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 Extraction and classification algorithms based on kernel nonlinear features are 

popular in the new direction of research in machine learning. This research 

paper considers their practical application in the iTaukei automatic speaker 

recognition system (ASR) for cross-language speech recognition. Second, 

nonlinear speaker-specific extraction methods such as kernel principal 

component analysis (KPCA), kernel independent component analysis (KICA), 

and kernel linear discriminant analysis (KLDA) are summarized.  

The conversion effects on subsequent classifications were tested in 

conjunction with Gaussian mixture modeling (GMM) learning algorithms; in 

most cases, computations were found to have a beneficial effect on 

classification performance. Additionally, the best results were achieved by  

the Kernel linear discriminant analysis (KLDA) algorithm. The performance 

of the ASR system is evaluated for clear speech to a wide range of speech 

quality using ATR Japanese C language corpus and self-recorded iTaukei 

corpus. The ASR efficiency of KLDA, KICA, and KLDA technique for 6 sec 

of ATR Japanese C language corpus 99.7%, 99.6%, and 99.1% and equal error 

rate (EER) are 1.95%, 2.31%, and 3.41% respectively. The EER improvement 

of the KLDA technique-based ASR system compared with KICA and KPCA 

is 4.25% and 8.51% respectively. 
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1. INTRODUCTION 

ASR is implemented using very conventional statistical modeling techniques such as GMM or ANN 

modeling. But in the past few years, machine learning theory has evolved into a variety of new algorithms for 

learning and classification. The so-called kernel-based method, in particular, has recently become a promising 

new path to science. Kernel-based classification and regression techniques like the well-known SVM found  

a fairly slow expression. That may be because to address theoretical and practical problems it needs to be 

applied to large tasks such as speech recognition. Recently, however, more and more authors have been 

concerned about the use of support vector machines in speech recognition [1].  

Besides using kernel-based classifiers, an alternate way is to use kernel-based technologies only to 

convert the feature space and leave the classification job to more conventional methods. The purpose of this 

paper is to study the applicability of some of these methods to classify phonemes, using kernel-based  

pre-learning speaker-specific feature extraction methods to improve ASR classification rates. This paper 

mainly discusses KPCA [2], KICA [3], KLDA. 

https://creativecommons.org/licenses/by-sa/4.0/
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Usually, a traditional ASR process consists of two phases: a training phase, and a test phase.  

In the training phase, the device extracts speaker-specific characteristics from the speech signal to be used to 

create a speaker model [1], where the aim of the test phase is to determine the speaking samples that fit  

the individual of the training sample. he original speech signal is transformed into a vector representation of 

the function [2] in all audio signal processing. Linear prediction cepstral coefficients (LPCC) and perceptual 

linearity predicted cepstrum coefficient (PLPCC), mal frequency cepstral coefficient (MFCC) [3] approach is 

most commonly used in the ASR system to obtain speaker-specific features. For modeling, discriminant 

classifiers in support vector machine (SVM) [4] representation have achieved impressive results in many ASR 

systems. SVM will definitely effectively train non-linear boundaries for decision-making by classifying 

interesting speakers/imposters as they are distinct.  

Although these feature extraction techniques are effective, non-linear mapping of speech features to 

new suitable spaces may generate new features that can better identify speech categories. Kernel-based 

technology has been applied to a variety of learning machines, including support vector machines (SVM), 

Kernel discriminant analysis (KDA), kernel principal component analysis (KPCA) [5]. The latter two methods 

are widely used in image recognition. Their performance in speaker recognition, however, has not been 

carefully investigated. 

The purpose of this paper is to examine the applicability of some of these methods to classify 

phonemes, using kernel-based feature extraction methods applied before learning to boost classification levels. 

Essentially, this paper deals with the strategies of KPCA, KICA [6, 7], KLDA [5], and Kernel springy 

discriminant analysis (KSDA) [8]. In this work, KPCA, KICA, and KLDA is used for speaker specific feature 

extraction with an ASR system. With KPCA, speaker-specific features can be expressed in a high dimension 

space which can possibly generate more distinguishable speaker features. 
 

