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 In this paper, an analytical and numerical study is conducted on the dynamics 
of the current in the condenser of a boost converter controlled with ZAD,  

using a pulse PWM to the symmetric center. A stability analysis of periodic 

1T-orbits was made by the analytical calculation of the eigenvalues  

of the Jacobian matrix of the dynamic system, where the presence of flip  
and Neimar–Sacker-type bifurcations was determined. The presence of chaos, 

which is controlled by ZAD and FPIC techniques, is shown from the analysis 

of Lyapunov exponents. 
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1. INTRODUCTION 

DC-DC converters are devices that act as bridges for energy transfer between sources and loads, which 

leads to the question of how to transfer energy from a source with 𝑣𝑖𝑛 amplitude to a load that needs 𝑣𝑟𝑒𝑓 

voltage and with a minimum loss of power [1]. Among the multiple applications that these converters have 

been the power sources of computers, distributed power systems, and power systems in electric vehicles, 

aircraft, etc [2, 3]. Therefore, these converters have been a focus of research into the theories of dynamic 

systems. On the other hand, it has been established that around 90 % of electrical energy is processed through 

power converters before its final use [4]. There are different types of DC-DC converters, each with their own 

purpose. In some, the output voltage is higher than that of the input while in others it is lower. Currently,  

we have among others, boost, buck, and buck–boost converters [5, 6]. 

Of special interest is the boost converter [7], which is a voltage booster circuit that is widely used at 

the industrial level and that exhibits a nonlinear behavior by virtue of its switching system. Power converters, 

due to their configuration, can be seen as systems of variable structures [8, 9]. In the 1980s, drivers in sliding 

modes for this type of system began to be designed. However, this type of design has the disadvantage of 

generating “chattering” in the system, which increases ripple and distortion at the output [10]. 

https://creativecommons.org/licenses/by-sa/4.0/
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In 2001, the ZAD control technique (zero average dynamic) was reported for the first time [11, 12]. 

This technique defines a switching surface and forces the dynamic system that governs the converter to evolve 

on that surface on average. This technique also guarantees a fixed switching frequency [13]. It is a design in 

which an auxiliary output is fixed and, based on this, it is defined which digital control action guarantees  

the average of the auxiliary output in each iteration [14]. The ZAD technique has been implemented in  

the buck converter and has shown good results in terms of robustness and low output error [15]. 

In [9], an analysis of the dynamics of a boost converter controlled with ZAD was conducted using  

the switching surface 𝑠(𝑥(𝑡)) = 𝑘1(𝑥1(𝑡) − 𝑥1𝑟𝑒𝑓) + 𝑘2(𝑥2(𝑡) − 𝑥2𝑟𝑒𝑓) and it was shown analytically that  

the approximation of the switching surface by straight lines is as good as desired. In other words, the error in 

the approximation can be made as small as we want; moreover, the maximum and minimum of the error in  

the approximation occur just at the ends of the sub-intervals, a fact that was corroborated by simulation in 

MATLAB. Another contribution that was obtained from this study is that the ZAD technique implemented in 

the boost converter presents good regulation due to the presence of zones in the bi parameter space 𝑘1 × 𝑘2 in 

which the system regulates from 1% to 7%, being greater in the areas where regulation of 5% and 1% is 

presented. From these results, this article analyzes the dynamics of the current in the condenser of a boost 

converter controlled with the ZAD technique using a switching surface defined as a linear combination of  

the error in the voltage, error in the current, and the error in the condenser current as given by: 
 

𝑠(𝑥(𝑡)) = 𝑘1(𝑥1(𝑡) − 𝑥1𝑟𝑒𝑓) + 𝑘2(𝑥2(𝑡) − 𝑥2𝑟𝑒𝑓) + 𝑘3(𝑥3(𝑡) − 𝑥3𝑟𝑒𝑓)  

 

 

2. MATHEMATICAL MODEL 

The boost-type converter is a voltage booster circuit that uses the characteristics of the inductor and  

the capacitor as energy storage elements to raise the current coming from the power supply and then inject it into 

the condenser, thus producing higher voltage levels in the load than those of the source [16]. The basic scheme  

of a boost converter is shown in Figure 1, where 𝑣𝑖𝑛 is the input voltage, 𝑖 is the current in the inductance of  

the inductor 𝐿, 𝑆 is the switch, 𝐷 is the diode, 𝐶 is the capacity of the condenser, and 𝑣 is the voltage in the load. 

