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 We applied various architectures of deep neural networks for sound event 

detection and compared their performance using two different datasets. Feed 

forward neural network (FNN), convolutional neural network (CNN), 

recurrent neural network (RNN) and convolutional recurrent neural network 

(CRNN) were implemented using hyper-parameters optimized for each 

architecture and dataset. The results show that the performance of deep neural 

networks varied significantly depending on the learning rate, which can be 

optimized by conducting a series of experiments on the validation data over 

predetermined ranges. Among the implemented architectures, the CRNN 

performed best under all testing conditions, followed by CNN. Although RNN 

was effective in tracking the time-correlation information in audio signals, 

it exhibited inferior performance compared to the CNN and the CRNN. 

Accordingly, it is necessary to develop more optimization strategies for 

implementing RNN in sound event detection. 
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1. INTRODUCTION 

Automatic sound event detection is a pattern recognition technique that automatically identifies 

various sound events occurring daily, such as glass breaking, baby crying, people screaming and car horning. 

In addition to identifying the label of sound events, it detects their onset and offset times. Automatic sound 

event detection has recently gained popularity owing to its numerous possible applications, including 

surveillance, urban sound analysis, information retrieval from multimedia content, health care, bird call 

detection, and autonomous vehicles [1-6]. 

To encourage research in the general area of sound signal classification including sound event 

detection, the “Detection and Classification of Acoustic Scenes and Events (DCASE)” challenge was held in 

2013, 2016, 2017, 2018, and 2019 [7-11]. It includes two different categories: acoustic scene classification and 

sound event detection. In the former, the type of acoustic environment is determined using a long segment of 

audio signals, whereas, in the latter, specific sound events occurring in an acoustic scene are recognized.  

In this study, we only focus on sound event detection using two public databases from DCASE 2016 and [12]. 

Before the emergence of mehods based on deep neural networks, Gaussian mixture models (GMMs) 

were widely used in sound event detection. In fact, a GMM was used as a baseline recognizer in the DCASE 

2016 challenge for Task 1 (acoustic scene classification) and Task 3 (monophonic sound event detection).  

The simple GMM-based bag-of-frames approach was adopted in the baseline system [13], where  

the mel-frequency cepstral coefficients (MFCCs), which have been widely employed in speech recognition, 

were used as acoustic features for the GMM. In addition to GMMs, traditional machine learning methods, such 

https://creativecommons.org/licenses/by-sa/4.0/
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as support vector machines (SVMs) [14] and non-negative matrix factorization (NMF) [15], were also widely 

used in sound event detection before their inferiority to recent deep learning-based methods was demonstated. 

During the last decade, deep neural networks have achieved great success in image classification, 

speech recognition and machine translation [16-20]. Currently, deep neural networks exhibit state-of-the-art 

performance in all these domains. In sound event detection, FNNs have achieved better performance compared 

with GMMs and SVMs and it appears that they have replaced the traditional methods in the sound event 

detection. Owing to their simple architecture, FNNs have advantages over other deep neural networks. 

Specifically, fewer parameters and less computational time are required. Several frames of neighboring audio 

features (usually, log-mel filterbank (LMFB) energies) are concatenated in the time-domain so that they can 

be used as input to the network. Subsequently, they are multiplied by weight matrices and pass through 

nonlinear functions, and, hence they are forward propagated. However, the structure of an FNN cannot 

effectively compensate for the translational variances occurring in image signals owing to the fixed connections 

between the input and hidden units. Similar problems occur in sound event detection because the variations  

in the time-frequency domain of the audio signal may not be well modeled by the FNN. Another problem is 

that the temporal context is restricted to short-time windows of the input audio; therefore, it is difficult to model 

long-term correlations in the audio signals.  

Compared with FNNs, CNNs can address the problem of time-frequency domain variations more 

efficiently. However, CNNs cannot effectively model long-term context correlations in the time-domain. 

Recurrent neural networks (RNNs) have been quite successful in modeling temporal context information in 

speech recognition. However, owing to their shortcomings in capturing the invariance in the time-frequency 

domain, RNNs are unable to outperform CNNs in sound event detection. Several approaches have been 

proposed for combining CNNs and RNNs to take advantage of both networks. Recently, convolutional 

recurrent neural networks (CRNNs), a combination of CNNs and RNNs in a single network, have been 

proposed for sound event detection, speech recognition and music classification [12, 21-24]. 

