
TELKOMNIKA Telecommunication, Computing, Electronics and Control

Vol. 18, No. 2, April 2020, pp. 685~694

ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, Decree No: 21/E/KPT/2018

DOI: 10.12928/TELKOMNIKA.v18i2.13556  685

Journal homepage: http://journal.uad.ac.id/index.php/TELKOMNIKA

A new multi-level key block cypher based on

the Blowfish algorithm

Suhad Muhajer Kareem1, Abdul Monem S. Rahma2
1University of Basrah, Collage of Computer Science and Information Technology, Iraq

2University of technology, Department of Computer Science, Iraq

Article Info ABSTRACT

Article history:

Received Jul 10, 2019

Revised Dec 26, 2019

Accepted Feb 8, 2020

 Blowfish is a block cypher algorithm used in many applications to enhance
security, but it includes several drawbacks. For example, the mix between
the key and data is limited. This paper presents a new modification to

the Blowfish algorithm to overcome such problems realised through
a multi-state operation instead of an XOR. Our proposed algorithm uses three
keys in the encryption and decryption processes instead of one for controlling
the variable block bits sizes (1, 2, 4, and 8) bits and for determining the state
table numbers. These tables are formed from the addition in a Galois field
GF (2n) based on block bit size to increase the complexity of the proposed
algorithm. Results are evaluated based on the criteria of complexity, time
encryption, throughout, and histogram, and show that the original Blowfish,

those modified by other scholars, and our proposed algorithm are similar in
time computation. Our algorithm is demonstrated to be the most complex
compared with other well-known and modified algorithms. This increased
complexity score for our proposed Blowfish makes it more resistant against
attempts to break the keys.

Keywords:

Blowfish algorithm

Encryption security

Multi-level keys

Symmetric block cipher

This is an open access article under the CC BY-SA license.

Corresponding Author:

Suhad Muhajer Kareem,

University of Basrah,

Collage of computer science and information technology, Basrah, Iraq.

Email: suhad_althaher@yahoo.com

1. INTRODUCTION

Rapid development in information technology has led to a reliance on the transmission of

electronic information via networks. As it is necessary to provide secure information environments, many

researchers address this security challenge [1, 2]. One method for protecting information is the use of
encryption algorithms between two parties involved in communication by converting the message into

a human-unrecognisable form [3]. Algorithmic encryption is classified into symmetric key and asymmetric

key encryption. Symmetric key encryption uses the same key to implement encryption and decryption, while

asymmetric-key encryption incorporates different public and private keys. Symmetric algorithms include

block and stream cyphers [4, 5], and Blowfish is an example of a block cypher [6].

Most modern encryption algorithms are based on the Feistel network, invented by Horst Feistel,

which is defined as a common method for converting a function F into other permutation. Feistel networks

comprise multiple rounds of repeated operations, such as a permutation process using P-boxes, substitution

using S-boxes, and a logical XOR operation [7, 8]. An encryption algorithm depends on a key as

the significant element that can be numeric, alphanumeric text or special symbols [9, 10]. However, modern

cryptographic algorithms depend on functions with two states (0, 1) for encryption and decryption. As one of

https://creativecommons.org/licenses/by-sa/4.0/
mailto:suhad_althaher@yahoo.com

  ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 2, April 2020: 685 - 694

686

the block algorithms, Blowfish uses the classic XOR logical operation that depends on two states (0, 1) that

includes several weak points. For instance, this level of simplicity can be deciphered easily by attackers.

Studies previously attempted to replace these two states with four (0, 1, 2, 3) for increasing key space, which

is not perfect works for making algorithm more strong against attcks [11], as described in the following

section. Therefore, in this study, we focus on the weak points of XOR by replacing it with a new # operation

with variable block bit sizes (n): (1 or 2 or 4 or 8) instead of one block size. Each block will generate

different states tables based on addition in GF (2n). The overall new # operation is managed by using
additional two keys. This work is repeated in each round of Blowfish to increase the security level of

the algorithm. Our results show that this new modification on Blowfish algorithm will increase the security

level of the encryption by increasing the complexity in each round and thus the protection of encrypted

messages will be guaranteed against attacks.

