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 Blowfish is a block cypher algorithm used in many applications to enhance 
security, but it includes several drawbacks. For example, the mix between  
the key and data is limited. This paper presents a new modification to  

the Blowfish algorithm to overcome such problems realised through  
a multi-state operation instead of an XOR. Our proposed algorithm uses three 
keys in the encryption and decryption processes instead of one for controlling  
the variable block bits sizes (1, 2, 4, and 8) bits and for determining the state 
table numbers. These tables are formed from the addition in a Galois field 
GF (2n) based on block bit size to increase the complexity of the proposed 
algorithm. Results are evaluated based on the criteria of complexity, time 
encryption, throughout, and histogram, and show that the original Blowfish, 

those modified by other scholars, and our proposed algorithm are similar in 
time computation. Our algorithm is demonstrated to be the most complex 
compared with other well-known and modified algorithms. This increased 
complexity score for our proposed Blowfish makes it more resistant against 
attempts to break the keys. 
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1. INTRODUCTION  

Rapid development in information technology has led to a reliance on the transmission of  

electronic information via networks. As it is necessary to provide secure information environments, many 

researchers address this security challenge [1, 2]. One method for protecting information is the use of 
encryption algorithms between two parties involved in communication by converting the message into  

a human-unrecognisable form [3]. Algorithmic encryption is classified into symmetric key and asymmetric 

key encryption. Symmetric key encryption uses the same key to implement encryption and decryption, while 

asymmetric-key encryption incorporates different public and private keys. Symmetric algorithms include 

block and stream cyphers [4, 5], and Blowfish is an example of a block cypher [6].  

Most modern encryption algorithms are based on the Feistel network, invented by Horst Feistel, 

which is defined as a common method for converting a function F into other permutation. Feistel networks 

comprise multiple rounds of repeated operations, such as a permutation process using P-boxes, substitution 

using S-boxes, and a logical XOR operation [7, 8]. An encryption algorithm depends on a key as  

the significant element that can be numeric, alphanumeric text or special symbols [9, 10]. However, modern 

cryptographic algorithms depend on functions with two states (0, 1) for encryption and decryption. As one of 

https://creativecommons.org/licenses/by-sa/4.0/
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the block algorithms, Blowfish uses the classic XOR logical operation that depends on two states (0, 1) that 

includes several weak points. For instance, this level of simplicity can be deciphered easily by attackers. 

Studies previously attempted to replace these two states with four (0, 1, 2, 3) for increasing key space, which 

is not perfect works for making algorithm more strong against attcks [11], as described in the following 

section. Therefore, in this study, we focus on the weak points of XOR by replacing it with a new # operation 

with variable block bit sizes (n): (1 or 2 or 4 or 8) instead of one block size. Each block will generate 

different states tables based on addition in GF (2n). The overall new # operation is managed by using 
additional two keys. This work is repeated in each round of Blowfish to increase the security level of  

the algorithm. Our results show that this new modification on Blowfish algorithm will increase the security 

level of the encryption by increasing the complexity in each round and thus the protection of encrypted 

messages will be guaranteed against attacks. 

The remainder of this paper is organised as follows. Section 2 overviews the principle work of  

the Blowfish algorithm. Section 3 reviews the relevant literature about modifications of Blowfish, and 

Section 4 introduces our proposed work and evaluation of the Blowfish algorithm. Section 5 evaluates  

the complexity of our proposed algorithm, followed by conclusions in Section 6. 

 

 

2. BLOWFISH OVERVIEW 

Blowfish is a symmetric block cypher invented in 1993 by Bruce Schneier as a general purpose, 
rapid, and free alternative to the DES (Data Encryption System) algorithm. Blowfish includes many features, 

such as easy, rapid, and compact use in the Secure Socket Layer as well as other applications, and can 

encrypt multimedia files with different speeds [8, 12]. The Blowfish algorithm is based on a Feistel network 

comprised of a 16-round iteration with plaintext represented in a 64-bit block and the key length changes 

from 32 to 448 bits. Blowfish separates the plaintext into left and right halves for applying an XOR operation 

and an F-function. All operations in each round are additions and XORs using 32-bit words performed within 

four substitution boxes (S-boxes) [13, 14]. The process of Blowfish entails the following two phases [15, 16].  