In this paper, we propose the use of a CRNN in polyphonic and scene-independent sound event 

detection and suggest optimal hyper-parameters and training strategies. Thus, the advantage of CRNNs over 

CNNs and RNNs is expected to be maximized. We evaluated the performance of the CRNN on recent datasets, 

including from the DCASE 2016 challenge. We also compared the performance of the CRNN with a CNN,  

an FNN and an RNN so that the advanatges of the CRNN may be better understood. The remainder of this 

paper is organized as follows; in section 2, we present feature extraction method and deep neural architectures 

used in this study. In section 3, we present and discuss the results of various experiments involving the FNN, 

CNN, RNN and CRNN. Finally, section 4 concludes the paper. 

 

 

2. FEATURE EXTRACTION AND DEEP NEURAL ARCHITURES  

2.1.   Feature extraction  

In this study, we use LMFB outputs as features for deep neural networks. We first compute  

the short-time Fourier transform (STFT) of 40-ms audio signals that were sampled at 44.1 kHz. The STFT is 

computed every 20 ms with 50% overlap. A total of 40 bands of mel-filterbank are extracted from the STFT 

with the range of 0~22,050 Hz and are log-transformed to obtain a 40-dimensional LMFB for each 20 ms time 

frame. After computing the LMFBs, we normalize them by subtracting the mean and dividing by the standard 

deviation computed from the training data. 

 

2.2.  FNN 

The afoermentioned 40-dimentional LMFBs are used as features. Five successive time frames are 

concatenated to form 100-dimensional feature vectors as the input to the FNN. Each of the two 2 hidden layers 

has 1600 hidden units with ReLU activation. One output layer with sigmoid activation has K units where K is 

the number of sound event classes to be recognized. The outputs of the sigmoid activation are taken as  

the posterior probabilities for each of the classes, and the binarized outputs are compared with the ground truth 

table to determine the accuracy of the FNN. 

 

2.3.  CNN 

The input to the CNN is T × 40 LMFB features, and the overall structure of the network is shown  

in Figure 1. We use different structures for each of the two selected datasets. The structure in the figure is used 

for the TUT sound events 2016 dataset. The T frames of the 40-dimensional LMFBs are input to  

the convolutional layer with 256 feature maps, and each feature map has a two-dimensional 5 × 5 

convolutional filter with ReLU activation. The output of the convolutional layer passes through  

a non-overlapping max pooling layer to reduce the dimensionality of the data. We compute the max pooling 

operation only in the frequency domain to retain the temporal information in the LMFBs. This is in contrast to 
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CNNs used in image classification, where the max pooing operation is performed in both dimensions. Unlike 

image signals, the time resolution information should be maintained in the audio signals to determine the onset 

and offset times in the sound event detection. There are three CNN layers, and the output has a dimension of 

T × 1 × 256 , where the dimension of the frequency domain is reduced to 1, whereas the dimension of  

the time domain is unchanged, as mentioned previously. The output of the CNN layers is fed into a single  

feed-forward layer that has 256 units with ReLU activation. The final output layer with K(=number of classes) 

units of sigmoid activation follows the feed-forward layer and yields the sound event activity probabilities  

for each sound class at each time frame. Finally, the probabilities are binarized after thresholding over  

a constant value (0.5), and the activity of a class at a time frame is determined to be active or inactive depending 

on whether the binarized probability is 1 or 0. 

 

2.4.  RNN 

The architecture of the RNN used in this study for TUT sound events 2016 is shown in Figure 2. 

T × 40 LMFB features are used as the input of the GRU in the RNN architecture. We use three layers of GRUs 

with 256 units, followed by four feed-forward layers with 256 units. The output layer has K units with sigmoid 

activation. By using multiple feed-forward layers, the CNN and RNN have equally deep levels, thus allowing 

their performance comparison. 

 

 

 
 

Figure 1. CNN architecture for TUT sound events 2016 

 

 

 
 

Figure 2. RNN architecture for TUT sound events 2016 
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2.5.  CRNN 

The architecture of the CRNN used in this study for TUT sound events 2016 is shown in Figure 3.  

It consists of convolutional layers in a cascade with recurrent layers followed by an output layer.  

The convolution layers act as a robust (time- and frequency-invariant) feature extractor. The recurrent layers 

provide contextual information in the time domain, which is highly important for recognizing sound events. 

Finally, the output layer generates the activity probabilities for the sound event classes for a given frame.  

The parameters of the convolutional, recurrent, and feedforward layers are optimized through backpropagation. 