The remainder of this paper is organised as follows. Section 2 overviews the principle work of

the Blowfish algorithm. Section 3 reviews the relevant literature about modifications of Blowfish, and

Section 4 introduces our proposed work and evaluation of the Blowfish algorithm. Section 5 evaluates

the complexity of our proposed algorithm, followed by conclusions in Section 6.

2. BLOWFISH OVERVIEW

Blowfish is a symmetric block cypher invented in 1993 by Bruce Schneier as a general purpose,
rapid, and free alternative to the DES (Data Encryption System) algorithm. Blowfish includes many features,

such as easy, rapid, and compact use in the Secure Socket Layer as well as other applications, and can

encrypt multimedia files with different speeds [8, 12]. The Blowfish algorithm is based on a Feistel network

comprised of a 16-round iteration with plaintext represented in a 64-bit block and the key length changes

from 32 to 448 bits. Blowfish separates the plaintext into left and right halves for applying an XOR operation

and an F-function. All operations in each round are additions and XORs using 32-bit words performed within

four substitution boxes (S-boxes) [13, 14]. The process of Blowfish entails the following two phases [15, 16].

- Key generation phase: Blowfish uses many subkeys for generating the initial contents of an array called

the P-array. These keys must be pre-computed before data encryption or decryption. The P-array

comprises 18 32-bit (P1, P2, …, P18) subarrays and four 32-bit S-boxes with 256 entries as follows :

S1,0, S1,1, ..., S1,255; S2,0, S2,1, …, S2,255; S3,0, S3,1, ..., S3,255; S4,0, S4,1, …, S4,255 (1)

- Encryption phase: 64-bit plaintext is encrypted using the key generated in the previous phase to produce

a 64-bit message.

Figure 1 clarifies how the F-function in each round of the Blowfish algorithm depends on

the substitution concepts and consists of four S-boxes. The input of the 32-bit is divided into four 8-bit

values, which are mixed using an addition modulo and combined using XOR [3, 17]. Figure 1 shows the five
operations included in a single round of two XOR, two addition modulo, 32, and addition. Accordingly,

the evaluation computations for every round also includes only five operations. The work of Blowfish in

steps is cited with details in [18].

Figure 1. A structure of F-function in one round of blowfish algorithm

TELKOMNIKA Telecommun Comput El Control 

A new multi-level key block cypher based on the Blowfish algorithm (Suhad Muhajer Kareem)

687

3. RELATED WORK

In this section, we overview the related literature on various modifications using four states tables in

key generation and applyied it in the Blowfish algorithm. In 2009 [11], researchers combined the curve

security methods using the B-spline curve with quantum cryptography concepts to increase security and key

space. Moreover, this modification on the base protocol focused on the manipulation of the bits in

the message by replacing the original XOR operation with a new hash operation. However, the message was

encoded with four different states (0, 1, 2, and 3) instead of two (0, 1) to make variations in the polarised

angles used in the quantum description. These variations are encrypted in the four tables, and the output

description incorporated the polarised state angles according to the table. Then manipulation cyphers convert
the plaintext into ciphertext by replacing the current state pattern of each character using a new logical

operator (#). In other words, the hash operation requires three inputs of the table number to be used for

computing the result as well as the corresponding row and columns. The new encoding is applied using (#)

operation which depends on four state tables shown in following Figure 2.

Figure 2. The truth table for # operation

In 2011, a new modification was introduced in [19] to increase the security and key space of

Blowfish by replacing the predefined XOR operation applied in each round of the standard Feistel algorithm

with a modified bit process of a new hash operation based on two keys. Here, each key consists of

a combination of four states (0, 1, 2, 3) instead of the original two-state key (0, 1) using the truth tables
proposed in [11]. The first key is used to determine the table number among the four available while

the second key is used in the encryption algorithm. This replacement provides a new level of security to

the algorithm against attackers by increasing its complexity. In our proposed, we extend block size of

Blowfish algoirthm from static block (2 blocks and four tables) into dynamic blocks

(4 blocks and 16 tables) and (8 blocks and 256 tables).