The boost converter has two conduction modes, namely [7, 17]: 

− Continuous conduction mode (CCM): if the MOSFET and the diode are in complementary conditions 

(𝑆 = ON, 𝐷 = OFF or 𝑆 = OFF, 𝐷 = ON) 

− Discontinuous conduction mode (DCM): if the current that flows through the diode becomes equal to 

zero when the converter is operating with u = 0, then the diode will stop driving (𝑆 = OFF, 𝐷 = OFF). 

The system of equations described by this converter is as follows: 
 

𝑑𝑣

𝑑𝑡
=

−1

𝑅𝐶
𝑣 +

1

𝐶
𝑖(1 − 𝑢), (1) 

 

 
𝑑𝑖

𝑑𝑡
=

−1

𝐿
𝑣(1 − 𝑢) +

𝑣𝑖𝑛

𝐿
. (2) 

 

Figure 2 shows the scheme of a boost converter considering the current 𝑖𝐶 in the condenser 𝐶. 
 
 

  
  

Figure 1. Scheme of a boost converter Figure 2. Schematic of a boost converter 

considering the current in condenser 𝐶 
 

 

𝑞, 𝐶, and 𝑣𝐶 = 𝑣  represent the load, capacitance, and voltage in capacitor 𝐶, respectively. It is known that  

𝑞 = 𝐶 ⋅ 𝑣𝐶 (𝐶 is constant, while 𝑞 and 𝑉𝐶  depend on time). From this last equality we obtain 
 

𝑑𝑞

𝑑𝑡
= 𝐶 ⋅

𝑑𝑣𝐶
𝑑𝑡

 

as 
𝑑𝑞

𝑑𝑡
= 𝑖𝐶 = 𝑖𝐶(𝑡), 
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and therefore 
 

𝑖𝐶 = 𝐶 ⋅
𝑑𝑣𝐶

𝑑𝑡
. (3) 

 

On the other hand, because 𝐶 and 𝑅 are in parallel, 𝑣𝐶 . Thus, replacing in (4) we obtain 𝑖𝐶 = 𝐶 ⋅
𝑑𝑣

𝑑𝑡
, where 

 
1

𝐶
⋅ 𝑖𝐶 =

𝑑𝑣

𝑑𝑡
. (4) 

 

𝐶 ≠ 0 because we are working in continuous conduction mode using (4) and (5) as 
 

1

𝐶
⋅ 𝑖𝐶 =

−1

𝑅𝐶
𝑣 +

1

𝐶
𝑖(1 − 𝑢), 

 

where 
 

𝑖𝐶 =
−1

𝑅
𝑣 + 𝑖(1 − 𝑢). (5) 

 

deriving (6) with respect to t, we have 
 

𝑑𝑖𝐶

𝑑𝑡
=

−1

𝑅

𝑑𝑣

𝑑𝑡
+

𝑑𝑖

𝑑𝑡
(1 − 𝑢). (6) 

 

on the other hand, using (2) and (3) in (6) we obtain: 
 

𝑑𝑖𝐶

𝑑𝑡
=

1

𝑅2𝐶
𝑣 −

1

𝑅𝐶
𝑖(1 − 𝑢) + [

𝑣𝑖𝑛

𝐿
−
1

𝐿
𝑣(1 − 𝑢)] (1 − 𝑢). (7) 

 

the system to be studied is: 
 