 

 

 
 

Figure 1. CRNN architecture for TUT sound events 2016 

 

 

3. EXPERIMENTS  

3.1.   Databases 

We evaluated the deep neural networks on two datasets. One was artificially generated, (TUT sound 

events synthetic 2016 abbreviated as TUT-SED synthetic), and the other (TUT sound events 2016) was 

recorded in real environments. The former was selected since the annotations in real audio data are rather 

subjective; therefore, the ground truth labeling may depend excessively on the annotators, particularly in  

the presence of polyphonic sound events.  

TUT-SED Synthetic was generated by mixing isolated sound events from 16 different classes. A total 

100 mixtures were created from 994 sound samples and divided into training, testing and validation data, with 

proportions 60%, 20%, and 20%, respectively. The total length of the mixture data was 566 min. Segments of 

length 3-15 s were selected from sound event instances to constitute a mixture, and there were no common 

sound event instances between training, testing, and validation data.  

TUT sound events 2016 consists of recordings in two real environments: residential and home. Each 

recording was obtained from different locations to ensure large variability. Audio samples with the length of 

3-5 min were recorded at each location, and the total length of the audio samples is 78 min. A total of  

7 manually annotated classes correspond to the residential environment, whereas 11 annotated sound event 

classes correspond to the home environment. The four-fold cross-validation approach was adopted in  

the training and testing procedure to compensate for the small amount of data in this dataset. Twenty percent 

of the training data were allocated as validation data in the training phase. TUT sound events 2016 was used 

in the DCASE 2016 challenge, where the two environments were separately evaluated for scene-dependent 

classification. In this study, the classes from the two were not distinguished, resulting in 18(=7+11) sound 

event classes to be recognized for scene-independent classification. Therefore, only one classifier is required, 

rather than two, as was the case in the DCASE 2016 challenge. 
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3.2.  Evaluation metrics 

Evaluation methods use either segment- or event-based metrics [25]. In the fortmer, the evaluation of 

a deep neural network for sound event detection uses the error rate and F-score in a fixed time grid.  

The binarized outputs of the network are compared with the ground truth Table in 1 s segments. A sound event 

class is assumed to be detected correctly in a given segment if both the ground truth table and the binarized 

output corresponding to the class are active throughout the segment. A false positive implies that the ground 

truth table indicates that a sound event class is inactive, but the binarized output is active. In contrast, a false 

negative implies that  the ground truth table indicates that the class is active, but the output is inactive. Finally, 

a true positive implies that both the ground truth table and the output indicate that a sound event class is active. 

F-score is calculated as follows; 

 

P =
𝑇𝑃

𝑇𝑃+𝐹𝑃
,      𝑅 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
,     𝐹 =

2𝑃𝑅

𝑃+𝑅
  

 

where TP, FP and FN are counts of true positives, false positives, and false negatives, respectively. Further, P 

denotes precision, and R is recall. 

Another metric is the error rate (ER), which is calculated in terms of insertions, deletions, and 

substitutions. A substitution error occurs when the binarized output detects a sound event class in a segment, 

but the label of the detected class is different from that of the ground truth table. A substitution error implies 

that a false positive and a false negative occur simultaneously in a segment. When only false positives occur 

in a segment, they are counted as insertions, and when only false negatives occur, they are counted as deletions. 

The ER is calculated as follows; 

 

ER =
∑ 𝑆(𝑘)𝐾

𝑘=1 +∑ 𝐷(𝑘)𝐾
𝑘=1 +∑ 𝐼(𝑘)𝐾

𝑘=1

∑ 𝑁(𝑘)𝐾
𝑘=1

  

 

where, N(k) is the number of active ground truth events in a segment k and S(k), D(k) and I(k) denote  

the number of substitutions, deletions and insertions, respectively . K is the total number of segments. 

In event-based metrics, a sound event is assumed to be correctly detected if the binarized output of 

the network has time-intervals overlapping with those of the correct label in the ground truth table. A 200 ms 

tolerance is allowed for onset time, and the same amount of time (200ms) or 50% of the duration of the correct 

label is allowed for the offset time. A false positive occurs when an active binarized output does not correspond 

to the correct label in the ground truth table within the allowed tolerance. If a sound event in the ground truth 

table does not correspond to the binarized output with the same label, a false negative occurs. 

 

3.3.  Results 

We applied batch normalization after the convolutional layers and a dropout rate of 0.25 was applied 

to the convolutional and recurrent layers. We trained the networks using a binary cross-entropy loss function 

with the Adam optimizer. Early stopping was used to reduce  overfitting. The training was stopped if the value 

of the loss function did not improve for more than 100 epochs. As the performance of deep neural networks 

varies with the learning rate, we attempted to select the optimal learning rate for all networks by testing their 

performance on the validation data. The performance of the CRNN on the TUT-SED Synthetic as the learning 

rate changes is shown in Table 1. 

