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 Compressive sensing (CS) is a new attractive technique adopted for linear time 

varying channel estimation. orthogonal frequency division multiplexing 

(OFDM) was proposed to be used in 4G and 5G which supports high data rate 
requirements. Different pilot aided channel estimation techniques were 

proposed to better track the channel conditions, which consumes bandwidth, 

thus, considerable data rate reduced. In order to estimate the channel with 

minimum number of pilots, compressive sensing CS was proposed to 
efficiently estimate the channel variations. In this paper, a novel delay 

dictionary-based CS was designed and simulated to estimate the linear time 

varying (LTV) channel. The proposed dictionary shows the suitability  

of estimating the channel impulse response (CIR) with low to moderate 
Doppler frequency shifts with acceptable bit error rate (BER) performance. 

Keywords: 

Channel estimation 

Compressive sensing 

LTV channel 

OFDM 
This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Maryam K. Abboud, 

College of Information Engineering,  

Al-Nahrain University, Iraq. 

Email: maryamkhalifa_90@yahoo.com 

 

 

1. INTRODUCTION 

The performance of high data rate transmissions over wireless fading channels severely degraded due 

to the multi path effects which causes inter symbol interference (ISI). In order to combat the fading effects, 

OFDM has been widely adopted to wireless transmission [1-8]. The multipath propagation causes a time 

varying channel state information (CSI), which needed to be predicated or estimated using channel estimation 

techniques in order to recover the transmitted signal. Pilot aided channel estimation is the widely used 

technique begins from the traditional techniques such as, least square (LS) and linear minimum mean square 

(LMMS), ending with many recent ones used to improve the estimation performance [2, 9]. 

Compressive sensing (CS) is one of the recent techniques adopted for channel estimation in OFDM 

systems by exploiting channel sparsely representation with dictionary basis [10]. Several approaches have been 

employed to construct matrices in order to represent the channel in a sparse manner such as, discrete Fourier 

transform (DFT) and random dictionaries. These approaches do not consider the time variation property of  

the channel since the time varying channel parameters aren't taken into account [11-14].  

The main contribution of this paper is, the design of a novel delay dictionary-based CS technique to 

overcome the problem of the dictionary proposed by [15] in estimating LTV channel in the presence of Doppler 

frequency shifts. In [15], a sample spaced delay dictionary was proposed to recover the CSI using CS in 

multiple input multiple output (MIMO)-OFDM system. The concept of the research based on estimate  

the channel coefficients for a time varying channel considering the useful OFDM symbol duration regarding 

the guard band, and tacking the delay profile into account. Considering channel delay parameters, the dictionary 

proposed by [15] improves its ability to recover the CSI even when number of pilots reduced, while it fails  
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in estimating LTV channel coefficients in the presence of Doppler effect since it exploits the time variability 

characteristic of the channel. Which leads to a conclusion that, the dictionary proposed by [15] can't be applied 

for channel estimation in LTV channels since it doesn't sense the Doppler effect of the channel. 

The rest of this paper is organized as follows, in section 2, a brief introduction to CS theory introduced 

with the required analysis of LTV channel and the proposed system model for sparse channel estimation. 

Simulation tests, required system parameters, and test results are introduced in section 3. Finally, the main 

concluded remarks and future work are listed in section 4. 

 

 

2. LTV CHANNEL ANALYSIS AND ESTIMATION BASED CS THEORY 

2.1.  Compressive sensing 

Since the idea behind signal sparsity appears, many publications of sparse signal representations and 

compressive sensing introduced especially in signal processing community [16]. With compressive sensing,  

a real finite signal  𝑥 ∈ 𝑅𝑀, can be expressed in an orthonormal basis; 

 

x = ∑ 𝜓𝑖𝜃𝑖
𝑀
1           (1) 

