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 This paper presents the performance of a fixed-point induction control 

(FPIC) technique working in conjunction with the non-linear control 

technique called zero average dynamics (ZAD) to control chaos in a buck 

converter. The control technique consists of a sliding surface in which  

the error tends to zero at each sampling period. A switch is controlled by 

using centered pulse width modulation (CPWM) control signal.  

The converter controlled with ZAD-FPIC has been simulated in Matlab and 

implemented using rapid control prototyping (RCP) in a DSP to make 

comparisons between simulation and experimental tests. To perform this 

comparison, some variations in the control parameter and the voltage 

reference are made in order to evaluate the performance of the system. 

Results are obtained with errors lower than 1 % which demonstrates the good 

performance of the control techniques. 
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1. INTRODUCTION 

The variable structure systems switched via centered pulse width modulation (CPWM) present  

a great number of dynamic behaviors when the control parameters are changed. Some studies of the DC-DC 

buck converter [1, 2] are obtained with analytical [3, 4] numerical [5] and experimental results [6, 7] all that 

for certain values of the parameters where instability, strange phenomena, chaos [8] period bands, and 

subharmonics are presented. Besides, one-period orbits and above were studied in [9], by using numerical 

simulation algorithms. Due to the discontinuous actions of the controller in conjunction with the global 

system, "chattering" appears increasing ripple and distortion at the output [10]. With the aim of reducing 

these problems and obtaining regulated signals at the output, the ZAD control technique (zero average 

dynamics) was proposed [5, 11-13] whereby using a sliding surface that is forced to have a zero average in 

each iteration. Herein, it considers the reference signal, the real value at the output, and its derivatives to 

calculate the duty cycle. This technique combines advantages such as fixed switching frequency, robustness, 

and low error. 

The controller with ZAD technique has shown good performance in numerical results as in [14-16] 

and in experimental results as in [13, 15, 17-21]. However, most of the implementations contemplate  

https://creativecommons.org/licenses/by-sa/4.0/
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a centered pulse width modulator (CPWM), mainly due to technical reasons related to current and voltage 

measurement in areas where they are not so affected by switching transient problems. In studies carried out  

in [16], where the converter is controlled by the ZAD technique, a new control technique called FPIC 

(control by induction to the fixed point) is proposed [22-24], which is useful for controlling unstable and/or 

chaotic systems. In the present work, it is proposed to control the converter studied extensively  

by [10, 13-15, 25] which will be controlled at the same time by the ZAD and FPIC techniques in order of 

regulate DC signals at the output with low steady state error. 

 

 

2. MODEL FOR CPWM WITH ZAD AND FPIC 

This section shows the ZAD and FPIC control algorithms with CPWM for an autonomous  

non-linear SISO system defined by (1), where x ∈  Rn with f and g vector fields defined ON Rn. Figure 1 

shows the electric circuit that corresponds to the power converter, which considers an inductor L, an internal 

resistance of the inductor rL , a capacitor C, and a resistance  R. With the above equations a non-linear model 

is obtained in system state variables as shown in (4). The state variables are the voltage in the capacitor (υc) 
and the current in the inductance (iL). The control variable (u) takes discrete values +1 and −1. This system 

can be represented as ẋ = Ax + Bu. As the control signal u takes values +1 or −1 shown in Figure 2, two 

different topologies are presented in each sampling period. This system will be controlled by a CPWM in 

which the system can be modeled as presented in (5). 