 

 

Table 1. Performance of CRNN on TUT-SED Synthetic as learning rate changes   

(bold face numbers represent the best results) 

Learning rate 

Validation data Testing data 

Epoch Segment-based 

(F-score/ER) 

Event-based 

(F-core/ER) 

Segment-based 

(F-score/ER) 

Event-based 

(F-score/ER) 

10−3 61.69% / 0.52 37.69%/0.96 60.61% / 0.53 37.05%/0.97 16 

10−4 68.75% / 0.45 43.49%/0.88 64.21% / 0.50 40.50%/0.96 33 

10−5 66.44% / 0.49 39.10%/0.96 63.76% / 0.52 36.48%/1.04 157 

10−6 44.16% / 0.69 9.83%/1.24 43.38% / 0.71 10.82%/1.27 191 

 

 

As shown in Table 1, the best performance is obtained when the learning rate is 10−4 for all 

conditions. The optimal learning rate for the validation data is also optimal for the testing data. Accoringly,  

the selection of the learning rate based on the validation data is quite reasonable. Similar performance variations 

with the learning rate could also be observed for the FNN, CNN, and RNN. The table shows that as the learning 

rate decreases, the number of epochs for which we obtain the best results increases. This is due to the slow 
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convergence of the weight parameters during training. When the learning rate is 10−4, the epoch number is 33, 

whereas it is 191 when the learning rate is 10−7. The slow convergence also results in poor performance, which 

is related to underfitting.  

The variation of the loss function and accuracy at the output of the CRNN during training when  

the learning rate varies from 10−4 to 10−7 is shown in Figure 4. When the learning rate is 10−4, the loss 

function on the validation data reaches its minimum at approximately 30 epochs (exactly 33); therafter, it 

fluctuates but never drops below the minimum. However, on the training data, the loss function continues to 

decrease throughout the duration of the training (we set the maximum number of epochs to 200). As overfitting 

should be avoided, we stop the iteration at 33 epochs using the aforementioned early stopping algorithm. 

Meanwhile, we can observe quite different characteristics when the learning rate is 10−5. The loss function on 

the validation data decreases for a significantly longer period and reaches its minimum at 157. The longer 

iterations cause performance degradation on both the validation and testing data owing to underfitting. This 

phenomenon becomes more manifest as we further decrease the learning rate. When the learning rate is 10−7, 

the loss function does not reach its minimum until the end of the training. A similar trend is observed when we 

monitor the accuracy instead of the loss function.  

 

 

  
  

  
 

Figure 4. Variation of loss function and accuracy with learning rate  

(CRNN on TUT-SED Synthetic dataset) 

 

 

The performance comparison between the FNN, CNN, RNN, and CRNN on the TUT-SED Synthetic 

dataset is shown in Table 2. The learning rate is set to 10−4 in all networks according to the previous 

experiments. The evalutaion is represented in both the segment- and event-based methods. As presented in 

Table 2, the CRNN performs best under all testing conditions. Although the CNN has exhibted quite 

satisfactory performance in image classification, it is inferior to the CRNN in sound event detection because 

CNNs lack the ability to model the time correlation information (particularly long-term correlation) in audio 

signals. However, it can be observed that using the RNN alone could not result in improved performances 

compared with the CNN. This implies that the time-frequency invariant feature extraction by CNNs is highly 

important in sound event detection as is e case with invariant features in image classification. 
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Table 2. Performance comparison between FNN, CNN, RNN and CRNN on TUT-SED synthetic 
 Segment-based Event-based 

 F-score ER F-score ER 

FNN 54.57% 0.8 21.45% 3.51 
CNN 60.38% 0.66 31.31% 1.87 

RNN 47.28% 0.66 28.97% 1.32 

CRNN 64.21% 0.5 40.50% 0.96 

 

 

In addition to TUT-SED Synthetic, we investigated the performance of the networks using TUT 

sound events 2016. The performance of the CRNN on TUT sound events 2016  for varying learning rates is 

shown in Table 3. Contrary to the result on the TUT-SED Synthetic dataset in Table 1, we can conclude that 

the best performance is now obtained with a learning rate of 10−3 except when the event-based performance 

is measured on the testing data. This implies that the optimal learning rate varies depending on the training 

dataset. Moreover, the performance of the CRNN on the TUT sound events 2016 dataset was not as good as 

that on TUT-SED Synthetic. This may be due to the small amount of training data and the scene-independent 

classification in TUT sound events 2016. Although the number of weight parameters of the CRNN on TUT 

sound events 2016 was reduced by approximately 20% compared with that on TUT-SED Synthetic,  

the performance degradation could not be alleviated. 