4. PROPOSED MULTI-STATE BLOWFISH

Today, the Blowfish algorithm is considered insecure for many applications. For instance, only

a single bit is used for manipulation (0 or 1), which does not contain sufficient randomness making

the algorithm vulnerable to brute force attacks. To overcome this issue, we introduce a new modification to
Blowfish to enhance its encryption performance and increase its complexity against attacks.

As described above, the XOR operation used in the Feistel network depends on two states (0 or 1) in

the bit manipulation for mixing the input key and plaintext. This paper presents a modification to the Feistel

algorithm by replacing the XOR with a new logical operation called #. This operation is based on a new bit

manipulation for mixing the input key and the plaintext in variable bits sizes of 1, 2, 4, and 8-bits with block

one’s bit sizes operating on a two-state table (0 or 1), block two’s bit sizes operates on a four-state table

(0 or 1 and 2 or 3), block four’s bit sizes operates on a 16-state table (0 or 1, or … or 15), and block eight’s

bit sizes operating on a 256-state table (0 or 1 or … 255). These tables are constructed from the addition

operation in the Galois field GF (2n), where n is the value that depends on the block bit size specified by

the key number of bits. In this work, four variable block bit sizes of 1, 2, 4, and 8 are used with a 2-state table

(#0 and #1) for GF (21), 4-state table (#0, #1, #2, and #3) for GF (22), 16-state table (#0, #1, …, #15) for GF

(24), and 256–state table (#0, #1, …, #255) for GF (28). Samples of these tables are presented in the next
section as Tables 1 through 6.

To control the number of bits and states, the new # operation requires two additional keys, each

generated independently. The first key, keynumber of bits, is generated randomly in binary form for determining

the block bit size taken from the input key and the plaintext. Then, the number of states is generated based on

  ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 2, April 2020: 685 - 694

688

the block bit size as selected by keynumber of bits. The second key, keyno of table, is also generated randomly in

decimal form for selecting one of the state tables. After selecting the block bit size and state number, the #

operation is applied with three inputs comprised of the state table number for calculating the result among

the different state tables as well as the row and column numbers to cross-reference the result in the table.

Let, Kb= key number of bits, and Kc = key no. of table, then: Kb= 000110110101010 . . .

(generated randomly for encryption and decryption): At each round, take two bits from the Kb and check it:

- If Kb= 00, then the block bit size = 1 and recall 2- state tables: Kc select randomly one table either 0 or 1
for encrypting and decrypting.

- If Kb= 01, then the block bit size = 2 and recall 4-state tables: Kc select randomly one table among

(0, 1, . . . , 4) for encrypting and decrypting.

- If Kb= 10, then the block bit size = 4 and recall 16- state tables: Kc select randomly one table among

(0, 1, . . . , 15) for encrypting and decrypting.

- If Kb= 11, then the block bit size = 8 and recall 256-state tables: Kc select randomly one table among

(0, 1, . . . , 255) for encrypting and decrypting.

The process of the # operation comprises three steps for applying (xL# P) in each round in the original

blowfish algorithm as shown in Figure 3. Figure 3 shows the overall operation during one modified round

that consists of five operations (# with different states, XOR, two addition modulo 32, and addition) as

described in Section 5.

Figure 3. The modified process of the # operation in one round

4.1. Construction the state tables

This section shows sample tables that constructed based on the addition operation in the Galois field

GF (2n). Tables 1-3 and Tables 4-6 represent the addition in GF (24) and GF (28) consecutively.