 

2. FUNDAMENTAL OF PRINCIPAL COMPONENT ANALYSIS 

Principal component analysis (PCA) is a very common method of dimensionality reduction and 

feature extraction. PCA attempts to find linear subspaces that are smaller in size than the original feature space, 

with new features having the largest variance [9]. Consider the data set {𝑥𝑖} where 𝑖 = 1, 2, 3, … . , 𝑁, each 𝑥𝑖 

is a D-dimensional vector. Now we project the data into the 𝑀-dimensional subspace, here, 𝑀 < 𝐷.  

The projection is represented as 𝑦 = 𝐴𝑥, where 𝐴 = [𝑢1
𝑇 , 𝑢2

𝑇 , … . , 𝑢𝑀
𝑇  ], 𝑎𝑛𝑑 𝑢𝑘

𝑇𝑢𝑘 = 1 for 𝑘 = 1,2,3, … . ,𝑀. 

We want to maximize the variance of {𝑦𝑖}, which is the trace of the covariance matrix of {𝑦𝑖}. 
 

𝐴∗ = arg
𝑚𝑎𝑥
𝐴

𝑡𝑟(𝑆𝑦)         (1) 

 

where, 
 

𝑆𝑦 =
1

𝑁
∑ (𝑦𝑖 − �̅�)(𝑦𝑖 − �̅�)𝑇𝑁

𝑖=1        (2) 

 

and 
 

�̅� =
1

𝑁
∑ 𝑋𝑖

𝑁
𝑖=1          (3) 

 

Covarience matrix of {𝑋𝑖} is the 𝑆𝑋, since 𝑡𝑟(𝑆𝑦) = 𝑡𝑟(𝐴𝑆𝑋𝐴𝑇), by using the Lagrangian multiplier 

and taking the derivative, we get, 
 

𝑆𝑋𝑢𝑘 = 𝜆𝑘𝑢𝑘           (4) 
 

which indicates 𝑢𝑘 is the eigenvector of 𝑆𝑋 and now 𝑋𝑖  can be represented as follows; 
 

𝑋𝑖 = ∑ (𝑋𝑖
𝑇𝑢𝑘)

𝐷
𝑘=1 𝑢𝑘        (5) 

 

𝑋𝑖 can be approximated by �̃�𝑖 and expressed as follows:  
 

�̃� = ∑ (𝑋𝑖
𝑇𝑢𝑘)

𝐷
𝑘=1 𝑢𝑘        (6) 

 

where 𝑢𝑘is the eigenvector of 𝑆𝑋corresponding to the kth largest eigenvalue. Standard PCA results for  

the two-speaker’s audio data shown in Figure 1 (a). 
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2.1.  Kernel PCA methodology for dimensionality reduction in ASR system 

Standard PCA only allows linear size reduction. However, standard PCA is not very useful when  

the data has a more complex structure that cannot be represented well in linear subspaces. Fortunately, 

 the kernel PCA allows us to extend the standard PCA to nonlinear dimensionality reduction [10]. Assume that 

a set of observations is given 𝑋𝑖 ∈ ℝ𝑛 , 𝑖 = 1, 2, 3, … . ,𝑚. Consider the inner dot product space 𝐹 associated 

with the input space by a map 𝜙:ℝ𝑛 → 𝐹 may be non-linear. The feature space 𝐹 has an arbitrary size and  

in some cases has an infinite dimension. Here, uppercase letters used for elements of 𝐹, and lowercase letters 

are used for elements of ℝ𝑛. Suppose we are working on centered data ∑  𝜙(𝑋𝑖) = 0𝑚
𝑖=1 . In F, the covariance 

matrix has the form as follows: 

 

𝐶 =
1

𝑚
∑ 𝜙(𝑋𝑗)𝜙(𝑋𝑗)

𝑇𝑚
𝑗=1          (7) 

 

Eigenvalues 𝜆 ≥ 0 and nonzero eigenvectors 𝑉 ∈ 𝐹\(0) satisfying 𝐶𝑉 = 𝜆𝑉. It is well known that all 

solutions 𝑉 with 𝜆 ≠ 0 are in the range of {𝜙(𝑋𝑖)}𝑖=1
𝑚 . This has two consequences. First, consider a set of 

equations 〈𝜙(𝑋𝑘), 𝐶𝑉〉 = 𝜆〈𝜙(𝑋𝑘), 𝑉〉, for all 𝑘 = 1,2,3, … ,𝑚 and second there exist coefficients  

