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1. INTRODUCTION

In recent years, the dynamical system has attracted significant attention due to its widespread
applications in engineering and different scientific research as lasers, nonlinear circuits biological [1, 2],
engineering [3, 4] and secure communications [5, 6]. Lorenz system is the first physical and mathematical
model of a chaotic system contains real variables only which discovered in 1963 and open the way to find
another chaotic system such as Chen system, Lu system, Liu system and Pan system [7-9]. Each system has a
3-D of differential equations and just one positive Lyapunov exponent [10]. One important application in the
field of engineering is secure communication i.c., the messages which are made by such simple chaotic
systems are not always safe [6, 11, 12]. It is suggested that this problem can be overcome by using
higher-dimensional hyperchaotic systems, which have increased randomness and higher unpredictability.

In 1979, Rossler discovers the first 4-D hyperchaotic system including real variables with two
positive Lyapunov exponents and followed to discover another 4-D, as well as 5-D hyperchaotic with three
positive Lyapunov exponents [10, 13-15] and some other systems, have been revealed. The dynamical
systems with higher dimensions are effective and interesting compared with the low dimensions [16-18].
In 2015, Yang et al., proposes a 6-D hyperchaotic system including real variables and has four positive
Lyapunov exponents [19].

These days, the synchronization of the mentioned systems witnessed large attention by researchers
because of its important applications in the is secure communication [20-22]. Many of the papers that relate
to this topic are increasing, and numerous research devoted to investigating CS of high-dimensional
hyperchaotic systems based on traditional Lyapunov stability theory [23-25]. Lyapunov stability theory is
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extensively utilized in the phenomena of synchronization because the Lyapunov function can deliver

accurately and speed data of the system convergence. However, Lyapunov function in some time is incapable

of meeting the convergence requirements of error dynamics system owing to suffers from its drawbacks of

modified the function itself. To achieve synchronization of good performance, the Linearization tool is

preferred. So the Linearization and nonlinear control strategy integration can achieve higher performance.

The contributions of this research can be summarized in the following points.

a. Chaos synchronization between identical 6-D hyperchaotic systems is studied and used to find the error
dynamics between them and its secure communication is then presented theoretically.

b. Designs of three different controllers of complete synchronization are done by a nonlinear control
strategy based on the Lyapunov stability theory, Linearization method.

c. Compare between the Lyapunov and Linearization method.

2. SYSTEM DESCRIPTION

The Lorenz system was the first 3-D chaotic system to be modeled and one of the most widely
studied. The original system was modified into a 4-D and 5-D hyperchaotic systems by introducing a linear
feedback controller. In 2015, Yang constructed a 6-D hyperchaotic system which contains four positive
Lyapunov Exponents LE; = 1.0034, LE, = 0.57515, LE; = 0.32785, LE, = 0.020937, and two negative
Lyapunov Exponents LE; = —0.12087, LE; = —12.4713. The 6-D system which is described by
the following mathematical form [19]:

X1 = alx; —x1) + x4
Xy = CXq — Xy — X1X3 + X5

.’.C3 = —bX3 + X1Xp (1)
X4 = dx4 - x1x3
XS = _k.xz

Xg = hxg + 17X,

where X1, X,, X3, X4, X5, X¢ are real state variables and a, b, ¢, d, k, h, r are all positive real parameters which
equals (10,8/3,28,2,8.4,1, 1) respectively. This system is rich in dynamic properties. Figure 1 (a) shows
the 3-D attractor of the system (1), while Figure 1 (b) shows the 2-D attractor of the same system.
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Figure 1. The attractor of the system (1), (a) In the 3-D(xy, x3, X¢) space, (b) In the 2-D (x4, x3) plane

3. CHAOS SYNCHRONIZATION BETWEEN TWO IDENTICAL LORENZ SYSTEM

In this section, two systems are needed, the first system is called the drive system which represents
the picture or message information will be sent while the second system is called response system represents
the noise that followed this information to ensure that they are not penetrated. Assume that the system (1) is
the drive system and can be written as

TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 3, June 2020: 1483 - 1490



TELKOMNIKA Telecommun Comput El Control 3 1485

X1 —a a 1 0 0" 0 0 0
X2 c -1 0 0 1 0[9‘2] 1 0 Of —y x
X301 _| 0 0 —b 0 0 Offxs] f0 1 x;3 @
| [0 0 0o a4 o oflx|Tlo o 1f[lF2
| [@ -k 0 0 0 Olfxs| [0 0 Of——=
% 0 7 0o 0 0 hllxl lo 0 o
A B

A and the product B.C represents parameters matrix and nonlinear part of the system (1), respectively.
While the response system is as follows:

Uy

u

} }12 —V1Y3 ui
[ Y1Y2 ] + u, 3)

Ay +| B;
[} y \ ~Y1Ys3 }
Cy
Ug

and let U = [uy, Uy, Us, Uy, Us, Ug]T is the nonlinear controller to be designed. The synchronization error
dynamics between the 6-D hyperchaotic system (2) and system (3) is defined as e¢; =y; —x; ,i =1,2,...,6
and satisfied that, }im e; = 0. The error dynamics is calculated as the following:

N

é;=ale;—e)) +e, +uy
é, =Ccey —e, —ejez3 —Xze; — X183+ es+ U,

é3 = _be3 + e.e, + Xp€q + X165 + Uz (4)
é4 = de4 — e163 — X361 — X163 + Uy
és = —kez + us

é6 = h66 +T‘€2 +u6

If the matrices A; and B; as

A, = A and B; = B, then refer for identical synchronization.