𝑑𝑣

𝑑𝑡
=

−1

𝑅𝐶
𝑣 +

1

𝐶
𝑖(1 − 𝑢), (8) 

 
𝑑𝑖

𝑑𝑡
=

−1

𝐿
𝑣(1 − 𝑢) +

𝑣𝑖𝑛

𝐿
, (9) 

 

𝑑𝑖𝐶

𝑑𝑡
=

1

𝑅2𝐶
𝑣 −

1

𝑅𝐶
𝑖(1 − 𝑢) + [

𝑣𝑖𝑛

𝐿
−
1

𝐿
𝑣(1 − 𝑢)] (1 − 𝑢). (10) 

 

Making the change of variables: 
 

𝜏 =
𝑡

√𝐿𝐶
 , 𝑥1 =

𝑣

𝑣𝑖𝑛
, 𝑥2 = √

𝐿

𝐶

𝑖

𝑣𝑖𝑛
 and 𝑥3 =

𝑅

𝑣𝑖𝑛
𝑖𝐶 , 

 

where 𝜏 is the new variable with respect to which the derivatives are going to be taken. Note that now 𝑥3 is  

the dimensionless variable associated with the current in the condenser. Substituting in (9), we have 
 

𝑑𝑣

𝑑𝑡
=

−1

𝑅𝐶
𝑣 +

1

𝑐
𝑖(1 − 𝑢)

𝑣𝑖𝑛

√𝐿𝐶

𝑑𝑥1

𝑑𝜏
=

−1

𝑅𝐶
𝑣𝑖𝑛𝑥1 +

1

𝐶
𝑣𝑖𝑛𝑥2√

𝐶

𝐿
(1 − 𝑢)

𝑑𝑥1

𝑑𝜏
= −√

𝐿

𝑅2𝐶
𝑥1 + 𝑥2(1 − 𝑢).

 (11) 

by doing 𝛾 = √
𝐿

𝑅2𝐶
, the system is as follows: 

 

�̇�1 = −𝛾𝑥1 + 𝑥2(1 − 𝑢)

�̇�2 = −𝑥1(1 − 𝑢) + 1

�̇�3 = 𝛾
−1(1 − 𝑢)𝑥1 − 𝛾𝑥3 + 𝛾

−1(1 − 𝑢).

 

 

the system is expressed matrixically as follows: 
 

(

�̇�1
�̇�2
�̇�3

) = (

−𝛾 (1 − 𝑢) 0
(𝑢 − 1) 0 0

𝛾−1(1 − 𝑢) 0 −𝛾
)(

𝑥1
𝑥2
𝑥3
)

+(

0
1
𝛾−1(1 − 𝑢)

)

. 
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in compact form, it is expressed as �̇� = 𝐴𝑖𝑥 + 𝐵𝑖, where 𝑖 takes the value of 1 or 2. For 𝑖 = 1, we take 𝑢 = 1 and so 

 

𝐴1 = (
−𝛾 0 0
0 0 0
0 0 −𝛾

) , 𝐵1 = (
0
1
0
).  

 

for 𝑖 = 2, we take 𝑢 = 0  and so 

 

𝐴2 = (
−𝛾 1 0
−1 0 0
𝛾−1 0 −𝛾

) , 𝐵2 = (
0
1
𝛾−1

). 

 

2.1.  Pulse width modulation 

When the PWM modulator (Pulse Width Modulation [18]) is applied as shown in Figure 3, 𝑢 will be 

the control variable of the system and it will be specified in the following way: 

 

𝑢 =

{
 
 

 
 1                               if       nT ≤ t ≤ nT +

d

2

0               if     nT +
d

2
< t < (n + 1)T −

d

2

    1           if         (n + 1)T −
d

2
≤ t ≤ (n + 1)T

. (12) 

 

2.2.  Steady state duty cycle 

In steady state, the input signal in the system follows the reference signal. For this work, the reference 

signal is constant and equal to the vector 

 