𝛼𝑖 , 𝑖 = 1,2,3, … ,𝑚 in such a way that 𝑉 = ∑ 𝛼𝑖𝜙(𝑋𝑖)
𝑚
𝑖=1 . Combining 〈𝜙(𝑋𝑘), 𝐶𝑉〉 = 𝜆〈𝜙(𝑋𝑘), 𝑉〉 and  

𝑉 = ∑ 𝛼𝑖𝜙(𝑋𝑖)
𝑚
𝑖=1  we get the dual representation of the eigenvalue problem as 

1

𝑚
∑ 𝛼𝑖〈𝜙(𝑋𝑘), ∑ 𝜙(𝑋𝑗)〈𝜙(𝑋𝑗), 𝜙(𝑋𝑖)〉

𝑚
𝑗=1 〉 = 𝜆∑ 𝛼𝑖〈𝜙(𝑋𝑘), 𝜙(𝑋𝑖)〉

𝑚
𝑖=1

𝑚
𝑖=1  for all 𝑘 = 1,2,3, … ,𝑚. We are 

defining a 𝑚𝑋𝑚 matrix by 𝐾𝑖𝑗 = 𝜙(𝑋𝑖), 𝜙(𝑋𝑗), this makes 𝐾2𝛼 = 𝑚𝜆𝐾𝛼. Where 𝛼 denoted as a column 

vectors with 𝛼1, 𝛼2, 𝛼3, … . , 𝛼𝑚 entries.  

Let 𝜆1 ≥ 𝜆2 ≥ ⋯𝜆𝑚 be the eigenvalue of 𝐾, 𝛼1, 𝛼2, … , 𝛼𝑚 be the set of corresponding eigenvectors, 

and 𝜆𝑟 be the last non-zero eigenvalue. Normalizing 𝛼1, 𝛼2, … , 𝛼𝑟 by needing the corresponding vectors in 𝐹 

be normalized 〈𝑉𝑘, 𝑉𝑘〉 = 1, for all 𝑘 = 1,2, … , 𝑟. Considering 𝑉 = ∑ 𝛼𝑖𝜙(𝑋𝑖)
𝑚
𝑖=1  and 𝐾𝛼 = 𝑚𝜆𝛼,  

the normalization condition of 𝛼1, 𝛼2, … , 𝛼𝑟can be rewritten as follows; 

 

1 = ∑ 𝛼𝑖
𝑘𝑚

𝑖,𝑗 𝛼𝑗
𝑘〈𝜙(𝑥𝑖), 𝜙(𝑥𝑗)〉 = ∑ 𝛼𝑖

𝑘𝑚
𝑖,𝑗 𝛼𝑗

𝑘𝐾𝑖,𝑗 = 〈𝛼𝑘, 𝐾𝛼𝑘〉 = 𝜆𝑘〈𝛼
𝑘, 𝛼𝑘〉  (8) 

 

for the purpose of principal component extraction, we need to compute the projections onto  

the eigenvectors 𝑉𝑘 in 𝐹, for 𝑘 = 1,2, … , 𝑟. Let 𝑦 be the test point, with an image 𝜙(𝑦) in 𝐹. 

 

〈𝑉𝑘, 𝜙(𝑦)〉 = ∑ 𝛼𝑖
𝑘〈𝜙(𝑥𝑖), 𝜙(𝑦)〉𝑚

𝑖=1       (9) 

 

〈𝑉𝑘, 𝜙(𝑦)〉 nonlinear principal component corresponding to 𝜙. 
 

2.2.  Computation of covariance matrix and dot product matrix by positioning on feature space 

For the sake of simplicity, we assume that the observations are at the center. This is easy to implement 

in the input space because it is not possible to explicitly calculate the average of the observations mapped with 

𝐹, but it is more difficult to use 𝐹. Assume that any 𝜙 and any series of observations 𝑋1, 𝑋2, … , 𝑋𝑚 are given 

then let us define �̅� =
1

𝑚
∑ 𝜙(𝑋𝑖)

