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 The LEDs lighting device with phosphor ingredient (pcLEDs) is among  

the most common lighting methods in recent years and evaluated by chromatic 

uniformity and lighting capacity. Therefore, we introduce the phosphor 

particles that can improve the scattering efficiency (SEPs) to apply in pcLEDs 

at 8500 K correlated color temperature (CCT) with the expectation to produce 

better pcLEDs by enhancing both quantity and quality of emitted light. 

Combining various materials such as CaF2 and SiO2 with yellow 

Y3Al5O12:Ce3+ phosphor composition in the pcLEDs simulation created  

by the LightTools program is the mechanism of this research. The simulated 

pcLEDs are tested and the results will be verified with Mie-scattering theory. 

The observation of the simulation leads to the conclusion about the scattering 

coefficients of SEPs at 455 nm and 595 nm wavelengths. The calculation 

showed that CaF2 is better for color homogeneity yet suffer from luminous 

flux deficiency as the concentration gets higher. On the other hand, SiO2 is  

the scattering enhancement material that can maintain high luminous flux 

regardless of its concentration.  
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1. INTRODUCTION 

To improve the WLED quality, color homogeneity, luminous flux, and color rendering index are  

the focus points, despite the fact that these criteria can induce inner scattering of WLED [1-5]. A conventional 

method to create a pcLEDs is to combine the yellow Y3Al5O12:Ce3+ phosphor with the silicone glue. The blue 

light after reaching the coating yellow Y3Al5O12:Ce3+ phosphor is consumed thus stimulates the yellow light 

and can be employed to create white light with a color temperature of choice [5-8]. The white LEDs with 

conformal phosphor configuration similar to the one used in this paper usually has a yellow ring that can cause 

irritation to the viewer’s eyes. The cause of this incident is the imbalance of emitted blue and yellow radiation 

comes from the light source which resulting in inhomogeneous spatial color distribution [9, 10]. For further 

explanation, the scattering process weakens the blue light due to it being absorbed by the phosphor layer but 

boosts the yellow light that is the product of blue light converted from the phosphor layer. The range and 
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properties in the phosphor layer are distinct from the wavelengths, therefore, upon understanding the concept 

we instantly adapt it to change color homogeneity of pcLEDs. Wang’s group has the purpose of reducing color 

deviation from 761K to 171K at the average CCT of 600K. Their study subjects are pcLEDs with chromatic 

phosphor SiO2, B2O3, PbO, Y3Al5O12:Ce3+ particles merged with silicone adhesive and placed in glass 

composite [11]. Besides, Lin’s group is in charge of assembling the HfO2/SiO2 DBR film to adjust the color 

deviation of pcLEDs at approximately 5000 K from 1758 K to 280 K [12]. Moreover, Yu’s group tests  

the remote micro-patterned phosphor film on pcLEDs at 5537 K and study its effectiveness in reducing  

the color deviation to 441 K [13]. The results confirm that applying these phosphor configurations is beneficial 

for the quality of spatial color homogeneity. Even though the benefits are undoubtedly valuable but they could 

not be widely used due to the high producing cost and difficult manufacturing requirements. Therefore, SEPs 

such as TiO2, ZrO2, microspheres and SiO2 are more practical materials that can mix with yellow phosphor to 

create new phosphor compositions are being used [14-18]. The research conduct by Lee with his partner in 

2010 which dispersed TiO2 on pcLEDs to exam the possibility that color homogeneity can benefit from adding 

0.1% TiO2 to the encapsulated phosphor component. As a result of many attempts to enhance color 

homogeneity, numerous findings have been announced, such as Yang’s group demonstrated that using CaCO3 

can boost the scattering features of pcLEDs, specifically the spatial color homogeneity is greatly increased 

when adding 10% of CaCO3 [19]. Similarly, Anh’s group discovered that adding the SEP SiO2 in the phosphor 

composition of pcLEDs can result in positive change relate to spatial color homogeneity. Besides, other aspects 

of SiO2 can also affect pcLEDs, the positioning within pcLEDs influence the color quality, likewise  

the chromatic performance is also influenced by the magnitude of SiO2 molecule [20]. From the results of other 

research, SEPs are good for the overall improvement of pcLEDs, however, an optimal SEP that can yield  

the biggest development is still undiscovered. The SEPs usage does not end there, previous research confirms 

that pcLEDs with one chip and emitted yellowish light can benefits from the improvements of color deviation 

and lumen output if the structure employs SEPs. Besides the type of SEPs, choosing the concentration and size 

for the SEP particle is important as it could enhance lighting performance and color quality with a suitable 

setting. This research aims to testify the influences of the CaF2 and SiO2 particles nominated above on optical 

properties of pcLEDs as well as measures their particular effect on enhancing the pcLEDs performance.  

The focus is to find optimal SEP material for different types of pcLEDs with distinct demands and explain how 

the SEPs improve color homogeneity and luminous flux using Mie theory along with Monte Carlo simulation. 