(

𝑥1𝑟𝑒𝑓
𝑥2𝑟𝑒𝑓
𝑥2𝑟𝑒𝑓

) = (

𝑥1𝑟𝑒𝑓

𝛾𝑥1𝑟𝑒𝑓
2

𝑥1𝑟𝑒𝑓+1

𝛾2𝑥1𝑟𝑒𝑓

). (13) 

 

by replacing (14) in (17), we get the expression for the duty cycle 𝑑∗ in steady-state: 
 

𝑑∗ =
𝑇(𝑥1𝑟𝑒𝑓−1)

𝑥1𝑟𝑒𝑓
. (14) 

 

 

 
 

Figure 3. PWM modulator 
 

 

3. CONTROL STRATEGY 

3.1.  ZAD control technique 

With this technique, the duty cycle is calculated; that is, the time in which the switch is open or closed. 

This technique consists of the following [8, 19, 20]: 

− Define a switching surface 𝑠(𝑥 (𝑡)) = 0 in which the system will evolve on average 

− Set a 𝑇 period  

− Impose that 𝑠 have zero mean in each cycle: 
 

∫
(𝑛+1)𝑇

𝑛𝑇
𝑠(𝑥(𝑡))𝑑𝑡 = 0, (15) 

 

𝑠(𝑥(𝑡)) = 𝑘1(𝑥1(𝑡) − 𝑥1𝑟𝑒𝑓) + 𝑘2(𝑥2(𝑡) − 𝑥2𝑟𝑒𝑓)

+𝑘3(𝑥3(𝑡) − 𝑥3𝑟𝑒𝑓)
 

 

The last condition guarantees that there will only be a finite number of commutations per period. 
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3.2.  Calculation of the duty cycle 

The duty cycle is calculated using the ZAD technique, approaching the switching surface by straight 

lines and using directly the equality ∫ 𝑠
(𝑛+1)𝑇

𝑛𝑇
(𝑥(𝑡))𝑑𝑡 = 0. Solving the integral and equaling to zero and 

solving for 𝑑, we get that: 

 

𝑑𝑇 =
2𝑠(𝑥(𝑛𝑇))+𝑇�̇�2(𝑥(𝑛𝑇))

�̇�2(𝑥(𝑛𝑇))−�̇�1(𝑥(𝑛𝑇))
, (16) 

 

where 𝑑𝑇 is a real number between 0 and 𝑇. However, 

− if 𝑑𝑇 < 0, then we force the system to evolve according to topology 1. 

− if 𝑑𝑇 > 𝑇, then we force the system to evolve according to topology 2. 

− if the denominator of (16) is equal to zero, then we require the system to evolve according to topology 1 

if the numerator 2𝑠(𝑥(𝑛𝑇)) + 𝑇𝑠2(𝑥(𝑛𝑇)) > 0, and that it evolves according to topology 2 if 

2𝑠(𝑥(𝑛𝑇)) + 𝑇𝑠2(𝑥(𝑛𝑇)) < 0. 

 

3.3.  Lyapunov exponents 

Lyapunov Exponents are a mathematical tool by means of which the speed of convergence or 

divergence of two orbits of a differential equation can be determined and whose initial conditions differ 

infinitesimally from one another [21, 22]. A Lyapunov exponent zero or negative indicates a strong relationship 

with the initial state and a direct dependence on it. However, a positive exponent indicates the existence of 

chaotic activity [23]. 