𝑚
𝑖=1  and then the point �̃�(𝑋𝑖) = 𝜙(𝑋𝑖) − �̅� will be centered. Therefore,  

the above assumption holds, we defin the covariance matrix and the dot product matrix 𝐾𝑖𝑗 = 〈�̃�(𝑋𝑖), �̃�(𝑋𝑗)〉 

in 𝐹. We known eigenvalue problems as 𝑚�̃��̃� = 𝐾�̃� with �̃� is the expansion coefficient of the eigenvector 

relative to the center point �̃�(𝑋𝑖). Since there is no central data, 𝐾 cannot be explicitly calculated, but it can be 

represented by a corresponding 𝐾 without a center therefore 𝐾𝑖𝑗 = 〈�̃�(𝑋𝑖) − 𝜙, 𝜙(𝑋𝑗) − 𝜙〉 =𝐾𝑖,𝑗 −
1

𝑚
∑ 𝑘𝑖𝑡 −

1

𝑚
∑ 𝑘𝑠𝑗 +

1

𝑚2
∑ 𝑘𝑠𝑡

𝑚
𝑠,𝑡=1

𝑚
𝑠=1

𝑚
𝑡=1 . We can get more compact expression by using the vector  

1𝑚 = (1,… ,1)𝑇. The compact expression is 𝐾 = 𝐾 −
1

𝑚
𝐾1𝑚1𝑚

𝑇 −
1

𝑚
1𝑚1𝑚

𝑇 𝐾 +
1

𝑚2
(1𝑚

𝑇 𝐾1𝑚)1𝑚
𝑇 𝐾1𝑚 . We can 

calculate 𝐾 from 𝐾 and solve the eigenvalue problem. Consider test point 𝑌 projection of the center point of 

the center 𝜙-image of 𝑌 to the feature vector of the covariance matrix is computed to find its coordinates [11]. 

 

〈�̃�(𝑌), �̃�𝑘〉 = 〈𝜙(𝑌) − �⃑� , �̃�𝑘〉 = ∑ �̃�𝑖
𝑘〈𝜙(𝑌) − �⃑� , 𝜙(𝑋𝑖) − �⃑� 〉𝑚

𝑖=1   

 

= ∑ �̃�𝑖
𝑘𝑚

𝑖=1 {𝐾(𝑌, 𝑋𝑖) −
1

𝑚
∑ 𝐾(𝑋𝑠, 𝑋𝑖) −

1

𝑚
∑ 𝐾(𝑌, 𝑋𝑠) +

1

𝑚2
∑ 𝐾(𝑋𝑠, 𝑋𝑡)

𝑚
𝑠,𝑡=1

𝑚
𝑠=1

𝑚
𝑠=1 }  (10) 

 

Introducing the vector 𝑍. 
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𝑍 = (𝐾(𝑌, 𝑋𝑖))𝑚𝑋1
        (11) 

(〈�̃�(𝑌), �̃�𝑘〉)
1𝑋𝑟

= 𝑍𝑇�̃� −
1

𝑚
1𝑚

𝑇 𝐾�̃� −
1

𝑚
(𝑍𝑇1𝑚)1𝑚

𝑇 �̃� +
1

𝑚2
(1𝑚

𝑇 𝐾1𝑚)1𝑚
𝑇 �̃�  

 

= 𝑍𝑇 (𝐼𝑚 −
1

𝑚
1𝑚1𝑚

𝑇 ) �̃� −
1

𝑚
1𝑚

𝑇 𝐾 (𝐼𝑚 −
1

𝑚
1𝑚1𝑚

𝑇 ) �̃�     

 

= (𝑍𝑇 −
1

𝑚
1𝑚

𝑇 𝐾)(𝐼𝑚 −
1

𝑚
1𝑚1𝑚

𝑇 ) 𝑉 ̃      (12) 

 

Note that KPCA implicitly uses only input variables because the algorithm uses kernel function evaluation to 

represent the reduction in feature space dimensions. Therefore, KPCA is useful for nonlinear feature extraction 

by reducing the size; it does not explain the characteristics of the input variable selection. 
 

