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 The advantage in using a remote phosphor design in a WLED package is  

the superior luminous flux to that of the conformal and in-cup phosphor 

geometries. However, the disadvantage is its color quality which is lower than 

the results from the other two structures. This study suggests using two layers 

of phosphor for the remote phosphor configuration to improve the light 

chromaticity, including color rendering index (CRI) and color quality scale 

(CQS), for WLED packages with color temperature of 8500 K. The main 

concept of this research is to locate a green Y2O2S:Tb3+ or red ZnS:Sn2+ 

phosphor layer on the yellow YAG:Ce3+ phosphor film, and then finding  

a suitable ZnS:Sn2+ concentration to match the highest color quality.  

The results showed that ZnS:Sn2+ brings great benefits to the increase of CRI 

and CQS. The greater the ZnS:Sn2+ concentration is, the better the CRI and 

CQS become owing to the rise of red-light components in WLED packages. 

Meanwhile, the green Y2O2S:Tb3+ phosphor brings benefits to the lumen 

output. However, a decrease in the luminescence and chromatic homogeneity 

appears when the concentrations of ZnS:Sn2+ or Y2O2S:Tb3+ exceed  

the corresponding level. This finding is verified by applying the Mie-scattering 

theory and the Lambert-Beer's law. The results of this article are important for 

the production of high-performance WLEDs in the modern lighting market. 
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1. INTRODUCTION 

As can be seen, phosphor converted white light emitting diodes (pc-WLEDs) are considered as  

a potential alternative to the conventional light source, and it has a variety of prospects in lighting solution [1]. 

The application of WLEDs has been used widely in many aspects of life such as advertising, landscape lighting, 

street lighting, and backlighting. Besides its mentioned benefits, its light extraction efficacy and angular 

uniformity of correlated color temperature (CCT) are not good enough to meet the rising the demands of 

illumination markets these days, which places restrictions on its development [2]. Thus, to figure out solutions 

for this issue, further breakthroughs in luminous efficiency and color quality are essential [3]. Today, one of 

the most common concepts in this aspect is getting the yellow lights from converse red phosphor combined 

https://creativecommons.org/licenses/by-sa/4.0/
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with the blue lights from LED chips. This concept though sounds familiar, the importance of LED structure 

and phosphor films’ arrangement in bettering the emitted luminous flux and the color rendering index (CRI) is 

undeniable [4-8]. Based on it, various phosphor coating methods have been introduced in researches for 

WLEDs’ production, including the two most common approaches: dispensing coating and conformal  

coating [9, 10]. Nevertheless, these structures do not provide high color quality because the applied phosphors 

show a degradation in light conversion due to the increased temperature at the interface between the chips and  

the yellow phosphor film caused by their direct contact. Thus, getting the heat outcome reduced could lead to 

the enhancement in phosphor performance and also prevent the phosphor from being irreversibly damaged. 

Many previous pieces of research have determined that the remote phosphor structure, which is designed by 

creating a gap between the phosphor film and the source of heat (the LED chips), can reduce the effect of 

heating. With a sufficient gap determined when designing the remote phosphor structure, it is possible to limit 

the amounts of light rays backscattered and circulated inside the LED package. Therefore, this method is 

considered as the most effective one in controlling the heat of LED, resulting in the enhancement of the lumen 

output and the chromatic performance for WLEDs [11-16]. Although the remote phosphor configuration has 

turned out to be qualified for regular lighting, it could not completely fulfill the advanced requirements from 

other lighting applications. Hence, it is essential to produce the next WLED generation that can catch up with 

specifications of state-of-the-art devices. For further development, some innovative remote phosphor structures 

are proposed for achieving the reduction in the backscattering of the phosphor-emitting lights towards the LED 

chips and the enrichment of luminous efficiency. A study in 2015 showed that the LED chip-emitting lights 

are possibly redirected to the WLED’s surface with an inverted cone lens encapsulant and a surrounding ring 