 

�̇� = 𝑓(𝑥) + 𝑔(𝑥) ⋅ 𝑢 (1) 
 

 

 
 

Figure 1. Electric circuit considered in the study 
 

 

By considering the circuit presented in Figure 1, (2) and (3) are obtained as follows: 

 

      𝑖𝐿 = 𝐶
𝑑𝜐𝑐
𝑑𝑡

+
𝜐𝑐
𝑅

 (2) 
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𝑑

2
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𝑑

2
< 𝑡 < 𝑇 −

𝑑

2

𝐴𝑥 + 𝐵, 𝑤𝑖𝑡ℎ 𝑢 = +1, 𝑇 −
𝑑

2
< 𝑡 < 𝑇

 (5) 

 

Biel, Fossas and Griño [13], proposed the ZAD control technique, which guarantees robustness, 

fixed switching frequency, and low error. The average function s(x) expressed in (6), called sliding surface, 
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requires zero at each switching period and that the output voltage (υc) follows the reference (υref). Numerical 

results for CPWM, presented in [14, 17, 15], and also experimental results presented in [19-21], have 

demonstrated the good operation of this technique. In (6), υc is the real voltage measured in the load or in  

the capacitor, υref is the reference voltage given by the user, and Ks is the time constant associated to the first 

order dynamic in the sliding surface. Now, the solution for the non homogeneous case of the state space 

system defined in (7) is presented in (8). Then the system is solved for the three sections shown in Figure 3; 

where the control signal u is observed for a single period (T). 

 

    𝑠(𝑥) = (𝜐𝑐 − 𝜐𝑟𝑒𝑓) + 𝐾𝑠(�̇�𝑐 − �̇�𝑟𝑒𝑓) (6) 

 

    �̇� = 𝐴𝑥 + 𝐵𝑢 (7) 

 

    𝑥(𝑡) = 𝑒𝐴𝑡𝑥(0) + ∫

𝑡

0

𝑒𝐴(𝑡−𝜏)𝐵𝑢(𝜏)𝑑𝜏 (8) 

 

 

  
 

Figure 2. Control signal u obtained with the centered pulse 

width modulator (CPWM) 

 

Figure 3. Three control signal conditions  

per period (T) 

 

 

For the first interval, Ax + B, with u = +1,   0 < t <
d

2
, the solution in function of time is 

represented in (9): 

 

𝑥(𝑡)(u=+1) = 𝑒
𝐴𝑡𝑥(0) − 𝐴−1[I − 𝑒𝐴𝑡]𝐵 (9) 

 

next, the initial value (x(d/2)) is calculated with (10) and that will be the intial condition for  

the second interval. 

 

𝑥(𝑑/2) = 𝑒𝐴(𝑑/2)𝑥(0) − 𝐴−1[I − 𝑒𝐴(𝑑/2)]𝐵 (10) 

 

Now, for the second interval, Ax − B, with u = −1, and 
d

2
< t < T −

d

2
; a new solution in time is obtained 

as expressed in (11): 

 

𝑥(𝑡)(u=−1) = 𝑒
𝐴𝑡𝑥(0) − 𝐴−1[I − 𝑒𝐴𝑡]𝐵 (11) 

 

and the initial condition for the third interval is defined as expressed in (12): 

 

𝑥(𝑇 − 𝑑/2) = 𝑒𝐴(𝑇−𝑑)𝑥(𝑑/2) + 𝐴−1[I − 𝑒𝐴(𝑇−𝑑)]𝐵 (12) 

 

finally, for the last interval, Ax + B, with u = +1, T −
d

2
< t < T, the time solution is defined as in (13): 
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𝑥(𝑡) = 𝑒𝐴𝑡𝑥(𝑇 − 𝑑/2) − 𝐴−1[I − 𝑒𝐴𝑡]𝐵 (13) 

 

solution for t = T is equal to the expressed in (14): 

 

𝑥(𝑇) = 𝑒𝐴(𝑑/2)𝑥(𝑇 − 𝑑/2) − 𝐴−1[I − 𝑒𝐴(𝑑/2)]𝐵 (14) 

 

Substituting (10) and (12) in (14), a general solution is obtained as shown in (15): 

 

𝑥(𝑇) = 𝑒𝐴T𝑥(0) + [−2𝑒𝐴(T−d/2) + 2𝑒𝐴(𝑑/2) + 𝑒𝐴𝑇 − I]A−1𝐵 (15) 

