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 This paper derives new results for the complete synchronization of 4D 
identical Rabinovich hyperchaotic systems by using two strategies: active 
and nonlinear control. Nonlinear control strategy is considered as one  
of the powerful tool for controlling the dynamical systems. The stabilization 

results of error dynamics systems are established based on Lyapunov second 
method. Control is designed via the relevant variables of drive and response 
systems. In comparison with previous strategies, the current controller 
(nonlinear control) focuses on convergence speed and the minimum limits  
of relevant variables. Better performance is to achieve full synchronization 
by designing the control with fewer terms. The proposed control has  
certain significance for reducing the time and complexity for strategy 
implementation. 
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1. INTRODUCTION 

After the pioneering work by Pecora and Carroll in 1990s [1], Chaos synchronization has attracted 

considerable attention due to its important applications in physical systems [2], biological systems [3], 

Encryption [4, 5] and secure communications [6], etc. The synchronization means making a system called a 

response system to follow another system which is called a drive system. Now days, enormous 

synchronization phenomena have been applied in various dynamical systems such as full/complete 

synchronization (CS) [7-10], anti-synchronization (AS) [11], hybrid synchronization (HS) [12],  

lag synchronization, phase synchronization, projective synchronization (PS) [13], modified projective 

synchronization (MPS) [14] and generalized projective synchronization (GPS) [15]. Full synchronization and 
anti-synchronization are the most commonly used [9, 11] and play an important role in engineering 

applications [16, 17]. 

These phenomena are achieved via different various types of synchronizations schemes including 

active control [18], adaptive control [16], nonlinear control [19-22] and linear feedback control [23-25]. 

Among the aforementioned schemes, the active control and the nonlinear control have been widely used as 

two powerful strategies for synchronization of different class of nonlinear dynamical systems. However,  

the active control suffers from many terms corresponding to relevant variables of drive and response systems. 

To overcome this problem, the nonlinear control strategy is used with the minimum of terms and speed 

synchronization whereas nonlinear control strategy has demonstrated excellent performance in  

synchronization schemes. 

https://creativecommons.org/licenses/by-sa/4.0/
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In this paper, we implement complete synchronization between two 4D identical Rabinovich 

hyperchaotic systems based on active and nonlinear control strategies via Lyapunov second method  

and observed that the speed of convergence of control in the second a strategy faster and number of terms 

less than the first strategy. The proposed control with low terms is more interesting and easily applied  

and implemented. The contributions of this paper are mainly the following: 

− A necessary and sufficient condition is proposed to show how many relevant variables of drive  

and response systems can achieve synchronization under active and nonlinear controller. 

− New results are derived from a number of terms of relevant variables of drive and response systems that 

can lead to synchronization. 

− New results are derived from speed synchronization via relevant variables of drive and response systems.  
The rest of this paper is organized as follows. Section 2 is the description of hyperchaotic 

Rabinovich System. Section 3 presents the problem of complete synchronization for the hyperchaotic 

Rabinovich. Section 4 is the conclusions this paper. 

 

 

2. DESCRIPTION OF HYPERCHAOTIC RABINOVICH SYSTEM 

Rabinovich system is a four-dimensional hyperchaotic which include ten terms, three of them are 

nonlinearity with three parameters and descript by the following form [26, 27]: 

 

{  

�̇�1 = −𝑎𝑥1 + ℎ𝑥2 + 𝑥2𝑥3   
�̇�2 = ℎ𝑥1 − 𝑥2 − 𝑥1𝑥3 + 𝑥4

�̇�3 = −𝑥3 + 𝑥1𝑥2                  
�̇�4 = −𝑘𝑥2                             

 (1) 

 

where 𝑥1, 𝑥2, 𝑥3, 𝑥4 are the state variables and 𝑎, ℎ, 𝑘 are positive constants this system possesses 

hyperchaotic attractors when the parameters taken 𝑎 = 4, ℎ = 6.75, 𝑘 = 2 as show in Figures 1-4. 
 