Table 1. State (#0) addition in GF (24)

8 bits8 bits8 bits 8 bits

32

bits

F

Pi

xLi-1 xRi-1

number of bits

Key number

of state

Generate

different

states

tables

Select one

state table

Output as the

intersection

between the row

and column in state

table

TELKOMNIKA Telecommun Comput El Control 

A new multi-level key block cypher based on the Blowfish algorithm (Suhad Muhajer Kareem)

689

Table 2. State (#3) addition in GF (24)

Table 3. State (#15) addition in GF (24)

Table 4. State (#0) addition in GF (28)

Table 5. State (#170) addition in GF (28)

Table 6. State (#200) addition in GF (28)

  ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 2, April 2020: 685 - 694

690

4.2. Modified Blowfish algorithm in steps

This section introduces the proposed blowfish algorithm in steps as shown hereunder. Modified

steps have been highlighted with the red colour:

Algorthim1-proposed blowfish using multi-level keys

Input: Plaintext 64-bit (X) and key

Output: Ciphertext 64-bit
Begin

 Step1: sub key generation.

 Step 2: Generate randomly control key 32 bits in binary form called Kbi (number of bits) for 16

round.

 Step3: Encryption

 begin

 Step3.1: Divide x into two 32-bit halves: xL, xR

 Step3.2: For i=0 to 16, compute xL and xR as follows:

 begin

 step3.2.1 Compute xLi =xLi # Pi as follows:

a. Split Kbi to two bits (Nb), then test as follows:

where n is the block bit size selected from xLi and Pi

 1. If Nb = 00, then n = 1; go to b;

 2. If Nb = 01, then n = 2; go to b;

 3. If Nb = 10, then n = 4; go to b;

 4. If Nb = 11, then n = 8; go to b.

b. Depending on the previous step, recall states tables using addition on GF (2n).

c. Generate random key (Kci) for selecting one state table that recall in step (b).

d. Compute xLi by applying the operation on (xLi #Pi) according to three inputs

(index = number of state table, row = xLi, and column = Pi).

e. The output of step (d) as the cross point between the row and column in the specified

state table to give the result.

 Step3.2.2: Compute xRi= F(xLi)  xRi; (F=function in Figure 1)
 Step3.2.3: Swap the values (xRi, xLi)

 endfor

 Step3.3: Swap the values (xR, xL)

 Step3.4: Compute xR =xR # P17 and xL= xL#P18, where # computed as previous

 Step (3.2.1)

 Step3.5: Recombine xL and xR to get the ciphertext

 End

 Step4: Decryption

 Decryption is exactly the same as encryption, except that P1, P2…P18 are used exactly

 in reverse order but should the keep the Kbi and Kci for retrieving the plaintext.

End

5. EVALUATION

This section presents four evaluation metrics of complexity, encryption time and throughput,

NIST tests and histogram of the proposed modified Blowfish algorithm.

5.1. Complexity computing

Algorithm complexity is computed against the attackers to estimate the key [20] followed by

the encryption times. The complexity is calculated from the possible number of keys an attacker needs to

decrypt the ciphertext with 64 bits. The complexity of the Blowfish algorithm in sixteen rounds is calculated

as (the probability of plaintext) × (the probability of keyno of round).

- First, we compute the complexity of the original Blowfish algorithm using a predefined XOR binary
operation (0, 1), thereby giving the number of possible keys used in the encryption and decryption as:

2 × (2)8 × 32 × 2 = 215 (2)

TELKOMNIKA Telecommun Comput El Control 

A new multi-level key block cypher based on the Blowfish algorithm (Suhad Muhajer Kareem)

691

- Second, when using the # operation in the modified Blowfish algorithm from [19] with four states

(#0, #1, #2, and #3) and two bits instead of one, the number of the possible keys used in the encryption

and decryption is:

(22)16 × (22)8 × 22 × 32 × 2 = 272 (3)

- Third, we compute the complexity of the proposed algorithm using three keys as (the probability of

plaintext)×(the probability of keyno. of round)×(the probability of the state tables). The overall complexity of

our proposed algorithm is as follows:

((21)32 × (22)16 × (24)8 × (28)4) × ((21)32 × (22)16 × (24)8 × (28)4)8 × (2 × 22 × 24 × 28)
× 32 × 2 = 2128 × 21024 × 215 × 25 × 21 = 21173

(4)

Table 7 summarises the results from computing the complexity of 16 rounds from the three

algorithms (our proposed algorithm, the original Blowfish, and the previously modified algorithm

from [19]).The algorithm complexity computation results are calculated in key size of 64-bits. Figure 4

explains how the proposed Blowfish algorithm features higher complexity compared to the original and

modified Blowfish from [19] in sixteen rounds.

Table 7. The complexity comparison of original, previously modified, and proposed.

Blowfish algorithm for sixteen rounds
Algorithm The complexity

Well-known Blowfish 215 =32,768

Modified Blowfish [19] 272 =4,722,366,482

Our proposed Blowfish 21173=1.28287668946279217437411e+353

Figure 4. The overall comparison of the complexity

5.2. Encryption time and throuphut

As another metric for measuring the performance of the algorithm, the encryption time is computed

by the time required for converting the plaintext into an unrecognised form. While the throughput metric as

applied in this context is calculated as [21, 22]:

Throughput =
plaintext size (in kilobyte)

total encryption time (ms)
 (5)

Table 8 and Figure 5 show the experimental results from calculating the encryption time and throughput for

the proposed and the modified Blowfish algorithms. From these table and figure, the original, modified, and

the proposed Blowfish algorithms are equivalent in terms of computation time. However, our proposed

method offers more effective results related to the complexity evaluation against attacks, which enables our

Blowfish algorithm to be more difficult for an attacker to retrieve the original message.

0

200

400

600

800

1000

1200

Well-known Blowfish Modified Blowfish
[19]

Our proposed
Blowfish

Comparsion complexity for sixteen round

  ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 2, April 2020: 685 - 694

692

Table 8. The encryption time and throughput of original and proposed.

Blowfish algorithms

File sizes(kb)
Execution times (in milliseconds) for:

Original Blowfish algorithm Our proposed Blowfish algorithm

15 8 8

25 13 12

50 31 31

80 46 46

150 50 49

500 72 72

Average time 36.66 36,33

Throughput 22.367 22.570

Figure 5. The overall analysis of encryption time

5.3. NIST analysis

The output of the encryption algorithm should be more random” and unpredictable. Several methods

exist for computing the randomness, such as NIST (National “Institute of Standards “and Technology),

Diehard tests, and TestU01 [23, 24]. In this paper, we use 15 statistical tests from NIST statistical for testing

the randomness of the binary sequences, as shown in Table 9. This and the modified tests are calculated over

multiple cypher-text produced from the orginal Blowfish. The probability value (p-value) is set" to a value of

0.01 to confirm if the output is random. The average tests are computed and listed in Table 9.

Table 9. Result of Running NIST on the Generated Key by Blowfish and the proposed Blowfish

Test no. Statistical Test Name

Well-known

Blowfish

Proposed

Blowfish

P-Value Status P-Value Status

1 Approximate Entropy - Fail 0.848 pass

2 Block Frequency 0.073 pass 0.216 pass

3 Cumulative Sums 0.644 pass 0.133 pass

4 FFT 0.061 pass 0.867 pass

5 Frequency 0.043 pass 0.791 pass

6 Linear complexity 0.138 pass 0.998 pass

7 Longest Run 0.126 pass 0.367 pass

8 Non Overlapping Template 0.241 pass 0.490 pass

9 Overlapping Template 0.176 pass 0.506 pass

10 Random Excursions 0.520 pass 0.864 pass

11 Random Excursions Variant 0.329 pass 0.871 pass

12 Rank 0.187 pass 0.846 pass

13 Runs 0.180 pass 0.648 pass

14 Serial - Fail 0.490 pass

15 Universal 0.447 pass 0.940 pass

0

20

40

60

80

Encryption times

 Execution times (in milliseconds)for: Original blowfish algorithm

 Execution times (in milliseconds)for: Our proposed blowfish algorithm

TELKOMNIKA Telecommun Comput El Control 

A new multi-level key block cypher based on the Blowfish algorithm (Suhad Muhajer Kareem)