 

where 𝜓 = [𝜓1𝜓2 …𝜓𝑀] represents the orthonormal basis, and 𝜃 = [𝜃1𝜃2 …𝜃𝑀] is the sparse vector where  

the number of non-zero elements (K<<M) much smaller than the number of zero elements and named as  

a K-sparse vector. Using matrix notations, 𝑥 = 𝜓𝜃, where 𝜓 of size M x M [17]. Consider a classical linear 

measurement model where  𝑦 = 𝜙𝑥 = 𝜙𝜓𝜃. Where 𝜃 represent the k-sparse vector of size M x 1 to be 

estimated using the effective measurement matrix  𝜙𝜓, where the measurement matrix 𝜙 is of size N x M, and 

y is the measurement vector of size N x 1. Hence, each observation of y vector represents the projection of 

vector x on a row of the sensing matrix 𝜙 as described in Figure 1 [18]. 

From the mathematical expression of CS in the Figure 1, it is clear that a non-linear system of 

equations must be solved to recover the sparse vector 𝜃, where the number of observations N is much less than 

number of unknowns M. Since 𝜙 matrix projecting the vector x, low value of incoherence is required to insure 

mutually independent matrices and hence better CS performance. The maximum value amongst inner product 

of the Orthonormal basis and the orthonormal measurement matrix defined as incoherence. Therefore, to 

recover the sparse vector correctly from 𝑦 = 𝜙𝑥, the sensing matrix 𝜙  should be designed carefully [19, 20]. 

 

 

 
 

Figure 1. CS mathematical representation 

 

 

2.2.  System model and LTV channel 

In this paper, the OFDM system of Figure 2 is considered. At the transmitter 𝑇𝑥 side of this system,  

a stream of symbols x[k] (data d[k] and pilots p[k]) are mapped using binary phase shift keying (BPSK), where 

x[k] split into data blocks after serial to parallel conversion. Each of these blocks represent OFDM block 

contain data and pilot symbols. The length of each OFDM block is N subcarriers. A cyclic prefix (CP) of length 

(𝐿𝑐𝑝) is prepended to each OFDM block to prevent adjacent interference and considered as a guard band (𝐺𝑖). 

After CP insertion, the OFDM block transmitted over an LTV channel which is a multipath propagation 

channel. In the proposed work, the LTV channel has been assumed to have a finite impulse response with L 

paths. The transmitter and receiver are assumed synchronized in both time and carrier frequency. 

The multipath fading channel response is expressed as follows [21, 22]; 

 

ℎ(𝑡) = ∑ 𝑎𝑖 ∗ 𝛿(𝑡 − 𝜏𝑖)
𝐿−1
𝑖=0        (2) 

 

where, the ith path of wireless environment is characterized by a propagation delay (𝜏𝑖) and attenuation  

(𝑎𝑖). The received baseband signal r(t) is modeled by two components, amplitude and phase, which can be 

expressed as; 
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𝑟(𝑡) = ∑ 𝑎𝑖 ∗ 𝛿(𝑡 − 𝜏𝑖) ∗ 𝑒−𝑗2𝜋𝑓𝑐𝜏𝑖𝐿−1
𝑖=0       (3) 

 

where, 𝑒−𝑗2𝜋𝑓𝑐𝜏𝑖 is the complex phase factor, and for a narrow band transmission; 

𝛿(𝑡 − 𝜏𝑖) = 𝛿(𝑡) [23]. Hence; 

 

ℎ(𝑡) = ∑ 𝑎𝑖 𝑒
−𝑗2𝜋𝑓𝑐𝜏𝑖𝐿−1

𝑖=0         (4) 

 

The time varying property of the channel implies that channel coefficients changed over time. This changing 

is related to the change in the frequency of the received signal, which related to the relative movement between 

the transmitter and the receiver, Hence, the corresponding channel delay (𝜏𝑖) is changing [21, 22]; 

 

𝜏𝑖(𝑡) = 𝜏𝑖 −
𝑣 cos𝜃𝑡

𝑐
        (5) 