The contents of the article from this point onward are arranged into 3 sections with section 2 analyzes the inner 

circulation of light inside pcLEDs and contributes basic information for further experiments mentioned  

in section 3. Besides, section 3 also discuss the results about optical characteristics from the experiments.  

In section 4, we summarize the paper and give conclusions on the topic. 

 

 

2. ANALYZATION ON THE SCATTERING EFFECT 

Light scattering effect is a phenomenon caused by SEPs when it is in the pcLEDs with conformal 

phosphor structure according to the Mie-scattering theory and will be calculated with the help of  

MATLAB [21-25]. The following equations are the instruments for calculating the scattering coefficient 

μsca(λ), the anisotropy factor g(λ), the decreased scattering coefficient δsca(λ) and the scattering amplitude 

functions S1(θ) and S2(θ): 

 

𝜇𝑠𝑐𝑎(𝜆) = ∫ 𝑁(𝑟) 𝐶𝑠𝑐𝑎(𝜆, 𝑟) 𝑑 𝑟       (1) 

 

In (1), the N(r) is the amount of diffusive molecule (mm3), also known as diffusion density distribution.  

Csca stands for scattering cross section (mm2). λ is the wavelength in nanometers and the radius of the SEPs 

particles are presented as r (mm). 

The scattering coefficients of CaF2 and SiO2 are computed and shown in Figure 1. From 380 nm to 

780 nm, these scattering coefficients are different, which means there’s a difference in bright scattering.  

It is easy to see that the scattering coefficient of CaF2 larger than SiO2. Therefore, the color quality in the case 

of using CaF2 would be better than SiO2. However, it is necessary to identify the luminous flux that obtaines 

when using these particles. The larger the scattering coefficient will benefit for color homogeneity, but not 

beneficial for luminous flux. The larger the scattering coefficient means the greater the scattering process,  

the light rays are mixed more times before the outside and result in a low color deviation. The scattering 

coefficient can be used to evaluate the level of scattering in pcLEDs. And this is the key point to controlling 

color homogeneity and luminous flux. For CaF2 and SiO2, the selection of appropriate concentration is 

important. Besides the size of CaF2 and SiO2 particles must also be of interest.  
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Figure 1. Computation of scattering coefficient the SEPs  

 

 

3. RESULTS AND DISCUSSION 

This part shows the optical properties of SEPs pcLEDs mentioned above simulated by LightTools 

8.1.0 program. The physical model is presented in Figure 2 (a) and components details are in Figure 2 (b).  

The measurements of the model reflector are 2.1 mm in depth, 8 mm inner and 10 mm on the surface.  

The arrangement within the pcLEDs can be observed from the cross-section Figure 2 (c). Finally, Figure 2 (d) 

illustrate the result of simulated LED device. 

 

 

 

Lead frame: 4.7 mm Jentech Size-S 

LED chip: V45H 

Die attach: Sumitomo 1295SA 

Gold Wire: 1.0 mil 

Phosphor: ITC NYAG4_EL 

(a) (b) 

  

(c) (d) 

 

Figure 2. (a) Photograph of WLEDs sample, (b) Manufactoring parametter of WLEDs,  

(c) Illustration of 2D WLEDs model, (d) the simulated WLEDs model 

 

 

The structure have 9 LED chips placed at the base under the phosphor materials. The density of  

the phosphor layer is fixed at 0.08 mm. SEPs are deemed as 0.5 µm spherical with the refractive indexes for 

CaF2 is 1.44, SiO2 is 1.54. Phosphor particles radius is 7.25 μm on average with 1.83 refractive index disregard 

to position in the visible spectrum. The silicone glue used in the experiment has its refractive index unchanged 

at 1.5. The distribution of particle density can change depends on the requirements for CCT uniformity and 

lighting efficacy. 

 

𝑊𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑟 + 𝑊𝑠𝑖𝑙𝑖𝑐𝑜𝑛𝑒 + 𝑊𝑆𝐸𝑃 = 100%      (2) 
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In (2) is the percentage composition of a pcLEDs, where Wsilicone, Wphosphor and WSEP, in turn, 

demonstrate the weight proportion of the silicone, phosphor and SEP in the phosphor composition of  

the structure. The balance between proportions of phosphor and SEP will result in CCT stability that keep it  

at 8500K. The color deviation is an important feature that indicate the quality of the lighting device. In lighting 

applications that use light-emitting diodes (LEDs), if the variation of CCT is high at different angles means 

that the yellow ring phenomenon will occur together with inhomogeneous white light causing the lighting 

performance of pcLEDs to decline. To calculate the CCT deviation the following expression can be applied: 

 

𝛥𝐶𝐶𝑇 =  𝐶𝐶𝑇(𝑀𝑎𝑥) –  𝐶𝐶𝑇(𝑀𝑖𝑛)       (3) 

 

In this equation, CCT(Max) and CCT(Min) in turns, denote the highest and lowest CCT at 0- and  

90-degrees point of view. These features fluctuate because of unequal particles emitting capacity. To settle this 

issue, the emitted blue light needs improvement to match with the scattered light from other sources,  

hence effectively reduces the CCT deviation. The CCT devation in the pcLEDs are measured and expressed in 

Figure 3. 