693

If the test results provide a p-value “asymptotically approaching 1, then the output should appear to

have complete randomness. A p-value equal to zero signifies that the output is non-random. The pass status

represents that the p-value of these tests is greater than 0.001 and denotes the output is acceptable

(e.g., offers good randomness). The p-values of most of the tests from the proposed Blowfish algorithm are

greater than the p-values of the well-known Blowfish, as shown in Table 9.

5.4. Histogram analysis

A histogram is used to measure the security of the original, encrypted, and decrypted images [25]

using the well-known and proposed Blowfish. The experimental results are shown in Figures 6 and 7 for
two images (Baboon and Lena).

Figure 6. Results and histogram of well-known

Blowfish and proposed Blowfish for Baboon image

(orginal and encrypted)

Figure 7. Results and histogram of well-known

Blowfish and proposed Blowfish for Lena image

(orginal and encrypted)

6. CONCLUSION

A new method is proposed for enhancing the security and performance of the Blowfish algorithm

achieved by an additional key and replacing the XOR with a new operation. These modifications provide

more strength to the Blowfish algorithm and making it resistant against an attack. Using multiple keys

instead of one increases the reliably of the key, which also increases the efficiency of the encryption and

decreases the probability of breaking from brute force attacks. Moreover, a variable block bit size in each

round increases the randomness and security of the algorithm. Based on our statistical results, we conclude

that our proposed algorithm provides more complexity compared to the original Blowfish while maintaining

approximately the same computation time.

REFERENCES
[1] Swathi S, IILahari P., “Encryption algorithms: a survey,” International Journal of Advanced Research in Computer

Science & Technology, vol. 4, no. 2, pp. 81-88, 2016.
[2] Septafiansyah D. P, Mario Y., Sarwono S., Yusuf K., Adang S. A., “Power analysis attack against encryption

devices: a comprehensive analysis of AES, DES, and BC3,” TELKOMNIKA Telecommun Comput El Control,
vol. 17, no. 3, pp. 1282-1289, June 2019.

[3] Sonia R., Harpreet K., “Technical survey on cryptography algorithms for network security,” International Journal
of Advanced Research in Computer Science and Software Engineering vol. 4, no. 9, pp. 204-209. 2016.

[4] Christina L., Joe Irudayaraj V. S., “Optimized Blowfish encryption technique,” International Journal of Innovative

Research in Computer and Communication Engineering, vol. 2, no. 7, pp. 5009-5015, 2014.
[5] M. A. Hameed, Ahmed I. Jaber, Jamhoor M. Alobaidy, Alaa A. Hajer, “Design and Simulation DES Algorithm of

Encryption for Information Security,” American Journal of Engineering Research (AJER), vol. 7, no. 4,
pp. 13-22, 2018.

[6] Ayushi, “A Symmetric Key Cryptographic Algorithm,” International Journal of Computer Applications
(0975-8887), vol. 1, no. 15, pp. 1-4, 2010.

[7] William S., “Cryptography and network security: principles and practice,” Pearson Education/Prentice Hall,
5th Edition, 2011.

  ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 2, April 2020: 685 - 694

694

[8] Harshraj N, Aniruddha S, Shubham R. V, Rohit V, Vijay A., “A Review of Various Encryption Techniques,”
International Journal of Engineering and Computer Science, vol. 3, no. 9, pp. 8092-8096, 2014.