 

where 𝜏𝑖(𝑡) is a function of distance, and hence; 

 

ℎ(𝑡) = ∑ 𝑎𝑖 𝑒
−𝑗2𝜋𝑓𝑐∗[𝜏𝑖−

𝑣cos𝜃𝑡

𝑐
]𝐿−1

𝑖=0        (6) 

 

ℎ(𝑡) = ∑ 𝑎𝑖 𝑒
−𝑗2𝜋𝑓𝑐𝜏𝑖𝐿−1

𝑖=0  𝑒𝑗2𝜋𝑓𝑐
𝑣 cos𝜃𝑡

𝑐       (7) 

 

where, 𝑓𝑐
𝑣 cos𝜃

𝑐
 is the Doppler frequency 𝑓𝑑 = 𝑓𝑑𝑚𝑎𝑥 cos𝜃, where 𝑓𝑑𝑚𝑎𝑥 = 𝑓𝑐

𝑣

𝑐
 is the maximum Doppler shift 

(𝑓𝑑𝑚𝑎𝑥). Assuming that the movement of the mobile system is uniformly distributed from 0 ≤ θ ≤ π rad, and θ 

is normalized. Thus, the channel impulse response is; 

 

ℎ(𝑡) = ∑ 𝑎𝑖 𝑒
−𝑗2𝜋𝑓𝑐𝜏𝑖𝐿−1

𝑖=0  𝑒𝑗2𝜋𝑓𝑑𝑡         (8) 

 

Since this component (𝑒𝑗2𝜋𝑓𝑑𝑡) is a function of time, as a result, the channel coefficients h(t) are time varying. 

Such a time varying channel is known as a time selective channel. How fast or slow the channel changes 

depends on the channel coherence time (𝑇𝑐) where the channel is approximately constant during 

  𝑇𝑐 [21]. 

At the other hand, in order to estimate the time variant channel coefficients using CS technique,  

the sensing matrix should be designed with atoms related to the two effecting parameters (𝜏𝑖 𝑎𝑛𝑑 𝑓𝑑) of  

the LTV channel of (8). This will lead to compute the rate of change of the wireless channel by analyzing  

the correlation between channel coefficients. Assume that 𝑎𝑖(𝑡) is the channel coefficient at the ith path  

at time t; 

 

𝑎𝑖(𝑡) = 𝑎𝑖  𝑒
−𝑗2𝜋𝑓𝜏𝑖  𝑒𝑗2𝜋𝑓𝑑𝑡       (9) 

 

Thus, to compute the correlation between 𝑎𝑖(𝑡) and 𝑎𝑖(𝑡 + ∆𝑡), the expectation of 𝑎𝑖(𝑡) and 𝑎𝑖(𝑡 + ∆𝑡),
𝐸{𝑎𝑖(𝑡) 𝑎𝑖(𝑡 + ∆𝑡)} should be computed [24]; 

 

𝑎𝑖(𝑡) = 𝑎𝑖  𝑒
−𝑗2𝜋𝑓𝜏𝑖  𝑒𝑗2𝜋𝑓𝑑𝑡        (10) 

 

𝑎𝑖(𝑡 + ∆𝑡) = 𝑎𝑖 𝑒
−𝑗2𝜋𝑓𝜏𝑖 𝑒𝑗2𝜋𝑓𝑑(𝑡+∆𝑡)       (11) 

 

thus; 

 

𝛹(∆𝑡) = 𝐸{|𝑎𝑖|
2 ∗ 𝑒𝑗2𝜋𝑓𝑑∆𝑡}       (12) 

 

where 𝛹(∆𝑡) refer to the correlation function between 𝑎𝑖(𝑡) and 𝑎𝑖(𝑡 + ∆𝑡). Let |𝑎𝑖|
2 normalized to be 1, thus,  

 

𝛹(∆𝑡) = 𝐸{𝑒𝑗2𝜋𝑓𝑑∆𝑡}        (13) 

 

which summarized as; 

 

𝛹(∆𝑡) = 𝐽0(2𝜋𝑓𝑑∆𝑡)        (14) 
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where 𝑓𝑑  represents the maximum Doppler frequency and 𝐽0  is the Bessel function of 0th order. Finally,  

the autocorrelation function 𝛹(∆𝑡) of LTV channel can be expressed in terms of coherence time [25]; 

 

𝛹(∆𝑡) = 𝐽0(
𝜋

2
 .