remote phosphor layer, leading to the reduction in the internal light loss occurring due to the light reflection 

inside the WLED packages [17]. Additionally, the angular-dependent CCT and color stability of LEDs can be 

accomplished by using a patterned remote phosphor model in which a clear region in the perimeter zone is not 

coated with phosphors on the surrounding surface [18]. Furthermore, the patterned sapphire substrate in this 

remote phosphor can bring a WLED package a lot higher CCT uniformity in a far-field pattern than in  

a conventional pattern [19-22]. Recently, remote phosphor structure with two different phosphor films has been 

introduced to promote the optical performance of LEDs. Studies have focused on the improvement of  

the chromatic homogeneity and emitted luminous flux for pc-WLEDs with the remote phosphor configuration. 

Yet, these articles only concentrated on single-chip LEDs having low CCTs while heightening optical 

performances for high-CCT WLED package with the remote phosphor design is very complicated. Moreover, 

there have been no studies comparing the effectiveness of using different dual-layer phosphor structures. 

Therefore, manufacturers may find it hard to select an appropriate option for accomplishing higher color quality 

or emitted luminous flux. 

This paper proposes two dual-layer remote phosphor structures for the enhancement of the WLED 

color quality at the CCT of 8500 K. The first configuration uses a green Y2O2S:Tb3+ phosphor layer to have 

the green light component inside WLEDs increased and lead to higher luminescence efficiency. For the second 

model, a red phosphor layer of ZnS:Sn2+ is added for the rise of the red-light amounts in WLEDs and then 

leading to increased CRI as well as improved CQS. In addition, the paper also includes a detailed description 

of Y2O2S:Tb3+ and ZnS:Sn2+ chemical compositions which affect the lighting performances of WLEDs.  

The results of the paper demonstrate the improvement in CRI and CQS when adding phosphor ZnS:Sn2+ into 

the phosphor layer. However, the concentration of Y2O2S:Tb3+ and ZnS:Sn2+ should be chosen appropriately 

to prevent a steep decrease in chromatic homogeneity or lumen efficacy when blue or red phosphor 

concentrations increase excessively. There are two main distinguishes when placing a thin film of red or green 

phosphors above the yellow YAG:Ce3+ phosphor layer: (1) The growth of the blue or red light components for 

increasing the white-light spectrum, which is a vital element in improving the chromaticity of the generated 

white lights. (2) The light scattering and light transmission inside WLEDs are inversely proportional to  

the green or red phosphor concentrations. Thus, determining suitable concentrations for phosphor materials is 

crucial to the lumen output of WLEDs. 

 

 

2. PREPARATION 

Y2O2S:Tb3+, a type of yellow-green phosphor, and ZnS:Sn2+ particles have many distinguishing 

qualities such as high quantum productivity and strength at high temperature, thus they become more and more 

attractive [23]. Moreover, Y2O2S:Tb3+ and ZnS:Sn2+ are particularly utilized for very high-loading and long 

lifetime fluorescent lamps. Chemical composition greatly affects the optical properties of phosphor. Therefore, 

when applying to WLEDs, it is necessary to carefully analyze each of their components. Y2O2S:Tb3+ glows 

green at a peak wavelength at 544 nm. The existence of ion Tb3+ increases the luminous efficiency of 

Y2O2S:Tb3+. Meanwhile, ZnS:Sn2+ emits red light with peak wavelength of 689 nm. For the best application of 

these phosphors to the structuring process, they must have a spectral range which fits that of the blue lights 
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from the LED chip. In other words, Y2O2S:Tb3+ and ZnS:Sn2+ absorption spectra must be consistent with  

the blue-chip spectrum. The absorption spectrum range of ZnS:Sn2+, from 200 nm to 600 nm, is very beneficial 

to the absorption of emitted light in various bands. The reason is that the blue lights are emitted along with  

the conversion of the yellow lights from the yellow YAG:Ce3+ phosphor film. Similar to ZnS:Sn2+,  

the absorption spectrum of Y2O2S:Tb3+ is also wide, which is from 250 nm to 550 nm. Before performing 

optical simulation of Y2O2S:Tb3+ and ZnS:Sn2+, their typing parameters, including the concentration,  

the particle size, and their stimulus, absorption, and emission spectra, need to be accurately determined  

by experiments. Among those mentioned parameters, the phosphor concentration and particle size are  

the unknowns to the improvement of color quality and luminous efficiency of WLEDs. Meanwhile, their input 

spectral values are fixed. According to previous studies, the phosphor grains has a fixed average diameter of 