Definition 1 

Let 𝐷F(x) be the Jacobian matrix of the Poincaré application [24] associated with the system of 

equations that governs the converter and let 𝜆𝑖(𝐷F(x)) be the 𝑖-th eigenvalue of  𝐷F(x). The Lyapunov 

exponent 𝐿𝑖 for each eigenvalue is given by: 
 

𝐿𝑖 = lim
𝑛→∞

(
1

𝑛
∑𝑛𝑘=0 𝑙𝑜𝑔|𝜆𝑖(𝐷F(x))|) (17) 

 

 

4. CHAOS  

The term “chaos” was first formally introduced in mathematics by Li and Yorke; however,  

there is still no universally accepted or unified definition within the rigor of scientific literature [25]. Chaos is 

a word that originally denoted the complete lack of form or systematic organization, but now is often used to 

indicate the absence of a certain order. A more accepted definition is that of a long-term aperiodic behavior in 

a deterministic system and exhibits dependence sensitive to initial conditions. That is, it is an irregular behavior 

in which any variation in any initial condition can cause a drastic change in the evolution of the system as 

shown in Figure 4. For the study of chaos, we use the following definition [8]. 

Definition 2 

A system is chaotic if it satisfies the following conditions: 

− Possesses positive Lyapunov exponents 

− Has a sensitive dependence on initial conditions in its domain 

− It is bounded 

 

 

 
 

Figure 4. Evolution of the system 



TELKOMNIKA Telecommun Comput El Control   

 

On the dynamic behavior of the current in the condenser of… (Dario Del Cristo Vergara Perez) 

1683 

4.1.  Bifurcations 

A bifurcation is a qualitative change of a dynamic system that occurs when one or more of the system 

parameters varies [26]. A dynamic system can have several stable equilibrium solutions. For a given set of 

parameters and an initial condition, the system converges to an equilibrium solution (attractor); however,  

if the parameters are varied, then it is possible that the equilibrium solution becomes unstable. A bifurcation 

diagram is a graph showing the behavior of the solutions of a long-term system when one or several parameters 

of the system are varied. 

 

 

5. NUMERICAL RESULTS 

5.1.   Performance of the ZAD strategy with approach by straight lines to sections of the switching surface 

Below are numerical results of the behavior of the variables of the state of the system and of the duty 

cycle when studying the dynamics of the boost converter considering the current in condenser 𝐶 when applying 

the ZAD technique of the pulse to the symmetric center. The system is simulated while fixing the parameters 

𝑘1,𝑘2, 𝑘3, 𝑇 = 0.18, and 𝛾 = 0.35. In Figure (5), the values 𝑘1 = 1.5, 𝑘2 = 0.5, 𝑘3 = 0.5, and 𝑇 = 0.18 were 

taken. We can see that 

 
|2.5000 − 1.0000| = 1.5000
|2.1875 − 0.3500| = 1.8375
|11.4286 − 16.3265| = 1.8375

.  

 

Whose relative errors are 60 % for the voltage and 84 % for the current and 42.85 % for the current in the 

condenser 𝐶, which allows us to say that the boost converter system does not have a good ability to follow the 

constant reference signal, considering the current in the condenser 𝐶. 

 

5.2.  Flip-type bifurcations 

These orbits are given when the eigenvalue goes from being stable to unstable by crossing −1.  

This type of bifurcation is characterized by the fact that the 1𝑇-periodic orbit becomes unstable and  

a 2𝑇-periodic orbit is born; that is, a doubling period occurs [8]. Figure 6 shows a configuration of parameters 

where 𝛾 = 0.35, 𝑇 = 0.18 s, with initial condition (2.5,2.1875,11.4286)𝑇, 𝑘1 = 0.5, 𝑘2 = 0.5, and the point 

of interest is found varying at 𝑘3 ∈ [−1.6,0]. From this figure, we see that the 1𝑇-periodic orbit loses its 

stability when 𝑘3 ≈ −1.49. When reviewing the eigenvalues of the Jacobian matrix as shown in Table 1, 

associated with the Poincaré application, it can be seen that the bifurcation obtained is of the flip type because 

for a value of the parameter 𝑘3 ≈ −1.49, it goes from being stable to unstable. 
 