∆𝑡

𝑇𝑐
)        (15) 

 

where;   ∆𝑡 = 𝑥𝑇𝑐 , 𝑥 = 1,2,3…….,    and,    𝑇𝑐 =
1

4𝑓𝑑
. 

 

 

 
 

Figure 2. OFDM System Model 

 

 

2.3.  Sparse channel estimation 

Since CS has gained a much popularity in communications, recently, it is one of the small numbers of 

strong paths used for channel estimation. It assumes that sparse signals can be approximated with a small 

number of measurements compared to the large number required with Shannon-Nyquist rate [1]. Hence, to 

estimate the channel vector ℎ ∈ 𝐶𝑁×1 from y measurements, a CS problem of section (2.1) should be solved, 

where y is expressed as follows; 

 

𝑦 = 𝐴ℎ + 𝑛          (16) 

 

n: AWGN noise with zero mean and variance 𝜎2
𝑛 =

𝑁0

2
 

𝐴: The sensing matrix  

The sparse representation of data in terms of atoms is the main objective of the dictionary design, 

which later used to reconstruct the sparse signal, where ℎ assumed to be K-sparse CSI and its energy uniformly 

distributed among a small number of taps without any prior knowledge of their location, which must be 

estimated with effective sensing. It is clear from (15) that channel coefficients are changed with respect to the 

channel coherence time. Therefore, in this paper, the dictionary matrix is designed in a manner in which the 

two delay parameters of the autocorrelation function are taken into account. The equispaced pilot subcarriers 

p[k] are embedded within the data subcarriers d[k] of the OFDM system of Figure 2, where the number of 

training pilots is 𝑁𝑝, and ∆𝑡 is assumed to be a taped delay profile along the OFDM symbol. Where; 

 

∆𝑡 = [0, 𝑖 ×
𝛼

𝑁
, 𝛼]       𝑖 = 1, 2, 3, … ,𝑁      (17) 
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𝛼 represent the minimum channel tap spacing which equals to (𝐺𝑖 × 𝑇𝑠 −
𝐺𝑖×𝑇𝑠

𝑇𝑐×𝑁
), and 𝐺𝑖 is the guard interval 

which assumed to be the CP appended to each OFDM symbol in order to mitigate the ICI, and 𝑇𝑠 is the OFDM 

sample time. An N x N dictionary matrix is constructed with atoms related to each subcarrier position  ℓ𝑖 along 

the OFDM block length 𝑇𝑆𝑦𝑚𝑏𝑜𝑙, and multiplied by the taped delay atoms 𝜏𝑖 of ∆𝑡.  

𝑇𝑆𝑦𝑚𝑏𝑜𝑙 = (𝑁 + 𝐺𝑖) 𝑇𝑠, is the OFDM symbol time including 𝐺𝑖. Therefore, the dictionary 𝐷𝑁×𝑁 is represented 

as follows; 
 

𝐷 =

[
 
 
 𝑒

−
𝑗2𝜋 ℓ1𝜏1
𝑇𝑆𝑦𝑚𝑏𝑜𝑙 ⋯ 𝑒

−
𝑗2𝜋 ℓ1𝜏𝑁
𝑇𝑆𝑦𝑚𝑏𝑜𝑙

⋮ ⋱ ⋮

𝑒
−

𝑗2𝜋 ℓ𝑁𝜏1
𝑇𝑆𝑦𝑚𝑏𝑜𝑙 ⋯ 𝑒

−
𝑗2𝜋 ℓ𝑁𝜏𝑁
𝑇𝑆𝑦𝑚𝑏𝑜𝑙 ]