- Key generation phase: Blowfish uses many subkeys for generating the initial contents of an array called 

the P-array. These keys must be pre-computed before data encryption or decryption. The P-array 

comprises 18 32-bit (P1, P2, …, P18) subarrays and four 32-bit S-boxes with 256 entries as follows : 
 

S1,0, S1,1, ..., S1,255;  S2,0, S2,1, …, S2,255;  S3,0, S3,1, ..., S3,255; S4,0, S4,1, …, S4,255 (1) 
 

- Encryption phase: 64-bit plaintext is encrypted using the key generated in the previous phase to produce  

a 64-bit message. 

Figure 1 clarifies how the F-function in each round of the Blowfish algorithm depends on  

the substitution concepts and consists of four S-boxes. The input of the 32-bit is divided into four 8-bit 

values, which are mixed using an addition modulo and combined using XOR [3, 17]. Figure 1 shows the five 
operations included in a single round of two XOR, two addition modulo, 32, and addition. Accordingly,  

the evaluation computations for every round also includes only five operations. The work of Blowfish in 

steps is cited with details in [18]. 

 

 

 
 

Figure 1. A structure of F-function in one round of blowfish algorithm 
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3. RELATED WORK 

In this section, we overview the related literature on various modifications using four states tables in 

key generation and applyied it in the Blowfish algorithm. In 2009 [11], researchers combined the curve 

security methods using the B-spline curve with quantum cryptography concepts to increase security and key 

space. Moreover, this modification on the base protocol focused on the manipulation of the bits in  

the message by replacing the original XOR operation with a new hash operation. However, the message was 

encoded with four different states (0, 1, 2, and 3) instead of two (0, 1) to make variations in the polarised 

angles used in the quantum description. These variations are encrypted in the four tables, and the output 

description incorporated the polarised state angles according to the table. Then manipulation cyphers convert 
the plaintext into ciphertext by replacing the current state pattern of each character using a new logical 

operator (#). In other words, the hash operation requires three inputs of the table number to be used for 

computing the result as well as the corresponding row and columns. The new encoding is applied using (#) 

operation which depends on four state tables shown in following Figure 2. 

 

 
 

 
 

Figure 2. The truth table for # operation 

 

 

In 2011, a new modification was introduced in [19] to increase the security and key space of 

Blowfish by replacing the predefined XOR operation applied in each round of the standard Feistel algorithm 

with a modified bit process of a new hash operation based on two keys. Here, each key consists of  

a combination of four states (0, 1, 2, 3) instead of the original two-state key (0, 1) using the truth tables 
proposed in [11]. The first key is used to determine the table number among the four available while  

the second key is used in the encryption algorithm. This replacement provides a new level of security to  

the algorithm against attackers by increasing its complexity. In our proposed, we extend block size of 

Blowfish algoirthm from static block (2 blocks and four tables) into dynamic blocks  

(4 blocks and 16 tables) and (8 blocks and 256 tables). 

 

 

4. PROPOSED MULTI-STATE BLOWFISH  

Today, the Blowfish algorithm is considered insecure for many applications. For instance, only  

a single bit is used for manipulation (0 or 1), which does not contain sufficient randomness making  

the algorithm vulnerable to brute force attacks. To overcome this issue, we introduce a new modification to 
Blowfish to enhance its encryption performance and increase its complexity against attacks.  

As described above, the XOR operation used in the Feistel network depends on two states (0 or 1) in 

the bit manipulation for mixing the input key and plaintext. This paper presents a modification to the Feistel 

algorithm by replacing the XOR with a new logical operation called #. This operation is based on a new bit 

manipulation for mixing the input key and the plaintext in variable bits sizes of 1, 2, 4, and 8-bits with block 

one’s bit sizes operating on a two-state table (0 or 1), block two’s bit sizes operates on a four-state table  

(0 or 1 and 2 or 3), block four’s bit sizes operates on a 16-state table (0 or 1, or … or 15), and block eight’s 

bit sizes operating on a 256-state table (0 or 1 or … 255). These tables are constructed from the addition 

operation in the Galois field GF (2n), where n is the value that depends on the block bit size specified by  

the key number of bits. In this work, four variable block bit sizes of 1, 2, 4, and 8 are used with a 2-state table  

(#0 and #1) for GF (21), 4-state table (#0, #1, #2, and #3) for GF (22), 16-state table (#0, #1, …, #15) for GF 

(24), and 256–state table (#0, #1, …, #255) for GF (28). Samples of these tables are presented in the next 
section as Tables 1 through 6.  