 

  
 

Figure 1. The attractor of system (1) in  

𝑥1 − 𝑥3 plane 
 
 

Figure 2. The attractor of system (1) in  

𝑥1, 𝑥2, 𝑥3 space 

 

  
 

Figure 3. The attractor of system (1) in  

𝑥1 − 𝑥4 plane 

 

Figure 4. The attractor of system (1) in  

𝑥1, 𝑥2, 𝑥4 space 
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3. SYNCHRONIZATION BETWEEN TWO IDENTICAL HYPERCHAOTIC  

RABINOVICH SYSTEM 

In order to achieve complete synchronization for Rabinovich system, two systems are needed, the 

first system is called drive system, and the second system is called response system. The drive and response 

systems for Rabinovich system depict in (2) and (3) respectively.   

 

{ 

�̇�1 = −𝑎𝑥1 + ℎ𝑦1 + 𝑦1𝑧1    
�̇�1 = ℎ𝑥1 − 𝑦1 − 𝑥1𝑧1 + 𝑤1

�̇�1 = −𝑧1 + 𝑥1𝑦1                   
�̇�1 = −𝑘𝑦1                              

 (2) 

 

{ 

�̇�2 = −𝑎𝑥2 + ℎ𝑦2 + 𝑦2𝑧2 + 𝑢1    
�̇�2 = ℎ𝑥2 − 𝑦2 − 𝑥2𝑧2 + 𝑤2 + 𝑢2

�̇�2 = −𝑧2 + 𝑥2𝑦2 + 𝑢3                    
�̇�2 = −𝑘𝑦2 + 𝑢4                               

 (3)  

 

Where 𝑢 = [𝑢1, 𝑢2, 𝑢3, 𝑢4] 𝑇 is the controller to be designed, The synchronization error 𝑒 ∈ 𝑅4 is defined as:  

 

 𝑒1 = 𝑥2 − 𝛼𝑖𝑥1   , 𝑒2 = 𝑦2 − 𝛼𝑖𝑦1  ,  𝑒3 = 𝑧2 − 𝛼𝑖𝑧1  ,   𝑒4 = 𝑤2 − 𝛼𝑖𝑤1    , ∀𝛼𝑖 = 1  ,   𝑖 = 1,2,3,4  

 

so, the error dynamical system which is given by: 

 

{ 

�̇�1 = −𝑎𝑒1 + ℎ𝑒2 + 𝑒2𝑒3 + 𝑧1𝑒2 + 𝑦1𝑒3 + 𝑢1   
�̇�2 = ℎ𝑒1 − 𝑒2 + 𝑒4 − 𝑒1𝑒3 − 𝑧1𝑒1 − 𝑥1𝑒3 + 𝑢2

�̇�3 = −𝑒3 + 𝑒1𝑒2 + 𝑦1𝑒1 + 𝑥1𝑒2 + 𝑢3                  
�̇�4 = −𝑘𝑒2 + 𝑢4                                                        

  (4) 

 
3.1. Synchronization based on active control 

To realize the complete synchronization, we need to design suitable nonlinear control. Therefore,  

the control functions are chosen as the following:   

 

{ 

𝑢1 = −𝑒2𝑒3 − 𝑧1𝑒2 − 𝑦1𝑒3 + 𝑣1      
 𝑢2 = 𝑒1𝑒3 + 𝑧1𝑒1 + 𝑥1𝑒3 + 𝑣2          
𝑢3 = −𝑒1𝑒2 − 𝑦1𝑒1 − 𝑥1𝑒2 + 𝑣3     
𝑢4 = 𝑣4                                                 

 (5) 

 

inserting the control (5) in (4) we get: 

 

{ 

�̇�1 = −𝑎𝑒1 + ℎ𝑒2 + 𝑣1   
�̇�2 = ℎ𝑒1 − 𝑒2 + 𝑒4 + 𝑣2

�̇�3 = −𝑒3 + 𝑣3                   
�̇�4 = −𝑘𝑒2 + 𝑣4                

   ,         𝑣 = [𝑣1 𝑣2
𝑣3 𝑣4]𝑇 = 𝐴[𝑒1 𝑒2

𝑒3 𝑒4]𝑇 (6) 

 

where 𝑣 is linear control, 𝐴 is a constant matrix, to make the system (6) stable, the matrix 𝐴 should be 

selected by the following:  
 

𝐴 = [

0 −ℎ 0   0
−ℎ 0 0 −1
0
0

0
𝑘

0   0
0 −1

] (7) 

 
hence, the error dynamical system (4) with above matrix becomes: 

 

{ 

�̇�1 = −𝑎𝑒1   
�̇�2 = −𝑒2     
�̇�3 = −𝑒3    
�̇�4 = −𝑒4    

  (8) 
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Therefore, the above system has all eigenvalues with negative real parts, these eigenvalues 

guarantees the stability of the system (8). So, the response system (3) synchronizes the drive system.  