 

A discrete time solution, which are multiples for the values of T, is obtained with (16): 

 

𝑥((𝑘 + 1)𝑇)  = 𝑒𝐴𝑇𝑥(𝑘𝑇) + [−2𝑒𝐴(𝑇−𝑑/2) + 2𝑒𝐴(𝑑/2) + 𝑒𝐴𝑇 − 𝐼]𝐴−1𝐵 (16) 

 

2.1. ZAD and FPIC control 

To control the converter in real time, it is necessary to calculate the duty cycle (d), to determine  

the time of the switching period (T). This time is related to the intervals that the switch will be ON (d) and 

OFF (T − d). Thus, the equation that defines the duty cycle (d) to be applied at each iteration according to 

the ZAD and FPIC techniques is given by (17). By using x1, x2, the parameters of the filter LC, the parameter 

Ks, the reference signal, and the source voltage (E); the expressions s(x(kT)), ṡ+(x(kT)), ṡ−(x(kT)), and 

dss are calculated as shown in (18-22). 

 

 

𝑑(𝑘𝑇) =
𝑑_𝑧𝑎𝑑(𝑘𝑇) + 𝑁 ∗ 𝑑𝑠𝑠

𝑁 + 1
 

(17) 

 

𝑑_𝑧𝑎𝑑(𝑘𝑇) =
2𝑠(𝑥(𝑘𝑇)) + 𝑇�̇�−(𝑥(𝑘𝑇))

�̇�−(𝑥(𝑘𝑇)) − �̇�+(𝑥(𝑘𝑇))
 

(18) 

 

𝑑𝑠𝑠 =
𝑇 [𝑥1𝑟𝑒𝑓(ℎ𝑚 − 𝑎𝑝) + �̇�1𝑟𝑒𝑓(𝑎 + 𝑝) − �̈�1𝑟𝑒𝑓 − ℎ

𝐸
𝐿
]

−2ℎ
𝐸
𝐿

 

(19) 

 
where: 

 
𝑠(𝑥(𝑘𝑇) = (1 + 𝑎𝐾𝑠)𝑥1(𝑘𝑇) + 𝐾𝑠ℎ𝑥2(𝑘𝑇) − 𝑥1𝑟𝑒𝑓 − 𝐾𝑠�̇�1𝑟𝑒𝑓 (20) 

 

�̇�+(𝑥(𝑘𝑇)) = (𝑎 + 𝑎
2𝐾𝑠 + ℎ𝐾𝑠𝑚)𝑥1(𝑘𝑇) + (ℎ + 𝑎ℎ𝐾𝑠 + ℎ𝐾𝑠𝑝)𝑥2(𝑘𝑇) + ℎ𝐾𝑠

𝐸

𝐿
− �̇�1𝑟𝑒𝑓−𝐾𝑠�̈�1𝑟𝑒𝑓 

(21) 

 

 �̇�−(𝑥(𝑘𝑇)) = (𝑎 + 𝑎
2𝐾𝑠 + ℎ𝐾𝑠𝑚)𝑥1(𝑘𝑇) + (ℎ + 𝑎ℎ𝐾𝑠 + ℎ𝐾𝑠𝑝)𝑥2(𝑘𝑇) − ℎ𝐾𝑠

𝐸

𝐿
− �̇�1𝑟𝑒𝑓 − 𝐾𝑠�̈�1𝑟𝑒𝑓 

(22) 

 

 

3. SOFTWARE 

The implementation of ZAD and FPIC techniques in order to control the converter requires to 

configure the algorithm in a platform that provides good characteristics in terms of handling the signals with 

precision. The plataform has high sampling speed and is computationally effective, thus allowing the control 

to be executed in real time. Therefore, for the implementation of these control techniques, the DS1104 

DSPACE board is used. This device is programmed in Simulink-Matlab platform and there is a visualization 

interface that can be programmed depending on the need, this platform is called ControlDesk. Below in 

Figure 4, it is shown one by one the stages carried out in simulink to configure the complete control system. 
 