A; # A or By # B, then refer for non-identical synchronization.

Based on Linearization method, The system (4) is unstable and the characteristic equation and eigenvalues
are respectively as

4069

A6 +32 A5 2069 )4 4 16383 4 2400452 9“"% 448 =0
15 15 15
A =2
A, =1
A; = —8/3
A, = 11.3659 — 8.107%

As = —22.6916 —3.928203230107%
= 0.3257 +9.928203230107°

>
(o)}
|

Now, different controllers are designed based on Lyapunov and Linearization methods and we
compare them.
Theorem 1. If the control U of system (4) is design as the following:

Uy =eulxs— 1) —ey(@a+c—x3)

U, = —reg
Uz = —X32€q

uy = ez(e; +x,) — 3de, ®)
us = —e;(1—k) —es

ug = —2heg

Then the system (3) can be followed by the system (2) by two methods.
Proof. Substitute above control in the error dynamics system (4) we have (6).
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€, = —ae; + x3e4 —ce, + x3€,
é, =Cce; —e, —ee3 — X381 — X163+ €5 —Teg
é; = —be; + eje, + x;6, ©)
é, = —2de, — x3€4
l és = —e, — eg
é¢ = Te, — heg

In the first method (Linearization method), the characteristic equation and eigenvalues as

AG + E)\s +@)\4 + 20696 }\3 + 59225 AZ + 66172A+ 25184 =0
3 3 3 3 3 3

Al =—4

Az = _1

)\3 =—-1

14_ = _8/3

As = — 1 +V786i

A = — 1 —\786i

All real parts of eigenvalues are negative, the linearization method is realized the chaos
synchronization between system (2) and system (3). If the Lyapunov function is constructed as (7).

V(e) =338 e? =e Pe; , P=daig(0.50.5,0.5,05,05,0.5) 7

The derivative of the above function V (e;) is
V(el) = elél + ezéz + e3é3 + e4é4 + esés + eﬁés

V(e;) = e;(— ae; + x3e, — cey + x3e,) + e,(ce; — e, — eje3 — Xz, — X163+ €5 —1eg) +
e3(—bez + eje; + x16,) + e, ( —2dey — x3e1) + es(—ey — e5) + eg(re, — heg)

V(e) = —ae? —e? — be? — 2de? —eZ —he? = —e;" Q ¢; (8)

where Q = diag(a,1,b,2d,1,h), so Q > 0. Consequently, V(e;) is negative definite on R®. The nonlinear
controller is suitable and the complete synchronization is achieved. Now, we will take the initial values as
(1,0,2,4,1,-1) and (—8,—7,—15,12,20,1) to illustrate the complete synchronization that happened between
(2) and (3) numerically. Figure 2 shows verify these results numerically.
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-150

Figure 2. Complete synchronization between systems (2) and (3) with control (5)
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Theorem 2. If the nonlinear control U of error dynamical system (4) is designed (9).

Uy = —ce, — xye5 + x3(ey + €3)

U, = —ae; —reg

u3 = xle4

Uy = 61(63 - d) - 2d€4 (9)
us = —es

u6 = —2h86

Then the system (3) can be followed by the system (2) by two methods.
Proof. From the above control (9) with the error system (4), we get (10).

é1 = aez - a81 + 64—(,'82 - X263 + x364 + x3ez
éz = C€1 - 62 - 6163 - x361 - xle3 + 85 - ael - T€6

é3 = —b€3 + e1ey + Xp€q + X1€y + X1€4 (10)
é4 = _de4, — X361 — X163 — del
és = —kez — €5

é6 = rez - h86

Based on the first method (Linearization method), the characteristic equation and eigenvalues as:

26 4 5395 4 217294 | 38594,3 | 91112, | 93856, , 35072 _
3 5 15 15 15 15
M =1
A, = —8/3
A3 = —1.3438
A, =—1.9026

A = — 5.3768 + 17.7207 i
A¢ = — 5.3768 — 17.7207 i

all real parts of eigenvalues are negative. The linearization method is succeeded to achieve complete
synchronization. In Lyapunov approach, the Lyapunov function is taken as the same form in theoreml, the
derivative Lyapunov function with control (9) becomes