 

3. KERNEL- BASED SPEAKER SPECIFIC FEATURE EXTRACTION AND ITS APPLICATION 

IN ASR 

Classification algorithms must represent the objects to be classified as points in a multidimensional 

feature space. However, one can apply other vector space transformations to the initial features before running 

the learning algorithm. There are two reasons for doing this. First, they can improve the performance of 

classification and second, they can reduce the data's dimensionality. The selection of initial features and their 

transformation are sometimes dealt with in the literature under the title "feature extraction”. To avoid 

misunderstanding, this section describes only the latter and describes the first feature set. Hopefully it will be 

more effective and classification will be faster. The approach to the extraction of features may be either linear 

or nonlinear, but there is a technique that breaks down the barrier between the two forms in some way.  

The key idea behind the kernel technique was originally presented in [12] and applied again in connection with  

the general purpose SVM [13-15] followed by other kernel-based methods. 

 

3.1.  Supplying input variable information into kernel PCA 

Additional information to the KPCA representation for interpretability. We have developed a process 

to project a given input variable into a subspace spanned by feature vectors �̃� = ∑ �̃��̃�(𝑋1)
𝑚
𝑖=1 . We can think 

of our observation as a random vector 𝑋 = (𝑋1, 𝑋2, … . . , 𝑋𝑛  ) implementation then to represent the prominence 

of the input variable 𝑋𝑘 in the KPCA. Considering a set of points of mathematical forms 𝑦 = 𝑎 + 𝑠𝑒𝑘 ∈ ℝ𝑛 

where 𝑒𝑘 = (0,… . ,1, … . ,0) of kth component is either 0 or 1. Next, the projection points 𝜙(𝑦) of these images 

onto the subspace spanned by the feature vector �̃� = ∑ �̃��̃�(𝑋1)
𝑚
𝑖=1  can be calculated. Considering in (12)  

the row vector gives the induction curve in the Eigen space expressed in matrix form: 

 

𝜎(𝑠)1𝑋𝑟 = (𝑍𝑠
𝑇 −

1

𝑚
1𝑚

𝑇 𝐾)(𝐼𝑚 −
1

𝑚
1𝑚1𝑚

𝑇 ) �̃�     (13) 

 

Furthermore, by projecting the tangent vector to s = 0, we can express the maximum change direction 

of 𝜎(𝑠) associated with the variable 𝑋𝑘. Matrix form of the expression represented as follows: 

 
𝑑𝜎

𝑑𝑠
|
𝑠=0

=
𝑑𝑍𝑠

𝑇

𝑑𝑠
|
𝑠=0

(𝐼𝑚 −
1

𝑚
1𝑚1𝑚

𝑇 ) �̃�      (14) 

 

where  

 

𝑑𝑍𝑠
𝑇

𝑑𝑠
|
𝑠=0

= (
𝑑𝑍𝑠

1

𝑑𝑠
|
𝑠=0

, …… . . ,
𝑑𝑍𝑠

𝑚

𝑑𝑠
|
𝑠=0

)
𝑇

  

 

and  

 
𝑑𝑍𝑠

𝑖

𝑑𝑠
|
𝑠=0

=
𝑑𝐾(𝑌,𝑋𝑖)

𝑑𝑠
|
𝑠=0

= (∑
𝜕𝐾(𝑌,𝑋𝑖)

𝜕𝑌𝑡

𝑚
𝑡=1

𝑑𝑌𝑡

𝑑𝑠
)|

𝑠=0
= ∑

𝜕𝐾(𝑌,𝑋𝑖)

𝜕𝑌𝑡

𝑚
𝑡=1 |

𝑌=𝑎
𝛿𝑡

𝑘 =
𝜕𝐾(𝑌,𝑋𝑖)

𝜕𝑌𝑘
|
𝑌=𝑎

  

 

where delta of Kronecker is represented as 𝛿𝑡
𝑘 and radial basis kernel as 𝑘(𝑌, 𝑋𝑖) = 𝑒𝑥𝑝(−𝑐‖𝑌 − 𝑋𝑖‖

2) =
𝑒𝑥𝑝(−𝑐 ∑ (𝑌𝑖 − 𝑋𝑖𝑡)

2𝑛
𝑡=1 ). After considering 𝑦 = 𝑎 + 𝑠𝑒𝑘 ∈ ℝ𝑛: 

 

𝑑𝑍𝑠
𝑖

𝑑𝑠
|
𝑠=0

=
𝜕𝐾(𝑌, 𝑋𝑖)

𝜕𝑌𝑘

|
𝑦=𝑎

= −2𝑐𝐾(𝑎, 𝑋𝑖)(𝑎𝑘 − 𝑋𝑖𝑘) = −2𝑐𝐾(𝑋𝛽 , 𝑋𝑖)(𝑋𝛽𝑘 − 𝑋𝑖𝑘) 
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where the training point 𝑎 = 𝑋𝛽. Thus, by applying (13), it is possible to locally represent any given input 

variable plot in KPCA. Furthermore, by using (14), it is possible to represent the tangent vector associated with 

any given input variable at each sample point [16]. Therefore, a vector field can be drawn on KPCA indicating 

the growth direction of a given variable. 