Hence, we reach at the following results: 

Theorem 1: If the matrix (7) is combine with system (6), then, the response system (3) follows  

the drive system via the following nonlinear active control which consists of 16 terms.  

 

{

𝑢1 = −ℎ𝑒2 − 𝑒2𝑒3 − 𝑧1𝑒2 − 𝑦1𝑒3             
 𝑢2 = −ℎ𝑒1 − 𝑒4 + 𝑒1𝑒3 + 𝑧1𝑒1 + 𝑥1𝑒3     
𝑢3 = −𝑒1𝑒2 − 𝑦1𝑒1 − 𝑥1𝑒2                        
𝑢4 = 𝑘𝑒2 − 𝑒4                                               

 (9) 

 

Proof: Based on the Lyapunov second method, we construct a positive definite Lyapunov candidate  

function as: 
 

V(e) = 𝑒𝑇𝑝𝑒 =
1

2
𝑒1

2 +
1

2
𝑒2

2 +
1

2
𝑒3

2 +
1

2
𝑒4

2 (10) 

 

where 𝑃 = 𝑑𝑖𝑎𝑔 [
1

2
 ,

1

2
,

1

2
,

1

2
] , the derivative of the Lyapunov function V(e) with respect to time is: 

 

�̇�(𝑒) = 𝑒1�̇�1 + 𝑒2�̇�2 + 𝑒3�̇�3 + 𝑒4�̇�4                                
 

�̇�(𝑒) = 𝑒1(−𝑎𝑒1) + 𝑒2(−𝑒2) + 𝑒3(−𝑒3) + 𝑒4(−𝑒4)  

 

�̇�(𝑒) = −𝑎𝑒1
2 − 𝑒2

2 − 𝑒3
2 − 𝑒4

2 = −𝑒𝑇𝑄𝑒 ,  𝑄 = 𝑑𝑖𝑎𝑔[𝑎 , 1, 1, 1] (11) 

 

According to [14], every diagonal matrix with positive diagonal elements is positive definite.  

So 𝑄 > 0. Therefore, �̇�(𝑒) is negative definite. And according to the Lyapunov asymptotical stability theory,  
the nonlinear active controller is implemented and the synchronization of the hyperchaotic system is 

achieved. The proof is now complete. The theorem 1 showed that proposed control which consists of (14) 

terms achieved synchronization. The time converges synchronization at (6) as shown in Figure 5. 

 

3.2. Synchronization based on nonlinear control strategy 

In this section, complete synchronization between system (2) and system (3) is considered by using 

other strategy which is called nonlinear control. Theorem 2: If design a controller consists of six terms  

as follows:  

 

{  

𝑢1 = −2ℎ𝑒2                
𝑢2 = 𝑘𝑒4                      
𝑢3 = −2𝑦1𝑒1 − 𝑒1𝑒2

𝑢4 = −𝑒2 − 𝑒4           

 (12) 

 

then the error dynamical system (4) is convergent to zero as time (4). Proof: With this choice, the error 

dynamical system (4) becomes: 

 

[

�̇�1

�̇�2

�̇�3

�̇�4

] = [

−𝑎   
ℎ − 𝑧1

𝑒2 − 𝑦1

0

  

−ℎ + 𝑧1   
−1
𝑥1

−(𝑘 + 1)

   

𝑒2 + 𝑦1 
−𝑒1 − 𝑥1 

−1
0

   

0
𝑘 + 1

0
−1

  ] [

𝑒1

𝑒2

𝑒3

𝑒4

]  

 

i.e., 

 

{ 

�̇�1 = −𝑎𝑒1 − ℎ𝑒2 + 𝑒2𝑒3 + 𝑧1𝑒2 + 𝑦1𝑒3                 
�̇�2 = ℎ𝑒1 − 𝑒2 + (𝑘 + 1)𝑒4 − 𝑒1𝑒3 − 𝑧1𝑒1 − 𝑥1𝑒3

�̇�3 = −𝑒3 + 𝑒1𝑒2 − 𝑦1𝑒1 + 𝑥1𝑒2                                

�̇�4 = −(𝑘 + 1)𝑒2 − 𝑒4                                                 

 (13) 

 

this derivative is: 

 

�̇�(𝑒) = −𝑎𝑒1
2 − 𝑒2

2 − 𝑒3
2 − 𝑒4

2 = −𝑒𝑇𝑄𝑒 (14) 
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So 𝑄 > 0. Therefore, �̇�(𝑒) is negative definite. The theorem 2 showed that proposed control which consists 

of six terms achieved synchronization and the time synchronization at (4) time(sec) as shown in Figure 6. 