14.5 µm [24, 25]. Meanwhile, the concentration of phosphor Y2O2S:Tb3+ and ZnS:Sn2+ is calibrated to find  

the optimal value. This is the objective of this study. 

In this study, WLEDs having 9 internal chips are used as shown in Figure 1 (a). Each blue chip has 

1.6W output and 453 nm peak wavelength. Details of optical parameters of LED configuration are shown in 

Figure 1 (b). In order to determine the most appropriate concentration of Y2O2S:Tb3+ and ZnS:Sn2+, next, 

remote phosphor models must be built. This research paper proposes two dual-phosphor structures, including 

the green-yellow phosphor configuration (GYC) and red-yellow phosphor configuration (RYC). Both 

structures are comprised of two phosphor films above the nine LED chips, and the yellow phosphor layer is 

located under the green and red phosphor films. Specifically, in GYC structure, the layer above the yellow 

YAG:Ce3+ is green Y2O2S:Tb3+ layer, and for the RYC, the green layer is replaced by the red ZnS:Sn2+ one, as 

can be seen in Figure 1 (c) and (d). The application of GYC and RYC configurations aims to increase the color 

and optical quality of WLEDs. This can be achieved by increasing the green scattering and the component of 

red light in WLEDs. However, concentrations of Y2O2S:Tb3+ and ZnS:Sn2+ need to be adjusted accordingly. 

 

 

 

Lead frame: 4.7 mm Jentech Size-S 

LED chip: V45H 

Die attach: Sumitomo 1295SA 

Gold Wire: 1.0 mil 

Phosphor: ITC NYAG4_EL 

(a) (b) 

  

  
(c) (d) 

 

Figure 1. (a) The actual MCW-LEDs and (b) its parameters; (c) Illustration of GYC, and (d) RYC 

 

 

Figure 2 shows the opposite trend between the concentrations of green Y2O2S:Tb3+ phosphor, red 

ZnS:Sn2+ phosphor and yellow YAG:Ce3+ phosphor. This change brings the stability to average CCTs of 

WLEDs and has significant effects on the phosphor films’ scattering and absorption. This certainly impacts 

not only the color performance but also the luminous efficiency of WLEDs. Thus, the selection of Y2O2S:Tb3+ 

and ZnS:Sn2+ determines the color quality of WLEDs. When Y2O2S:Tb3+ and ZnS:Sn2+ turn up from 2% to 

20% wt., YAG:Ce3+ concentration drops to keep average CCT. This phenomenon occurs equally with WLEDs 

with color temperature of 8500 K. The most noticeable is the effect of red phosphor concentration ZnS:Sn2+ 

on the WLEDs’ spectrum, illustrated in Figure 3. Depending on the manufacturer's requirements, the choice is 

made. WLEDs with high color quality requirements can reduce a small amount of luminous flux. The intensity 

of the phosphor emission in the spectral regions of 420-480 nm and 500-640 nm increases with Y2O2S:Tb3+ 

concentration. These two regions' spectral emission enhancements demonstrate the increased luminous flux. 

Also, when the blue-light scattering in WLED develops, it means that the phosphor scattering in WLEDs 

increases and the result is beneficial for the copper color. This is an important result when using Y2O2S:Tb3+. 
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Obviously, the tendency of red light spectrum from 648 nm to 738 nm increases with ZnS:Sn2+ concentration. 