 
 
 

𝑁×𝑁

      (18) 

 

where the rows of dictionary matrix D are refer to the subcarriers positions along the OFDM symbol, while 

columns are refer to the delay vector of each subcarrier. Regarding sensing matrix. A construction, an 𝑁𝑝 rows 

are selected from D related to pilot locations, and multiplied by 𝑁𝑝 × 𝑁 matrix of pilot data using dot  

product multiplication; 
 

𝐴 =

[
 
 
 
 𝑒

−
𝑗2𝜋 ℓ1𝜏1
𝑇𝑆𝑦𝑚𝑏𝑜𝑙 ⋯ 𝑒

−
𝑗2𝜋 ℓ1𝜏𝑁
𝑇𝑆𝑦𝑚𝑏𝑜𝑙

⋮ ⋱ ⋮

𝑒
−

𝑗2𝜋 ℓ𝑁𝑝𝜏1

𝑇𝑆𝑦𝑚𝑏𝑜𝑙 ⋯ 𝑒
−

𝑗2𝜋 ℓ𝑁𝜏𝑁
𝑇𝑆𝑦𝑚𝑏𝑜𝑙 ]

 
 
 
 

𝑁𝑝×𝑁

.   [
𝑒−𝑗𝜋 𝑃1 ⋯ 𝑒−𝑗𝜋 𝑃1(𝑁)

⋮ ⋱ ⋮

𝑒−𝑗𝜋 𝑃𝑁𝑝 ⋯ 𝑒
−𝑗𝜋 𝑃𝑁𝑝(𝑁)

]

𝑁𝑝×𝑁

  (19) 

 

 𝑃𝑖 is the pilot symbol used for estimation considering equally likely symbols of [0, 1], and  

𝑖 = 1,2,3,… . , 𝑁𝑝. Different sparse signal recovery algorithms can be applied to solve the CS problem in  

a number of iterations to minimize CS error with respect to D. Once the channel dominant taps estimated  

(i.e. recovering of the sparse vector 𝜃), the whole CIR is built at all locations simply from ℎ̂ = 𝐷 × 𝜃, and  

the equalization process implemented.  
 

 

3. SIMULATION TEST AND RESULTS  

In this paper, the OFDM system of Figure 2 compares the test results of both least square (LS) and basis 

pursuit (BP) based channel estimation techniques. Different OFDM system parameters are listed in  

Table 1. In addition to AWGN noise, a 6 tap LTV channel is considered as a Rayleigh fading channel with paths 

delays and power vectors standardized by ITU channel model of Table 2. Basis pursuit (BP) algorithm is used to 

solve the convex optimization problem with MatLab for sparse signal recovery, where it uses the 𝑙1_𝑛𝑜𝑟𝑚 to 

regularize the problem [9]. The performance test of OFDM system was shown in the form of bit error rate (BER) 

versus signal to noise ratio (SNR), where SNR is determined by the corresponding (
Eb

No
⁄ ) in dB. 

 

 

Table 1. OFDM system parameters 
Parameter Value 

Number of transmitted bits 

Modulation 

Sampling Time (Ts) 

OFDM Subcarriers 

Number of pilots 

Cyclic prefix length (𝐿𝑐𝑝) 

Maximum Doppler shift (𝑓𝑑)Hz 

64000, 128000, 256000 

BPSK 

1 µsec 

64, 128, 256 

16, 13 

16 

0, 10, 20, 40 

 

 

In Figure 3, the BER performance of OFDM system over a multipath indoor channel environment 

using LS and BP is presented. In addition to compare the estimation performance of BP over LS algorithm,  

the purpose of this test is to show the ability of the proposed dictionary to recover the CSI with different 

delay parameters for both indoor and outdoor environments. In the present test, BP performance outperforms 