 

  

  

Figure 5. Behavior of regulation Figure 6. Bifurcation diagram of the current  

in the condenser as a function of k3, k1 = 0.5, and k2 = 0.5 
 

 

Table 1. Eigenvalues Associated with the Variation of k3, k1 = 0.5 and k2 = 0.5 
𝑘3   𝜆1   𝜆2  𝜆3  𝜌 

-1.6000  -0.9988   0.9067   0.9755 0.9988 

-1.2800  -1.0025  0.9051  0.9736 1.0025 

-0.9600 -1.0087  0.9023  0.9708 1.0087 

-0.6400  -1.0210  0.8961  0.9658 1.0210 

-0.3200  -1.0578  0.8743  0.9560 1.0578 

 0.9389  -3.3278  0.2891 3.3278 
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5.3.  Neimar-Sacker-type bifurcations 

This type of bifurcation is characterized specifically because when examining the evolution  

of the eigenvalues of the Jacobian matrix of the Poincaré map, these eigenvalues are complex and conjugated; 

in addition, the module approaches 1. Figure 7 shows a configuration of parameters 𝛾 = 0.35, 𝑇 = 0.18 s and 

initial condition (2.5,2.1875,11.4286)𝑇, 𝑘1 = 0.5, 𝑘2 = −0.5, and the point of interest is found varying 𝑘3 ∈
[−0.204,−0.19]. From this figure, we have that the 1𝑇-periodic orbit loses its stability when 𝑘3 ≈ −0.193. 
When reviewing the eigenvalues of the Jacobian matrix as shown in Table 2 associated with the Poincaré 

application, it is observed that the bifurcation obtained is of the Neimar–Sacker type because for a value  

of the parameter 𝑘3 ≈ −0.193, conjugated complex eigenvalues enter the unit circle. 
 

 

 
 

Figure 7. Bifurcation diagram of the current in the condenser as a function of 𝑘3,  𝑘1 = 0.5, and 𝑘2 = −0.5 
 

 

5.4.  Presence of chaos 

Figure 8 shows the presence of chaos in the boost converter when the current in condenser 𝐶 is 

considered in the range 𝑘3 ∈ [−1.45,0.027] due to the presence of positive Lyapunov exponents. 
 

 

 
 

Figure 8. Variation of the Lyapunov exponents as a function of 𝑘3, 𝑘1 = 0.5, and 𝑘2 = 0.5 
 

 

Table 2. Eigen values associated with the variation of 𝑘3,  𝑘1 = 0.5, 𝑘2 = −0.5 
𝑘3   𝜆1   𝜆2  𝜆3  𝜌 

-0.2200   −0.7574 + 0.0000𝑖 1.0789 + 0.0344𝑖 1.0789 − 0.0344𝑖 1.0795 

 -0.1900   −0.9031 + 0.0000𝑖 0.9872 + 0.0551𝑖 0.9872 − 0.0551𝑖  0.9888 

-0.1600  −0.9348 + 0.0000𝑖 0.9711 + 0.0403𝑖 0.9711 − 0.0403𝑖 0.9719 

-0.1300  −0.9487 + 0.0000𝑖 0.9644 + 0.0296𝑖 0.9644 − 0.0296𝑖 0.9648 

-0.1000 −0.9564 + 0.0000𝑖 0.9607 + 0.0208𝑖 0.9607 − 0.0208𝑖 0.9609 

 

 

6. CHAOS CONTROL WITH FPIC 

In order to apply FPIC technique [20], we consider a discrete dynamic system described by a set of: 

 

𝑥𝑘+1 = 𝑓(𝑥𝑘, 𝑢(𝑥𝑘)),  



TELKOMNIKA Telecommun Comput El Control   

 

On the dynamic behavior of the current in the condenser of… (Dario Del Cristo Vergara Perez) 

1685 

where 𝑥𝑘 ∈ ℝ
𝑛, 𝑢: ℝ𝑛 → ℝ, 𝑓: ℝ𝑛+1 → ℝ𝑛, suppose that the system has a fixed point 

 

(𝑥∗, 𝑢(𝑥∗)):= (𝑥∗, 𝑢∗).  