 
 

  
 

Figure 5. The converges of system(4)  
with controller (9) 

 

Figure 6. The converges of system (13)  
with controller (12) 

 

 

Theorem 3: If the controller is designed with six terms as follows: 

 

{  

𝑢1 = −2ℎ𝑒2 − 2𝑦1𝑒3 − 𝑒2𝑒3

𝑢2 = 0                                        
𝑢3 = 0                                        
𝑢4 = 𝑘𝑒2 − 𝑒2 − 𝑒4                

 (15) 

 

then the system (4) will be convergent to zero as the time (4). Proof: when substituting the controllers (15)  

in the system (4), we get: 

 

{ 

�̇�1 = −𝑎𝑒1 − ℎ𝑒2 + 𝑧1𝑒2 − 𝑦1𝑒3                 
�̇�2 = ℎ𝑒1 − 𝑒2 + 𝑒4 − 𝑒1𝑒3 − 𝑧1𝑒1 − 𝑥1𝑒3 
�̇�3 = −𝑒3 + 𝑒1𝑒2 − 𝑦1𝑒1 + 𝑥1𝑒2                  
�̇�4 = −𝑒2 − 𝑒4                                                 

 (16) 

 

construct Lyapunov function as:  

 

V(e) = 𝑒𝑇𝑝𝑒 =
1

2
𝑒1

2 +
1

2
𝑒2

2 +
1

2
𝑒3

2 +
1

2
𝑒4

2  

 

then,  

 

�̇�(𝑒) = −𝑎𝑒1
2 − 𝑒2

2 − 𝑒3
2 − 𝑒4

2 = −𝑒𝑇𝑄𝑒  

 

so, V(e) > 0 and �̇�(𝑒) < 0, the nonlinear controller is implemented. The theorem 3 showed that proposed 

control which consists of six terms achieved synchronization. The time synchronization at (4) time(sec) as 

shown in Figure 7.  

Theorem 4: the system (4) is achieved and converges to zero at the time (4.20), if the controller is  
designed as: 

 

{ 

𝑢1 = −2ℎ𝑒2 − 2𝑦1𝑒3

𝑢2 = −𝑒1𝑒3 + 𝑘𝑒4     
𝑢3 = 0                          
𝑢4 = −𝑒2 − 𝑒4            

 (17) 
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Proof: Using system (4) with the controller (17), is given by. 

 

{ 

�̇�1 = −𝑎𝑒1 − ℎ𝑒2 + 𝑒2𝑒3 + 𝑧1𝑒2 − 𝑦1𝑒3                        
�̇�2 = −ℎ𝑒1 − 𝑒2 + (𝑘 + 1)𝑒4 − 2𝑒1𝑒3 − 𝑧1𝑒1 − 𝑥1𝑒3

�̇�3 = −𝑒3 + 𝑒1𝑒2 + 𝑦1𝑒1 + 𝑥1𝑒2                                      

�̇�4 = −(𝑘 + 1)𝑒2 − 𝑒4                                                       

 (18) 

 

the same results were found in theorem (3). The theorem 4 showed that proposed control which consists  

of six terms achieved synchronization. The time synchronization at (4.20) time (sec) illustrated in Figure 8. 

 

 

  
 

Figure 7. The converges of system (16)  

with controller (15) 

 

Figure 8. The converges of system (18)  

with controllers (17) 

 

 

4. CONCLUSION  

In the paper, synchronaiztion problem for 4-D Rabinovich hyperchaotic system is considered, based 

on two strategies: active and non-linear controller. The stability of error dynimcal systems are established 

based on the Lyapunov theory and compared between these strategies and found that both of them lead to 

synchronization but the performance of the nonlinear controller is faster and better than the active control. 

Also, the number of terms of controller is less than first strategy.  
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