[9] Gokhan D., Mehmet H., Ha_ze S_ en C_ AKIR, “Increasing key space at little extra cost in RFID authentications,”

Turkish Journal of Electrical Engineering & Computer Sciences, vol. 22, no. 1, pp. 155-165, 2014.
[10] Rajdeep Bh. and Rahul H. “A Review and Comparative Analysis of Various Encryption Algorithms,” International

Journal of Security and Its Applications, vol. 9, no. 4, pp. 289-306, 2015.
[11] Hala B., Abdul Monem S. Rahma, Hilal M., “Proposed new quantum cryptography system using quantum

description techniques for generated curves,” In Proceedings of the 2009 International conference on security and
manage ment, SAM, July 2009.

[12] Priyadarshini P., Prashant N., Narayan D. G., Meena S. M., “A comprehensive evaluation of cryptographic
algorithms: DES, 3DES, AES, RSA and Blowfish,” In Proceedings International Conference on Information
Security & Privacy (ICISP2015), pp. 617-624, India, December 2015.

[13] V. Kumara S., Prabhu B., “Predominance of Blowfish over triple data encryption standard symmetric key algorithm
for secure integrated circuits using verilog HDL,” International Journal of Network Security & Its Applications,
vol. 9, no. 6, pp. 29-38, 2017.

[14] S. Sweetlin, D. Mahendran, S. John Peter, “Interbit exchange and merge (IBEM) pattern of blowfish algo rithm,”
International Journal of Recent Technology and Engineering, vol. 7, no. 5, pp. 129-132, 2019.

[15] Kirti A., Jaspal K., Harsh K., “ Performance evaluation of RC6, Blow_sh, DES, IDEA, CAST-128 block
ci-phers,” International Journal of Computer Applications, vol. 68, no. 25, pp. 10-16, 2013.

[16] Shafi’i A., Nafisat S., Mohammed A., Nadim R., Haruna Ch., and Dada G., “Development of Blowfish Encryption

Scheme for Secure Data Storage in Public and Commercial Cloud Computing Environment,” 2nd International
Conference on Information and Communication Technology and Its Applications, pp. 231-237, September 2018.

[17] Smarajit Gh. and Vinod K., “Blowfish Hybridized Weighted Attribute-Based Encryption for Secure and Efficient
Data Collaboration in Cloud Computing,” Applied Sciences MDPI, pp. 1-15, 2018.

[18] Monika A, Pradeep M., “A Modi_ed approach for symmetric key cryptography based on blowfish algorithm,”
International Journal of Engineering and Advanced Technology, vol. 1, no. 6, pp. 79-83, 2012.

[19] Afaf M., Rehab F., “New Approach for Modifying Blowfish Algorithm by Using Multiple Keys,” International
Journal of Computer Science and Network Security, vol. 11, no. 3, pp. 21-26, 2011.

[20] Atheer M. Abbas, Abdul Monem S. Rahma, “A Modified Metrics Approach in Advanced Encryption Standard
Algorithm,” Engineering and Technology Journal, vol. 37, Part B, no. 3, pp. 86-91, 2019.

[21] D. S. Abdul. Elminaam, H. M. Abdul Kader, M. M. Hadhoud, “Performance Evaluation of Symmetric Encryption
Algorithms,” Communications of the IBIMA. volume 8, pp. 58-64, ISSN: 1943-7765, 2009.

[22] Narander K. and Priyanka Ch., “Performance Evaluation of Encryption/Decryption Mechanisms to Enhance Data
Security,” Indian Journals of Science and Technology, vol. 9, no. 20, pp. 2-10, 2016.

[23] Alaa M. Riad and etc., “Evaluation of the RC4 Algorithm as a solution for Converged Networks,” Journal Of
electrical engineering, vol. 60, no.3, pp. 155–160, 2009.

[24] V. B. Suresh, D. Antonioli and W. P. Burleson, "On-chip lightweight implementation of reduced NIST
randomness test suite," 2013 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST),
pp. 93-98, 2013.

[25] Mohammed F., “A Novel Encryption Method for Image Security,” Intarnational Journal of Security and Its
Applications, vol. 6, no. 1, pp. 1-8, 2012.

