐶)−𝑚2(𝐵−𝐴𝑙1)

2/4
|

= 11.44

  

 

with 𝐴 = 𝑀 +𝑚1 +𝑚2, 𝐵 = 𝑚1𝑙1/2 + 𝑚2𝑙1 and 𝐶 = 𝑚1𝑙1
2/3 + 𝑚2𝑙2

2. The controller HRSMC 
parameters of the cart double inverted pendulum system are chosen as follows:  
 

𝑐1 = 7.3170, 𝑐2 = 3.8760, 𝑐3 = 1.9560, 𝑎1 = 0.8190, 𝑎2 = 0.3170, 𝑘3 = 3.5020, 𝜂3 = 8.6910 
 

The initial state vector is: 𝑋0 = [−0.1,0,0.1,0,0.1,0]
𝑇. The desired state vector  

is 𝑋𝑑 = [0,0,0,0,0,0]𝑇 The HRFSMC controller parameters of the pendubot system are selected 
the same as the HRSMC controller parameters. However, HRFMC control has one more 
parameter selected are 𝑘1 = 0.01 and𝑘1 = 5. Same as in section 5.1. To see the ability to 

remove chattering signals. HRFSMC controller with 𝑘1 = 0.01 and 𝑘1 = 5 is also compared with 
HRSMC controller. 

 
 

 
 

Figure 14. Architecture of the cart inverted pendulum system 
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Figures 15, 16, 17, 18, 19 compare the simulation results of two HRSMC and HRFSMC 
cart double inverted pendulum systems with 𝑘1 = 0.01. It shows that angle of pendulum 1, 
pendulum 2, cart position of HRSMC and HRFSMC controllers converge to the equilibrium 
position for about 3.5 seconds. The Control force operating on the cart of HRFSMC control has 
oscillation, which is completely eliminated compared with the control force operating in the cart 
of HRSMC controller. The angles pendulum 1 and cart position of the HRFSMC controller has 
an oscillation which is completely disappeared compared with angles link 1 and cart position of 
the HRSMC controller. However, the HRSMC controller responds faster than the HRFSMC 
controller with 𝑘1 = 0.01. 

 
 

 
(a) 

  

 
(b) 

 
Figure 15. The pendulum angle 1 of the cart double inverted pendulum system when using the 

HRSMC control and the HRFSMC controller with 𝑘1 = 0.01  
(a) 𝜃1 in time series format; (b) Zoomed-in time frame of 𝜃1 (4–5s) 

 
 

Figures 20, 21, 22, 23 compare simulation results of two controllers HRSMC and 
HRFSMC cart double inverted pendulum systems with 𝑘1 = 5. It shows that angle of pendulum 
1, pendulum 2, cart position of HRSMC and HRFSMC controllers converge to the equilibrium 
position for about 3.5 seconds. The control force operating on the cart of HRFSMC control has 
oscillation, which is smaller compared with the control force operating in the cart of HRSMC 
controller. The angles pendulum 1 and cart position of the HRFSMC controller has an oscillation 
which is smaller compared with angles link 1 and cart position of the HRSMC controller. 
However, the HRSMC controller responds equally to the HRFSMC controller with 𝑘1 = 5. 
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(a) 

 

 
(b) 

 

Figure 16. The pendulum angle 2 of the cart double inverted pendulum system using  
the HRSMC controller and the HRFSMC controller with 𝑘1 = 0.01  

(a) 𝜃1 in time series format; (b) Zoomed-in time frame of 1  (4 – 5 s). 
 
 

 
(a) 

 

 
(b) 

 

Figure 17. Cart position of the cart double inverted pendulum when using  
the HRSMC controller and the HRFSMC controller with 𝑘1 = 0.01  

(a) 𝜃1 in time series format; (b) Zoomed-in time frame of 𝜃1 (4 – 5 s) 
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Figure 18. The action force on the cart of the cart double inverted pendulum system when using 
the HRSMC controller 

 
 

 
 

Figure 19. The action force on the cart of the cart double inverted pendulum system when using 
the HRFSMC controller with 𝑘1 = 0.01 

 
 

 
(a) 

 

 
(b) 

 

Figure 20. The pendulum angle 1 of the cart double inverted pendulum system when using  
the HRSMC control and the HRFSMC controller with 𝑘1 = 5  

(a) 𝜃1 in time series format; (b) Zoomed-in time frame of 𝜃1 (4 – 5 s) 
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(a) 

 

 
(b) 

 

Figure 21. The pendulum angle 2 of the cart double inverted pendulum system using  
the HRSMC controller and the HRFSMC controller with 𝑘1 = 5  

(a) 𝜃1 in time series format; (b) Zoomed-in time frame of 𝜃1 (4 – 5 s). 
  
 

 
(a) 

 

 
(b) 

 

Figure 22. Cart position of the cart double inverted pendulum when using the HRSMC controller 
and the HRFSMC controller with 𝑘1 = 5  

(a) 𝜃1 in time series format; (b) Zoomed-in time frame of 𝜃1 (4 – 5 s) 
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Figure 23. The action force on the cart of the cart double inverted pendulum system when using 
the HRSMC controller and the HRFSMC controller with 

 
 

6. Conclusion 
In this paper, a new compound HSMC and FLC control scheme has been proposed. It 

has been also successfully implemented to control the SIMO under-actuated systems for 
achieving high stability and robustness by combining the advantages of sliding mode control law 
and the FLC to completely removes the chattering signal. Based on Lyapunov stability theory 
and fuzzy control rules, the author has proven that the system is always stabilized and 
elimination of the chattering phenomenon throughout the work area. From the simulation results 
have shown that hierarchical robust fuzzy sliding mode controller in both systems pendubot and 
cart double inverted pendulum has completely eliminated chattering phenomena compared to 
the hierarchical robust sliding mode controller. The future research work, we can continue to 
research to put into experimental as well as be applied in practice. 
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