However, this is not significant without the spectral increase of the two remaining regions of 420 nm - 480 nm 

and 500-640 nm. The spectral increase of the two 420-480 nm regions develops the luminous flux of blue light 

(blue-light scattering). In short, it can be said that as the color temperature rises, the spectral emission increases, 

and the higher color and optical quality are exhibited as a result. This is an important result when applying 

ZnS:Sn2+, especially the quality control of high-CCT WLED packages is very difficult. This study identifies 

ZnS:Sn2+ has ability to yield better color quality for WLEDs having high color temperature (8500 K). 

 

 

  
  

Figure 2. The change of phosphor concentration of 

GYC and RYC for keeping the average CCT 

Figure 3. Emission spectra of GYC and RYC 

 

 

3. COMPUTATION AND DISCUSSION 

The color rendering index (CRI) evaluates how a light source expose the true tone of color of an object 

it illuminates. The increased green-light amount causes the color imbalance between the three dominant colors 

composing the white light: blue, yellow and green. This imbalance probably has negative influences on  

the color integrity of WLEDs. The graph in Figure 4 presents the degradation of CRI with the growth of 

Y2O2S:Tb3+ in the structure. But this is acceptable because CRI is only a good factor of CQS. When comparing 

between CRI and CQS, CQS is a more complicated, crucial, and strenuous value to obtain. In Figure 5, CQS 

is constant as Y2O2S:Tb3+ concentration is less than 8%. Thus, 8% Y2O2S:Tb3+ can be selected to apply after 

considering emitted luminous flux. As shown in Figure 4, the color rendering index increased with ZnS:Sn2+ 

concentration. This can be explained by the absorption of the red phosphor layer. When phosphor ZnS:Sn2+ 

absorbs the LED chip-emitting blue light components, it turns these blue lights into red lights. In addition to 

blue lights from LED chips, ZnS:Sn2+ still absorbs yellow lights. Yet, when drawing a comparison between  

the yellow-light absorption and the blue-light absorption, the latter absorption happens more strongly owing to 

the absorption characteristics of the red phosphors. And so, the red-light amount in WLEDs grows with  

the higher contents of ZnS:Sn2+, and this leads to increased color rendering index (CRI). When choosing  

a modern WLED product, CRI becomes one of the most vital parameters. Thus, the WLED having high CRI 

will cost more than the others with lower CRI. Nevertheless, the benefits of using ZnS:Sn2+ are low cost. 

Therefore, ZnS:Sn2+ can be widely used. However, as mentioned above, CRI is an element for judging the color 

quality included in a more overall parameter CQS. So, it is impossible to say good color quality when the CRI 

is high. CQS is an index comprised of three factors: the first is the CRI, the second is the preference of  

the viewer, and the third is the color coordinate. Because of covering three vital elements, CQS is considered 

as a true overall color quality index. The enhancement of CQS in accordance with the ZnS:Sn2+ concentration 

is illustrated in Figure 5. And when increasing the phosphor concentration for ZnS:Sn2+, CQS also increased 

significantly. Clearly, using ZnS:Sn2+ can increase the white-light color quality for WLEDs when applying 

dual-layer phosphor design. This is a crucial result of research with the goal of better color quality. However, 

it is impossible not to consider the disadvantages of ZnS:Sn2+ to emitted luminous flux. 

The mathematic framework of the transmitted blue light and converted yellow light in the dual-layer 

phosphor structure is presented in this part. Then, based on the attained results, we can develop the LED 

efficiency much better. For calculating the transmitted blue light and the converted yellow light in the remote 

phosphor configuration with a layer of phosphor whose thickness is 2h, it is possible to apply the following 

expression:  
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𝑃𝐵1 = 𝑃𝐵0 × 𝑒
−2𝛼𝐵1ℎ        (1) 

 

𝑃𝑌1 =
1

2

𝛽1×𝑃𝐵0

𝛼𝐵1−𝛼𝑌1
(𝑒−2𝛼𝑌1ℎ − 𝑒−2𝛼𝐵1ℎ)      (2) 