3.1. Analogue signal sampling (𝛖𝐜, 𝐢𝐋, iR and E) 

For the implementation of the ZAD and FPIC control techniques, it is necessary to know some 

values of constant parameters such as: L, C, rL, Fs, Fc, Ks and N. In addition, some system variables must be 

known in real time such as: capacitor voltage (υc), supply voltage (E), inductor current (iL), and the load (R), 

which is linear and can be estimated using the Ohm's law, so it is necessary to measure the load current (iR). 
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The DS1104MUX_ADC block shown in Figure 5 is used to carry out this first stage. This block has internal 

access to 4 multiplexed channels (ADCH1, ADCH2, ADCH3, and ADCH4) for data sampling and each one 

has 16-bit resolution. In this case, channel ADCH1 is used for sampling (υc), channel ADCH2 for the current 

in the inductor (iL), channel ADCH3 for current in the load (iR) and channel ADCH4 for the source  

voltage (E). Figure 5 shows amplifications of 10 times the signal for the four inputs (gain1, gain2, gain3, and 

gain 3) because the block makes an internal division by 10. Then, in order to have the signals with their real 

values, it is necessary to multiply by the gains av, ai, aR and aE; and the final signals are sensed. 

 

 

 
 

Figure 4. General outline of the control system with ZAD and FPIC 

 

 

 
 

Figure 5. Acquisition of signals at the DSP input 

 

 

3.2. Reference signal generation 

To execute the control techniques, it is necessary to have the reference signal, because the controller 

needs to have the reference that the user wants at the output. Figure 6 shows the block programmed in 

simulink that introduces the reference signal and the calculation of its first and second derivative. The block 

is compiled into the DSP and by using the ControlDesk software [26] the reference signal, amplitude, and 

frequency values can be changed manually. 
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3.3. ZAD and FPIC control 
These two techniques were implemented using an embedded function block. The control block is 

shown in Figure 7, in which the values of constant parameters and those acquired from the real system are 

entered. Thus, the duty cycle is calculated in this block by implementing the (17-20). 
 

 

 
 

Figure 6. Reference signals 
 

 

 
 

Figure 7. Execution blocks for controllers (ZAD and FPIC) 
 

 

4. RESULTS AND ANALYSIS  

The results presented below are taken from an experimental prototype consisting of a single-phase 

inverter as described above, powered by a dual source BK PRECISION 1761 configured to provide  

±30 Volts. The parameters of the converter and the controllers are shown in Table 1. In case of regulation, it 

is very important that the value of the capacitor used in the filter be large for smaller ripple. Therefore, in  

DC-DC signal regulation the value of C = 229 μF was used. The performance of the ZAD and FPIC control 

techniques applied to the drive when sensing the supply voltage (±E) is shown below. The control parameter 

with ZAD for this case is Ks = 2). Figure 8 (a) shows the experimental behavior when the signal has  

a positive value in the reference voltage (υref = 80 Volts DC). This Figure shows the current in the inductor 

(iL) (purple), which has triangular behavior and similar switching frequency to the CPWM signal. 
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Additionally, this Figure shows the current in the load, which is proportional to the voltage in the capacitor 

and without ripple. Figure 8 (b) shows the experimental behavior when the signal has a negative value in  

the reference voltage (υref = −80 Volts DC). This Figure shows that the current in the inductor and  

the current in the load are negative. 