V(e) = —ae? —e? — be? —de? —e? — he? + eje (1 —d) + ezes(1—k) = —e"Q, e (11)
where
a 0 0 —(1—d)/2 0 0
0 1 0 0 -1-K/2 0
0, = 0 0 b 0 0 0
17 A =d)/2 0 0 d 0 0
0 -1-k)/2 0 0 1 0
0 0 0 0 0 h

Note that @, is not a diagonal matrix. If all the following five inequalities are satisfied, then the Q@ is
positive definite:

.a>0
.b>0

1

2

3. h>0
_ 2

4. (ad—ﬂ) >0 (12)
4

<ad (1 _ (1—4k)2) _ (1—4,1)2 (1 B (1—4k)2)) oo

Fifth inequality is not correct with given parameters. Therefore, this control is failed. If update the matrix P
with the same control as:

v

P, = diag(1/2,1/2,1/2 ,1/4,5/84,1) (13)
Chaos synchronization in a 6-D hyperchaotic system with self-excited attractor (Ahmed S. Al-Obeidi)
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Then, the derivative of Lyapunov function as:

V(e) = —10e?—e? — 2332 —e?— %esz —el= —eTQ,e (14)

where Q, = diag(10,1,8/3,1,5/42,1) is a positive definite. Figure 3 shows verify these results numerically.

x1, y1
X2, y2
x3,y3

1 2 3 4

Time(sec) Time(sec)

x4, y4
x5, y5

2
Time(sec)

2
Time(sec)

2
Time(sec)

Figure 3. Complete synchronization between systems (2) and (3) with control (9)

Theorem 3. If the nonlinear control U of error dynamical system (4) is designed as:

u, = —ce, —a(es + ey)

U, = —reg + x3e;

Uz = eq4(x; +€;) — Xz, (15)
u, = —eq — 2de, + x3€;

Us = —e, —es + k(2e; +e,)

Ug = —2heg

then the system (3) can be followed by the system (2) by linearization method only.
Proof. Rewrite system (4) with control (15) as follows (16).

é, = —ae, + e,—ce, — aes

€, =Cey — e, —eje3 — X183+ €5 —Treg

é; = —be; + eje, + x1e,+x1e4 + €104

é, = —de, —eje3 — x1e5—€4 (16)
és = —e, —es + 2key

é6 =re, — h66

Based on the Lyapunov stability theory, we obtain

V(e) = —ae? —e? — be? —de? —e? — he? + e,es(2k — a) = —e" Qe (17)
where
a 0 0 0 —(a—2k)/2 0
{ 8 1 0 0 0 0 l
0 b 0 0
Qs = 0 0 o0 d 8 0 (18)
[ (a—=2k)/2 0 0 0 1 0 J
0 0 0 0 0 h

So Qs is not a diagonal matrix. The necessary conditions to make Q5 is positive definite, the following
inequalities must hold.
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.a>0
.b>0

d>0
19

_ 2
5. a>(a 2k)

wNR

Note all inequalities are realized except the fifth inequality. So, the matrix Q; is a negative
definition, and failed to achieve complete synchronization. Therefore modified the matrix P as follows:

Py, = diag(21/25,1/2,1/2,1/2,1/2,1/2)

Py, = diag(1/2,1/2,1/2,1/2,25/84,1/2)
P;; = diag(1/20,1/2,1/2,1/2,5/168,1/2)

all the above matrices are not diagonal Qs, therefore Lyapunov method failed. Based on Linearization
method, the characteristic equation and eigenvalues as

2+ 205 4 10542% 4 21023 1 8199 | ST, 39700 _
Al = _8/3
A, = —1.9967

As = — 1.1097 — 0.4060 i
A = — 1.1097 + 0.4060 i
As = — 5.3920 — 30.5554 i
A¢ = — 5.3920 + 30.5554

Note that all eigenvalues with negative real parts, and thus the Linearization method has succeeded
in achieving complete synchronization between systems (2) and (3) without any update compared to the
Lyapunov method and thus the proof has been completed. These results are justified numerically in Figure 4.

x1, y1
X2, y2
x3, y3

8

1 2 3 4 5 o 1 2 3 4 5 o 1 2 3 4 5
Time(sec) Time(sec) Time(sec)

x4, y4
x5, y5
X6, y6

1 2 3 4 5 o 1 2 3 4 5 o 1 2 3 4 5
Time(sec) Time({sec) Time(sec)

Figure 4. Complete synchronization between systems (2) and (3) with control (15)

4. CONCLUSION

In this paper, complete synchronization of a 6-D hyperchaotic system with a self-excited attractor is
proposed. based on nonlinear control strategy and two analytical methods; first is Lyapunov's, and the second
is the Linearization method. Through these two approaches we have found the difference between them and
what is the appropriate method in each approach for achieving complete synchronization and thus we showed
the best way observed that the Linearization method does not need to a auxiliary function or modifying this
function as a method Lyapunov. Thus the linearization method is better than the Lyapunov method in
achieving the desired one. Numerical results have been found to be the same results as we proposed.
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