 

Meanwhile, the computation of these two aforementioned lights in the dual-layer phosphor packaging structure 

in which the phosphor film has h thickness can be expressed as:  

 

𝑃𝐵2 = 𝑃𝐵0 × 𝑒
−2𝛼𝐵2ℎ        (3) 

 

𝑃𝑌2 =
1

2

𝛽2×𝑃𝐵0

𝛼𝐵2−𝛼𝑌2
(𝑒−2𝛼𝑌2ℎ − 𝑒−2𝛼𝐵2ℎ)      (4) 

 

 

  
 

Figure 4. The color rendering index as a function of 

the concentration of Y2O2S:Tb3+ and ZnS:Sn2+ 

 

Figure 5. The color quality scale as a function of 

the concentration of Y2O2S:Tb3+ and ZnS:Sn2+ 

 

 

In these expressions, h symbolizes the thickness of each phosphor film in the remote structure.  

The single and dual-layer remote phosphor structures are expressed by the subscripts “1” and “2”, respectively. 

Indicated by β is the conversion coefficient for the blue light converting to the yellow light while γ represents 

the yellow light’s reflection coefficient. PB0 is the light intensity from the blue LED chip which is comprised 

of blue (PB) and yellow (PY) light intensities. αB and αY characterize the fractions of the energy loss of blue 

and yellow lights during their multiplication in the phosphor layer separately. 

The dual-layer remote phosphor structure shows the considerable advancement in the lighting efficacy 

of WLEDs, compared to the single-layer one: 

 
(𝑃𝐵2+𝑃𝑌2)−(𝑃𝐵1+𝑃𝑌1)

𝑃𝐵1+𝑃𝑌1
> 0        (5) 

 

Mie-scattering theory is used to analysed the scattering of the phosphor particles, and calculate  

the scattering cross section Csca for spherical particles. Meanwhile, the Lambert-Beer law is applied to measure 

the transmitted light power: 

 

I = I0 exp(-µext L)         (6) 

 

where, I0, L, and µext indicate the incident light power, the thickness of the phosphor layer (mm), and  

the extinction coefficient, in turn. In addition, the computation of the extinction coefficient µext can be defined 

as: µext = Nr.Cext, in which Nr is the number density distribution of particles (mm-3), while Cext (mm2) presents 

the particles’ extinction cross-section. 

From (5), we can see the luminous efficiency of WLEDs built with two separated phosphor films is 

higher than the packages having one phosphor layer. Thus, the paper has demonstrated the efficiency of 

emitting luminous flux of this dual-layer remote phosphor layer. Figure 6 shows that luminous flux increased 

significantly with the growth in Y2O2S:Tb3+ concentration from 2% wt. to 20% wt.. Nevertheless, ZnS:Sn2+ 

concentration has negative impact on the emitted. Clearly, based on Lambert-Beer law, the reduction factor 

µext is in direct proportion to ZnS:Sn2+ concentration but in inverse proportion to the light transmission energy. 

Therefore, the thicknesses of both phosphor films need to be fixed. Photoluminescence emitted may decrease 
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when the concentration of ZnS:Sn2+ increases. And indeed, Figure 6 shows a decrease in luminous flux. When 

concentration ZnS:Sn2+ at 20% wt., luminous flux significantly reduced. However, consider the advantages of 

the red phosphor layer ZnS:Sn2+ improve CRI and CQS. Moreover, the dual-layer remote phosphor structure 

results in higher lumen output, compared to the single-layer one (without the red phosphor film). Thus, it is 

possible to accept this reduction in the luminous flux when using ZnS:Sn2+ layer in WLED packages. The last 

problem is the requirement of manufacturers, depending on which an appropriate concentration of ZnS:Sn2+ is 

offered to produce these WLEDs in bulk. 