Figure 9 shows four signals measured with the Tektronix TDS2014 oscilloscope. The first signal 

(CH1) correspond to the current in the load with a value approximately 130 mA, because the load impedance 

is 151.3Ω. The second signal (CH2) presents the supply voltages with + E and – E values; this channel has  

a gain of 50 V/div. In channel CH3, the oscilloscope shows the output voltage at the load, regulated to 20 V; 

note that this channel has a gain of 5V/div. Finally, channel CH4 the current in the inductance is measured; 

this channel has a gain of 500 mV/div. Figure 10 shows the behavior of the converter when the reference of 

20 Volts is given by the user when parameter Ks = 2. These signals were obtained by using the acquisition 

interface designed with the DS1104 board. This zone corresponds to the stable state where the drive regulates 

with low voltage errors of approximately ±0.5 % and the duty cycle fluctuates between 0.82 and 0.85. 
 

 

Table 1. Parameters of the converter and controllers 
Parameter and Description Valor 

R = Load resistance 151.3 Ω 

C= Capacitance 229 μf 
L = Inductance 3,945 mH 

rL= Internal resistance 4 Ω 

E = Input voltage ±30 V (Dual Source) 

Fc= Switching frequency 5 kHz 

Fs= Sample rate 25 kHz 

N = Control parameter with FPIC 1 

 

 

 
(a) 

 

 
(b) 

 

Figure 8. Voltage measured in the load obtained for the experimental results: (a) with a positive value in  

the reference voltage (υref = 80 V), and (b) with a negative value in the reference voltage (υref = −80 V) 
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Figure 9. Outputs at the oscilloscope 

 

 

 
 

Figure 10. Output voltage, error and duty cicle with Ks = 2 

 

 

Next, a variation of the control parameter Ks from 0 to 2 is carried out, having the control parameter 

N = 1 fixed. This is performed in order to determine the dynamics present in the system variables when  

the parameter Ks is changed. Figure 11 shows the dynamics present in the controlled variable υc for a range 

of Ks values between 0 and 2. Figure 11 (a) shows the simulated results and Figure 11 (b) shows the results 

obtained experimentally. In this Figure, from 1.2 to 2 the system is regulated and the error present in this 

zone is less than ±0.5 %. For values of the parameter Ks less than 1.2, the system does not regulate well, 

chaos is presented, and the error increases until the system is switched OFF. In the simulated bifurcations 

diagrams, there are nT periodic orbits when the control parameter Ks is changed, which are not observed in 
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the experimental results, as the sampling would have to be synchronized in the real model as in  

the simulation. However, there are noises that are added to the real signals. Figure 11 (b) shows  

the bifurcation diagram obtained with the experimental test on a Tektronix TDS2014 oscilloscope, channel 

one (CH1) with a gain of 5 volts per division. Therefore, the signal has low error in the steady state operation 

for values close to 2. Figure 12 shows the error obtained in the experimental test. This image was obtained by 

using the acquisition interface with board DS1104. The error obtained is less than 3% for all Ks values 

greater than 0.7; thus, we can conclude that the controller regulates well the output voltage of the circuit. 

 

 

 
(a) 

 

 
(b) 

 

Figure 11. Bifurcations diagram in υc vs. Ks: (a) simulation test, and (b) experimental test 
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Figure 12. Experimental bifurcations diagram error vs Ks 
 

 

5. CONCLUSION 

The ZAD and FPIC controllers implemented digitally in a DSP meet the requirements of fixed 

frequency switching, robustness and good performance in DC signal regulation tasks. Bifurcation diagrams 

of the output voltage υc are shown for a range of the control parameter Ks between (0 and 2), it is concluded 

that the simulated and the experimental results are qualitatively and quantitatively similar. Bifurcation 

diagrams obtained experimentally for regulation of DC signals with N = 1, it is concluded that for large 

values of Ks the system regulates well with errors in voltage less than 0.5%. If the value of Ks is reduced,  

an area is reached where the system begins to regulate with greater error, showing nT periodic oscillations. 

Then, when reducing the parameter Ks further some chaotic dynamics are presented and therefore greater 

instability. The critical value of stability calculated numerically was verified experimentally, being  

an important part of the design in the experimental prototype. 
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