 

 

  
(a) (b) 

 

Figure 3. Comparison of CCT deviation of pcLEDs using different SEPs  

at the size of (a) 400 nm and (b) 800 nm 

 

 

According to Figure 3, CaF2 particles at 400 nm and 800 nm achieve the lower deviation of angular 

scattering amplitude in comparison with the case of SiO2. This indicates that using CaF2 is the most effective 

SEP to limit the variation in radiant intensity distributions. The angular scattering amplitude of CaF2, similar 

to other SEPs, is higher with particles at 455 nm than 595 nm. The combination of blue and yellow light 

fabricates white light but will also induce the “yellow ring” if the discrepancy between these chromatic lights 

are high enough, therefore, having enough blue light makes CCT deviation more manageable and eradicates 

yellow ring, an either redundant or insufficient amount of scattered blue light in pcLEDs can widen the CCT 

deviation. As Figure 1 suggests, the angular scattering amplitudes of CaF2 and SiO2 with 455 nm particles 

almost triple the results measured with 595 nm particles which is a huge improvement for the chromatic 

performance and lumen output of pcLEDs. The content of Figure 3 demonstrates all the aforementioned 

arguments that adding CaF2 and SiO2 reduce the CCT deviation. The results of CCT deviations in pcLEDs with 

and without CaF2 and SiO2 SEPs at 2670 K show that applying SEPs in the structure can reduce the color 

deviation down by 1800 K. On the contrary, the concentration of CaF2 and SiO2 particles in their own separate 

case causes the CCT deviation to increase accordingly to them. Besides CCT deviation, the light output of 

pcLEDs are also changed because of CaF2 and SiO2 and is recorded in Figure 4. 

In Figure 4 are the resulting luminous flux of pcLEDs with CaF2 and SiO2 that have the materials 

concentration varies 0-50% and the size from 100nm to 1000nm. In SiO2 cases, the results show a certainty 

that the luminous flux is proportional to the concentration and size of the particles. For CaF2, it provides 

improvement in luminous flux with all particles size at the concentration range from 0-20% but tends to create 

the opposite effect if the concentration of CaF2 continues to rise. Apparently, the particles size have a deciding 

role in controlling the back-scattering effect of the phosphor layers which can be utilized for better luminous 

efficacy in WLEDs. To examine the decrease caused by the exceeding concentration of SEPs, we apply  

the Lambert-Beer law and the Mie-scattering theory in the calculation.  

The Mie-theory is employed for analyzing the scattering of SEPs, specifically the scattering cross 

section Csca for spherical particles while the transmitted light power is analyzed using the Lambert-Beer law: 
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I = I0 exp(-µextL)         (4) 

 

According to the formula above, I0 is the optical power of incident light and L is the density of phosphor coating 

(mm). µext indicates the extinction coefficient that is computed by this equation: µext = Nr.Cext, where Nr stands 

for the number density distribution of particles (mm-3) and Cext (mm2) is the extinction cross-section of phosphor 

particles. Based on (4), a conclusion can be made that the higher the concentration of SEPs the lower  

the luminous flux of WLEDs. This incident is due to the emission energy being damaged by the increase of 

light scattering inside of the phosphor layers and high concentration of SEPs that cause back-scattering effect. 
 
 

 
(a) 

 
(b) 

 

Figure 4. Comparison of luminous flux of pcLEDs adding CaF2 (a) and SiO2 (b) 

 

 

4. CONCLUSION 

The target of this research is to study the influences that SEPs might have on two quality-deciding 

properties of white LEDs devices, which are chromatic quality and luminous flux. Through applying  

the mechanism of Mie-scattering and Monte Carlo in the verification process, the results are approved and 

certain that with different types of particle the enhancements occur in pcLEDs are distinct. Correspondingly, 

this encourages the discovery of an optimal SEPs and concentration level for a specific occasion that benefits 

the optical performance of pcLEDs the most. Our findings in this particular article can serve as a guideline to 

manufacture WLEDs with predetermined requirements effectively or base knowledge for further development. 

Specifically, the CCT deviation opposes to the concentration of CaF2 and SiO2 which is a characteristic useful 

for CCT management, therefore, to reduce color deviation to the lowest possible using CaF2 would be  

the suitable choice. With that being said, control over CaF2 concentration is desirable as it prevents damage to 

luminous output caused by an excessive concentration. On another note, SiO2 is the material that benefit  

the growth of luminous flux in pcLEDs with SiO2 being the material that provides the lumen output.  
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