 

 

 
 

Figure 6. The lumen output as a function of the concentration of Y2O2S:Tb3+ and ZnS:Sn2+  

 

 

4. CONCLUSION 

The effects of green Y2O2S:Tb3+ phosphor and red ZnS:Sn2+ phosphor on CRI, CQS, and lumen 

efficacy of double-layer phosphor models are demonstrated in this research paper. By applying  

the Mie-scattering theory in combination with the Lambert-Beer rule, this article has successfully assured that 

the right phosphor material to enhance the color quality is ZnS:Sn2+, while Y2O2S:Tb3+ is the suitable choice 

for the better lumen output of WLEDs. This result is true for the WLEDs having either low or high color 

temperatures, especially the one with color temperature higher than 8500 K. Thus, this study has accomplished 

its objective, enhancing the white light color performance, which is considered as one of the most difficult 

tasks for remote-phosphor structure. However, this structure still has a small drawback to the luminous flux. 

When increased concentrations of Y2O2S:Tb3+ or ZnS:Sn2+ are excessive, the inferior color quality or lumen 

efficacy can be occurred. Therefore, according to the goal of manufacturers, the importance in WLED 

production is to determine an appropriate concentration for the phosphor materials. And the article has provided 

much important information for reference in producing better quality WLEDs. 

 

 

REFERENCES 

[1]  G. He, L. Zheng, “A model for LED spectra at different drive currents,” Chinese Optics Letters, vol. 8, no. 11,  

pp. 1090-1094, 2010.  

[2]  Yanru Tang Y. R., Shengming Zhou S. M., Chong Chen C., et al., “Composite phase ceramic phosphor of  

Al2O3-Ce:YAG for high efficiency light emitting,” Optics Express, vol. 23, no. 14, pp. 17923-17928, 2015.  

[3]  Peng Y., Li R. X., Guo X., Zheng H., Chen M. X., “Optical performance improvement of phosphor-in-glass  

based white light-emitting diodes through optimized packaging structure,” Applied Optics, vol. 55, no. 29,  

pp. 8189-8195, 2016.  

[4]  Wang Q., Li T., He Q. H., “Dimmable and Cost-Effective DC Driving Technique for Flicker Mitigation in LED 

Lighting,” Journal of Display Technology, vol. 10, no. 9, pp. 766-774, 2014.  

[5]  Lin H. T., Tien C. H., Hsu C. P., Horng R. H., “White thin-film flip-chip LEDs with uniform color temperature using 

laser lift-off and conformal phosphor coating technologies,” Optics Express, vol. 22, no. 26, pp. 31646-31653, 2014.  

[6]  Žukauskas A., Vaicekauskas R., Vitta P., “Optimization of solid-state lamps for photobiologically friendly mesopic 

lighting,” Applied Optics, vol. 51, no. 35, pp. 8423-8432, 2012.  

[7]  Mladenovski S., Neyts K., Pavicic D., Werner A., Rothe C., “Exceptionally efficient organic light emitting devices 

using high refractive index substrates,” Optics Express, vol. 17, no. 9, pp. 7562-7570, 2009.  

[8]   He G. X., Zheng L. H., “White-light LED clusters with high color rendering,” Optics Letters, vol. 35, no. 17,  

pp. 2955-2957, 2010.  

[9]  Tran N. T., You J. P., Shi F. G., “Effect of Phosphor Particle Size on Luminous Efficacy of Phosphor-Converted 

White LED,” Journal of Lightwave Technology, vol. 27, no. 22, pp. 5145-5150, 2009.  



TELKOMNIKA Telecommun Comput El Control   

 

Excellent color quality of phosphor converted white light emitting diodes with…  (Thinh Cong Tran) 

2763 

[10]  Gao W. J., Ding K., He G. X., Zhong P., “Color temperature tunable phosphor-coated white LEDs with excellent 

photometric and colorimetric performances,” Applied Optics, vol. 57, no. 31, pp. 9322-9327, 2018.  

[11]  Oh J. H., Oh J. R., Park H. K., Sung Y. G., Do Y. R., “New paradigm of multi-chip white LEDs: combination  

of an InGaN blue LED and full down-converted phosphor-converted LEDs,” Optics Express, vol. 19, no. S3,  

pp. A270-A279, 2011.  