To control the number of bits and states, the new # operation requires two additional keys, each 

generated independently. The first key, keynumber of bits, is generated randomly in binary form for determining 

the block bit size taken from the input key and the plaintext. Then, the number of states is generated based on 
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the block bit size as selected by keynumber of bits. The second key, keyno of table, is also generated randomly in 

decimal form for selecting one of the state tables. After selecting the block bit size and state number, the # 

operation is applied with three inputs comprised of the state table number for calculating the result among  

the different state tables as well as the row and column numbers to cross-reference the result in the table.  

Let, Kb= key number of bits, and Kc = key no. of table, then: Kb= 000110110101010 . . .  

(generated randomly for encryption and decryption): At each round, take two bits from the Kb and check it: 

- If Kb= 00, then the block bit size = 1 and recall 2- state tables: Kc select randomly one table either 0 or 1 
for encrypting and decrypting. 

- If Kb= 01, then the block bit size = 2 and recall 4-state tables: Kc select randomly one table among  

(0, 1, . . . , 4) for encrypting and decrypting. 

- If Kb= 10, then the block bit size = 4 and recall 16- state tables: Kc select randomly one table among  

(0, 1, . . . , 15) for encrypting and decrypting. 

- If Kb= 11, then the block bit size = 8 and recall 256-state tables: Kc select randomly one table among  

(0, 1, . . . , 255) for encrypting and decrypting. 

The process of the # operation comprises three steps for applying (xL# P) in each round in the original 

blowfish algorithm as shown in Figure 3. Figure 3 shows the overall operation during one modified round 

that consists of five operations (# with different states, XOR, two addition modulo 32, and addition) as 

described in Section 5.   

 
 

Figure 3. The modified process of the # operation in one round 

 

 
 

4.1.  Construction the state tables 

This section shows sample tables that constructed based on the addition operation in the Galois field 

GF (2n). Tables 1-3 and Tables 4-6 represent the addition in GF (24) and GF (28) consecutively. 

 

 

Table 1. State (#0) addition in GF (24) 

 
 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

# 

8 bits8 bits8 bits 8 bits

32 

bits

F

Pi

xLi-1 xRi-1 

number of bits

 

Key number 

of state 

Generate 

different 

states 

tables 

Select one 

state table 

Output as the 

intersection 

between the row 

and column in state 

table 



TELKOMNIKA Telecommun Comput El Control   

 

A new multi-level key block cypher based on the Blowfish algorithm (Suhad Muhajer Kareem) 

689 

Table 2. State (#3) addition in GF (24) 

 

Table 3. State (#15) addition in GF (24) 

 
 

 

Table 4. State (#0) addition in GF (28) 

 
 

 

Table 5. State (#170) addition in GF (28) 

 
 

 
Table 6. State (#200) addition in GF (28) 
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4.2.  Modified Blowfish algorithm in steps 

This section introduces the proposed blowfish algorithm in steps as shown hereunder. Modified 

steps have been highlighted with the red colour: 

 

Algorthim1-proposed blowfish using multi-level keys 

Input: Plaintext 64-bit (X) and key 

Output: Ciphertext 64-bit 
Begin  

  Step1: sub key generation. 

  Step 2: Generate randomly control key 32 bits in binary form called Kbi (number of bits) for 16 

round. 