 

When calculating the Jacobian of the system in this fixed point, we obtain 𝐽 = 𝐽𝑥 + 𝐽𝑢, where 

 

𝐽𝑥 = (
∂𝑓

∂𝑥
)
(𝑥∗,𝑢∗)

     𝑎𝑛𝑑     𝐽𝑢 = (
∂𝑓

∂𝑢

∂𝑢

∂𝑥
)
(𝑥∗,𝑢∗)

.  

 

If the spectral radius of 𝐽𝑥 is less than one (𝜌(𝐽𝑥) < 1), then there is a control signal 

 

�̂�(𝑘) =
𝑢(𝑥(𝑘))+𝑁𝑢∗

𝑁+1
,  

that guarantees the stability of the fixed point (𝑥∗, 𝑢∗) for some 𝑁 ∈ ℝ+. 

Considering the duty cycle of the system as the variable to be controlled, we modify the duty cycle as follows: 

 

𝑑(𝑘) =
𝑑𝑇+𝑁𝑑

∗

𝑁+1
, (18) 

 

where 𝑑(𝑘) is the duty cycle to be applied, 𝑑𝑇 is the duty cycle obtained in (17), 𝑑∗is the steady-state duty 

cycle (15), and 𝑁 is a positive arbitrary constant. 

Figure 9 shows that the FPIC technique is applicable to the system because the variation of the spectral 

radius in function of 𝛾 is less than 1 for different values of 𝛾. When applying FPIC to the boost converter 

controlled with ZAD and considering the current in the condenser, in Figure 10 it is shown that when choosing 

𝑁 = 0.01, the range in which the system presents chaotic behavior is reduced for 𝑘3 parameter. Figure 11 

shows that by choosing 𝑁 = 0.04 , the range of chaotic behavior for 𝑘3 parameter is further reduced.  
 

 

  
  

Figure 9. Spectral radio as a function of 𝛾 Figure 10. Voltage bifurcation diagram  

as a function of 𝑘3 with 𝑁 = 0.01 
 

 

 
 

Figure 11. Voltage bifurcation diagram as a function of 𝑘3 with 𝑁 = 0.04 
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Figure 12 shows that when choosing 𝑁 = 0.06, the chaos is almost completely reduced, which allows 

us to conclude that as we increase the value of the 𝑁 constant of FPIC control, the zone of chaos of the system 

disappears. Figure 13 gives the levels in which the FPIC technique controls the chaos of the system. The blue 

color corresponds to areas where chaos is controlled and red corresponds to the presence of chaos. It is observed 

that for 𝑁 ≈ 0.1155, the chaos has already been completely eliminated for the set of considered values. 

 

 

  
  

Figure 12. Voltage bifurcation diagram  

as a function of 𝑘3 with 𝑁 = 0.06 

Figure 13. Dimensions for the N constant  

of FPIC control 

 

 

7. CONCLUSIONS 

The system of differential equations that governs the dynamics of a boost converter was obtained 

when the current in the condenser is considered. Additionally, the boost converter dynamics was made  

when considering a switching surface that is a function of the current in the condenser, and the stability of  

the 1𝑇-periodic orbit for the boost converter was determined when the current in the condenser is considered 

by the exponents of Lyapunov. The ZAD strategy allowed us to obtain an exact expression for the duty cycle, 

which facilitates a more precise analysis of the dynamics of the converter. The current in the condenser for  

the ZAD-controlled system presents complex dynamics such as the existence of Neimar–Sacker-type 

bifurcation and chaotic behavior, which are determined by the variation of the self-values of the Jacobian 

matrix and the Lyapunov exponents, respectively. The FPIC technique works properly when controlling system 

chaos, which is important when conducting an experimental prototype. By simulating the system with the FPIC 

technique, it was shown that the range of stability of the parameter associated with the current is wide. 
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