[12]  Feng X. F., Xu W., Han Q. Y., Zhang S. D., “LED light with enhanced color saturation and improved white light 

perception,” Optics Express, vol. 24, no. 1, pp. 573-585, 2016.  

[13]  Choi S. I., “New Type of White-light LED Lighting for Illumination and Optical Wireless Communication under 

Obstacles,” Journal of the Optical Society of Korea, vol. 16, no. 3, pp. 203-209, 2012.  

[14]  Kim S. T., Kim J. S., Kim H. T., Kim Y. K., “Effects of Current Modulation Conditions on the Chromaticity of 

Phosphor Converted (PC) White LEDs,” Journal of the Optical Society of Korea, vol. 16, no. 4, pp. 449-456, 2012.  

[15]  Joo B. Y., Ko J. H., “Analysis of Color Uniformity of White LED Lens Packages for Direct-lit LCD Backlight 

Applications,” Journal of the Optical Society of Korea, vol. 17, no. 6, pp. 506-512, 2013.  

[16]  Kim I. I., Chung K. Y., “Wide Color Gamut Backlight from Three-band White LED,” Journal of the Optical Society 

of Korea, vol. 11, no. 2, pp. 67-70, 2007.  

[17]  Sun C. C., Chang Y. Y., Wang Y. H., Chen C. Y., Cheng H. H., “Precise Spatial-Color Optical Modeling in  

Phosphor-Converted White LEDs,” Journal of Display Technology, vol. 11, no. 3, pp. 261-265, 2015.  

[18]  Anous N., Ramadan T., Abdallah M., Qaraqe K., Khalil D., “Impact of blue filtering on effective  

modulation bandwidth and wide-angle operation in white LED-based VLC systems,” OSA Continuum, vol. 1, no. 3, 

pp. 910-929, 2018.  

[19]  Hayashida T, Iwasaki H., Masaoka K., Shimizu M., Yamashita T., Iwai W., “Appropriate indices for color rendition 

and. their recommended values for UHDTV production using white LED lighting,” Optics Express, vol. 25, no. 13, 

pp. 15010-15027, 2017.  

[20]  Heikkinen V., Kassamakov I., Paulin T., Nolvi A., Hæggström E., “Stroboscopic scanning white light interferometry 

at 2.7 MHz with 1.6 µm coherence length using a non-phosphor LED source,” Optics Express, vol. 21, no. 5,  

pp. 5247-5254, 2013.  

[21]  Che F., Wu L., Hussain B., Li X., Yue C. P., “A Fully Integrated IEEE 802.15.7 Visible Light Communication 

Transmitter with On-Chip 8-W 85% Efficiency Boost LED Driver,” Journal of Lightwave Technology, vol. 34,  

no. 10, pp. 2419-2430, 2016.  

[22]  Narendran N., Gu Y., “Life of LED-Based White Light Sources,” Journal of Display Technology, vol. 1, no. 1,  

pp. 167-171, 2016. 

[23]  Kolahdouz Z., Rostamian A., Kolahdouz M., Ma T., van Zeijl H., Zhang K., “Output blue light evaluation for 

phosphor based smart white LED wafer level packages,” Optics Express, vol. 24, no. 4, pp. 3216-3229, 2018.  

[24]  Wang X. M., Rao H. B., W Lei Q. L., Zhou D., Zhang Q., Li C. N., Zhou C. Y., “An Improved Electrophoretic 

Deposition Method for Wafer Level White PC-LED Array Packaging.,” Journal of Display Technology, vol. 12,  

no. 12, pp. 1609-1612, 2016. 

[25]  Z. Zhao, H. Zhang, S. Liu, X. Wang, “Effective freeform TIR lens designed for LEDs with high angular color 

uniformity,” Applied Optics, vol. 57, no. 15, pp. 4216-4221, 2018. 