  Step3: Encryption 

     begin 

       Step3.1: Divide x into two 32-bit halves: xL, xR 

       Step3.2: For i=0 to 16, compute xL and xR as follows: 

          begin  

            step3.2.1 Compute xLi =xLi # Pi as follows: 

a. Split Kbi to two bits (Nb), then test as follows: 

where n is the block bit size selected from xLi and Pi 

  1. If Nb = 00, then n = 1; go to b; 

  2. If Nb = 01, then n = 2; go to b; 

  3. If Nb = 10, then n = 4; go to b; 

  4. If Nb = 11, then n = 8; go to b. 

b. Depending on the previous step, recall states tables using addition on GF (2n). 

c.  Generate random key (Kci ) for selecting one state table that recall in step (b). 

d. Compute xLi by applying the operation on (xLi #Pi) according to three inputs 

(index = number of state table, row = xLi, and column = Pi). 

e. The output of step (d) as the cross point between the row and column in the specified 

state table to give the result. 

                      Step3.2.2: Compute xRi= F(xLi)  xRi; (F=function in Figure 1) 
                      Step3.2.3: Swap the values (xRi, xLi) 

                  endfor 

       Step3.3: Swap the values (xR, xL) 

       Step3.4: Compute xR =xR # P17 and xL= xL#P18, where # computed as previous  

                    Step (3.2.1) 

       Step3.5: Recombine xL and xR to get the ciphertext 

      End  

   Step4: Decryption 

       Decryption is exactly the same as encryption, except that P1, P2…P18 are used exactly  

        in reverse order but should the keep the Kbi and Kci for retrieving the plaintext. 

End  

 
 

5. EVALUATION 

This section presents four evaluation metrics of complexity, encryption time and throughput,  

NIST tests and histogram of the proposed modified Blowfish algorithm. 

 

5.1.  Complexity computing 

Algorithm complexity is computed against the attackers to estimate the key [20] followed by  

the encryption times. The complexity is calculated from the possible number of keys an attacker needs to 

decrypt the ciphertext with 64 bits. The complexity of the Blowfish algorithm in sixteen rounds is calculated 

as (the probability of plaintext) × (the probability of keyno of round). 

- First, we compute the complexity of the original Blowfish algorithm using a predefined XOR binary 
operation (0, 1), thereby giving the number of possible keys used in the encryption and decryption as: 

 

2 × (2)8 × 32 × 2 = 215 (2) 
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- Second, when using the # operation in the modified Blowfish algorithm from [19] with four states  

(#0, #1, #2, and #3) and two bits instead of one, the number of the possible keys used in the encryption 

and decryption is: 

 

(22)16 × (22)8 × 22 × 32 × 2 = 272 (3) 

 

- Third, we compute the complexity of the proposed algorithm using three keys as (the probability of 

plaintext)×(the probability of keyno. of round)×(the probability of the state tables). The overall complexity of 

our proposed algorithm is as follows: 
 

((21)32 × (22)16 × (24)8 × (28)4) × ((21)32 × (22)16 × (24)8 × (28)4 )8 × (2 × 22 × 24 × 28) 
× 32 × 2 = 2128 × 21024 × 215 × 25 × 21 = 21173 

(4) 

 

Table 7 summarises the results from computing the complexity of 16 rounds from the three 

algorithms (our proposed algorithm, the original Blowfish, and the previously modified algorithm  

from [19]).The algorithm complexity computation results are calculated in key size of 64-bits. Figure 4 

explains how the proposed Blowfish algorithm features higher complexity compared to the original and 

modified Blowfish from [19] in sixteen rounds. 

 

 

Table 7. The complexity comparison of original, previously modified, and proposed.  

Blowfish algorithm for sixteen rounds 
Algorithm The complexity 

Well-known Blowfish 215 =32,768 

Modified Blowfish [19] 272 =4,722,366,482 

Our proposed Blowfish 21173=1.28287668946279217437411e+353 

 

 

 
 

Figure 4. The overall comparison of the complexity 

 

 

5.2.  Encryption time and throuphut 

As another metric for measuring the performance of the algorithm, the encryption time is computed 

by the time required for converting the plaintext into an unrecognised form. While the throughput metric as 

applied in this context is calculated as [21, 22]: 
 

Throughput =
plaintext size  (in kilobyte)

total encryption time  (ms) 
 (5) 

 

Table 8 and Figure 5 show the experimental results from calculating the encryption time and throughput for 

the proposed and the modified Blowfish algorithms. From these table and figure, the original, modified, and 

the proposed Blowfish algorithms are equivalent in terms of computation time. However, our proposed 

method offers more effective results related to the complexity evaluation against attacks, which enables our 

Blowfish algorithm to be more difficult for an attacker to retrieve the original message.  
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Table 8. The encryption time and throughput of original and proposed.  