 

 

Table 3. Performance of CRNN on TUT sound events 2016 as learning rate varies  

(bold face numbers represent the best results) 

Leaning rate 

Validation data Testing data 

epoch Segment-based  

(F-score/ER) 

Event-based  

(F-score/ER) 

Segment-based  

(F-score/ER) 

Event-based  

(F-score/ER) 

10−3 58.62% / 0.70 5.54%/4.99 37.18% / 0.90 6.58%/3.08 25.5 

10−4 50.75% / 0.73 5.32%/4.11 36.41% / 0.88 7.81%/3.06 87.5 

10−5 1.44% / 0.99 0.00%/1.05 0.20% / 1.00 0.00%/1.00 187.8 

10−6 9.59% /10.34 1.13%/82.55 5.88% / 1.08 1.15%/1.85 199.8 

 

 
The variation of the loss function and accuracy at the output of the CRNN during training on the 

TUT sound events 2016 dataset (as the learning rate varies from 10−3 to 10−6 ) is shown in Figure 5. A 

similar trend to that in Figure 4 can be observed. However, with the same learning rate, the loss function on 

training data converges faster on the sound events 2016 dataset than on the TUT-SED Synthetic dataset. 

This implies that a smaller learning rate is desirable for the former to prevent overfitting. This is reflected 

in the performance scores in Table 3, where the best scores are obtained when the learning rate is 10−3 

except for one case. 

The performance comparison between FNN, CNN, RNN, and CRNN on the sound events 2016 

dataset is shown in Table 4. The learning rate is set to 10−3 in all networks according to the results in  

Table 3. Table 4 demonstrate that the CRNN performs best in terms of the segment-based F-score and error 

rate. The CRNN is followed by CNN, and the RNN is the worst. This is in accordance with the results on  

the TUT-SED Synthetic dataset shown in Table 2. However, regarding the event-based metrics, unexpected 

results can be observed. Nevertheless, the low  F-score and error rate in Table 4 imply that these results are 

not credible and and may therefore be ignored. 

 

 

Table 4. Performance comparison between FNN, CNN, RNN and CRNN  

on the sound events 2016 dataset 
 Segment-based Event-based 

 F-score ER F-score ER 

FNN 25.11% 1.32 2.42% 9.81 

CNN 35.28% 0.98 7.54% 4.49 

RNN 24.34% 1.02 4.28% 2.48 

CRNN 37.18% 0.90 6.58% 3.08 
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Figure 5. Variation of loss function and accuracy as learning rate changes  

(CRNN on sound events 2016) 

 

 

4. CONCLUSIONS  

Deep neural networks have been widely used in various areas of pattern recognition. Recently,  

in sound event detection, numerous approaches based on deep neural networks have been proposed and have 

exhibted superior performance to among other conventional methods, such as GMMs and SVMs. In this 

paper, we proposed the application of representative deep neural networks to the sound event detection. We 

applied an FNN, a CNN, an RNN, and a CRNN to two independent datasets for sound event detection. The 

result demonstrated that the performances of these networks varied significantly depending on the learning 

rate. The optimal learning rate was selected based on the loss function on the validation data; this was 

confirmed to be quite reasonable based on extensive experimental results on the testing data.  A small 

learning rate tends to underfit the networks to the training data, whereas an excessively large learning rate 

results in overfitting.  

It was also demonstrated that the amount of training data and the type of classes considerably 

affected the performance of the networks. The performance on TUT-SED Synthetic was significantly better 

than that on sound events 2016, the size of which is approximately one seventh that of TUT-SED Synthetic, 

which contains audio classes that are difficult to distinguish. Although the number of weight parameters of  

the networks on sound events 2016 was reduced by 20% to compensate for the small amount of training 

data, the performance gap was quite large. 

Finally, the CRNN outperformed the other networks, among which the CNN was the second most 

effective. The FNN and RNN performed worse than the CRNN and CNN. The poor performance of the RNN 

implies that time-frequency invariant features from the CNN are highly important in sound event detection.  

In future work, we will study a variant of the CRNN architecture that can use the characteristics of the RNN 

more effectively by considering different methods of coupling with the CNN. In addition, the segment length 

in the CRNN should be optimized to achieve the appropriate memory length in the GRUs.  
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