LS technique by about 4.5 dB at a BER of 10−3 with 16 pilots out of 64 subcarriers and zero Doppler 

frequency. In Figure 4, LS and BP algorithms are tested over a multipath outdoor channel environment of  

Table 2. In this test, the OFDM block containing 64 subcarriers and the number of pilot subcarriers used is 

16. Different Doppler shifts are considered in order to test the recovering ability of the proposed dictionary 

in the presence of Doppler effects. 
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Figure 3. BER performance with 

 𝑓𝑑 = 0 𝐻𝑧 , 𝑁𝑝 = 16, 𝑎𝑛𝑑 𝑁 = 64 

 

Figure 4. BER performance with 

 𝑁𝑝 = 16, 𝑎𝑛𝑑 𝑁 = 64 

 

 

Table 2. ITU Channel Models [26] 
Indoor Outdoor 

Delay (ns) Power (dB) Delay (ns) Power (dB) 

0 0 0 0 

50 -3 310 -1.5 

110 -10 710 -9.0 

170 -18 1090 -10.0 

290 -26 1730 -15.0 

310 -32 2510 -20.0 

 

 

As could be noticed, CS based channel estimation algorithm improves the estimation performance  

as compared to LS algorithm even with Doppler effect. By comparing BP performance for both 𝑓𝑑 = 0 𝐻𝑧, 

and 𝑓𝑑 = 10 𝐻𝑧, it is clear that as 𝑓𝑑 increased to 10 Hz, the performance test degraded by about 15 dB at  

a BER of 10−3. At the other hand, BP performance degraded when 𝑓𝑑 increased more than 10 Hz and become 

worse than LS unless the number of pilots used for estimation increased, which in turn improves  

LS performance. The same test was repeated with a lower number of pilots, where 13 pilots was inserted within  

the OFDM block at equally spaced locations instead of 16 pilots as shown in Figure 5. The test shows that  

the BP performance degraded but still much better than LS. This observation leads to the possibility of using 

reduced number of pilots for channel estimation without sacrificing the accuracy of channel estimation, when 

the rate of change of channel coefficients increasing according to Doppler shift effects. 

 

 

 
 

Figure 5. BER performance with 𝑁𝑝 = 13, 𝑎𝑛𝑑 𝑁 = 64 
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Another test considering different subcarrier numbers and Doppler shifts is shown in Figure 6.  

The test results proved that BP exceeded LS performance. But this superiority is still limited by the amount of 

Doppler shift and number of pilots, where it is degraded when 𝑓𝑑 increased above than 20 𝐻𝑧 and 40 𝐻𝑧 for 

128 and 256 OFDM subcarriers respectively with 16 pilots. This degradation is shown in Figure 7, where LS 

and BP algorithms are tested with, 𝑓𝑑 =  30 𝐻𝑧   for  𝑁 = 128, and  𝑓𝑑 =  50 𝐻𝑧  for  𝑁 = 256. Finally,  

it could be concluded that, as the amount of Doppler shift increase, the estimation performance degraded due 

to the Doppler effect on the channel. This degradation manifests itself when the number of subcarriers 

increased, where the subcarrier bandwidth will be decreased, so, it is more sensitive to the Doppler and requires 

an additional process to eliminate carrier frequency offset (CFO). 

 

 

  
 

Figure 6. BER performance with 

 𝑁𝑝 = 16, 𝑁 = 128 𝑎𝑛𝑑 256 

 

Figure 7. BER performance with  𝑁𝑝 = 16 

 

 

4. CONCLUSIONS AND FUTURE WORKS  

In this paper, the proposed dictionary design was tested to achieving the desired results of BP based 

CS algorithm in estimating of CIR of a LTV channel. At the other hand, this performance is limited to the low 

to moderate Doppler frequency shifts. The future work may be carried to extend the current work to be used 

for estimation of LTV channel with high mobility or high Doppler frequency shifts.  
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