Blowfish algorithms 

File sizes(kb) 
Execution times (in milliseconds) for: 

Original Blowfish algorithm Our proposed Blowfish algorithm 

15 8 8 

25 13 12 

50 31 31 

80 46 46 

150 50 49 

500 72 72 

Average time 36.66 36,33 

Throughput 22.367 22.570 

 
 

 
 

Figure 5. The overall analysis of encryption time 

 

 

5.3.  NIST analysis 

The output of the encryption algorithm should be more random” and unpredictable. Several methods 

exist for computing the randomness, such as NIST (National “Institute of Standards “and Technology), 

Diehard tests, and TestU01 [23, 24]. In this paper, we use 15 statistical tests from NIST statistical for testing 

the randomness of the binary sequences, as shown in Table 9. This and the modified tests are calculated over 

multiple cypher-text produced from the orginal Blowfish. The probability value (p-value) is set" to a value of 

0.01 to confirm if the output is random. The average tests are computed and listed in Table 9. 

 

 

Table 9. Result of Running NIST on the Generated Key by Blowfish and the proposed Blowfish 

Test no. Statistical Test Name 

Well-known 

Blowfish 

Proposed 

Blowfish 

P-Value Status P-Value Status 

1 Approximate Entropy - Fail  0.848 pass 

2 Block Frequency 0.073 pass 0.216 pass 

3 Cumulative Sums 0.644 pass 0.133 pass 

4 FFT 0.061 pass 0.867 pass 

5 Frequency 0.043 pass 0.791 pass 

6 Linear complexity 0.138 pass 0.998 pass 

7 Longest Run 0.126 pass 0.367 pass 

8 Non Overlapping Template 0.241 pass 0.490 pass 

9 Overlapping Template 0.176 pass 0.506 pass 

10 Random Excursions 0.520 pass 0.864 pass 

11 Random Excursions Variant 0.329 pass 0.871 pass 

12 Rank 0.187 pass 0.846 pass 

13 Runs 0.180 pass 0.648 pass 

14 Serial - Fail 0.490 pass 

15 Universal 0.447 pass 0.940 pass 
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If the test results provide a p-value “asymptotically approaching 1, then the output should appear to 

have complete randomness. A p-value equal to zero signifies that the output is non-random. The pass status 

represents that the p-value of these tests is greater than 0.001 and denotes the output is acceptable  

(e.g., offers good randomness). The p-values of most of the tests from the proposed Blowfish algorithm are 

greater than the p-values of the well-known Blowfish, as shown in Table 9. 

 

5.4.  Histogram analysis 

A histogram is used to measure the security of the original, encrypted, and decrypted images [25] 

using the well-known and proposed Blowfish. The experimental results are shown in Figures 6 and 7 for  
two images (Baboon and Lena). 

 

 

  
  

Figure 6. Results and histogram of well-known 

Blowfish and proposed Blowfish for Baboon image 

(orginal and encrypted) 

Figure 7. Results and histogram of well-known 

Blowfish and proposed Blowfish for Lena image 

(orginal and encrypted) 

 

 

6. CONCLUSION 

A new method is proposed for enhancing the security and performance of the Blowfish algorithm 

achieved by an additional key and replacing the XOR with a new operation. These modifications provide 

more strength to the Blowfish algorithm and making it resistant against an attack. Using multiple keys 

instead of one increases the reliably of the key, which also increases the efficiency of the encryption and 

decreases the probability of breaking from brute force attacks. Moreover, a variable block bit size in each 

round increases the randomness and security of the algorithm. Based on our statistical results, we conclude 

that our proposed algorithm provides more complexity compared to the original Blowfish while maintaining 

approximately the same computation time.  
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