There are some existing techniques to compute z for specific kernels [17]. For a Gaussian kernel 

(𝑋, 𝑌)) = 𝑒𝑥𝑝(−‖𝑋 − 𝑌‖2/2𝜎2) , 𝑧 must satisfy the following condition; 

 

𝑍 =
∑ 𝛾𝑖(‖𝑍−𝑋𝑖‖

2/2𝜎2)𝑋𝑖
𝑚
𝑖=1

∑ 𝛾𝑖
𝑚
𝑖=1 (−‖𝑍−𝑋𝑖‖

2)/2𝜎2         (15) 

 

Kernel PCA results for the two- speaker’s audio data with is shown in Figure 1 (b).  
 

 

 
(a) 

 

 
(b) 

 

Figure 1. Standard PCA and Kernel PCA results for the two-speaker’s audio data;  

(a) standard PCA and (b) kernel PCA 

 

 

3.2.  Application of kernel independent component analysis (KICA) 

Independent component analysis is a general statistical approach originally born from the study of 

separation from blind sources. Another application of ICA is the unsupervised extraction of features. This is 

intended to transform input data linearly into uncorrelated elements, using at least a distribution of the Gaussian 

sample set [18]. The explanation for this is that classification of data in certain directions would be simpler. 

This is in accordance with the most popular speech modeling technique, i.e. fitting Gaussian mixtures on each 
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class. This obviously means that Gaussian mixtures can approximate the distributions of the groups KICA 

extends this by assuming, on the contrary, that when all classes are fused, the distribution is not Gaussian; thus, 

using non-Gaussianism as a heuristic for the uncontrolled extraction of features would prefer those directions 

which separate classes. 

Several objective functions for optimal selection of independent directions were described using 

approximately equivalent approaches. The KICA algorithm's goal itself is to find such objective functions as 

optimally as possible [19]. For KICA output most iterative methods are available. Others need to be 

preprocessed, i.e. focused and whitened while others do not. Overall, experience shows that all of these 

algorithms can converge faster with oriented and whitewashed data, even those that don't really need it [20]. 

Let's first investigate how the centering and whitening pre-processing steps can be done in the kernel 

function space. To this end, allow the kernel function 𝜘 in ℱ to implicitly define the inner product with  

the associated transformation 𝜙. Step one Centering ℱ - Shifting the data 𝜙(𝑋1), 𝜙(𝑋2), … . . , 𝜙(𝑋𝑘) along with 

its mean 𝐸{𝜙(𝑋)} to get the data as follows: 

 

{
 
 

 
 

𝜙′(𝑋1) = 𝜙(𝑋1) − 𝐸{𝜙(𝑋)}

𝜙′(𝑋2) = 𝜙(𝑋2) − 𝐸{𝜙(𝑋)}
.
.

𝜙′(𝑋𝑘) = 𝜙(𝑋𝑘) − 𝐸{𝜙(𝑋)}

        (16) 

 

Step two Whitening in ℱ. Transfoprming the centered samples 𝜙′(𝑋1), 𝜙
′(𝑋2), … . , 𝜙′(𝑋𝑘) via an orthogonal 

transformation 𝑄 into its vectors �̂�(𝑋1) = 𝑄𝜙′(𝑋1), 𝑄𝜙′(𝑋2), … , 𝑄𝜙′(𝑋𝑘) = 𝑄𝜙(𝑋𝑘
′ ) . �̂� = is the covariance 

matrix. Because standard PCA converts the covariance matrix into a diagonal form just like its kernel based 

equivalent, where the diagonal elements are the unique values of the data covariance matrix 𝐸{�̂�(𝑋)�̂�(𝑋)𝑇}, 

all that remains is to transform the diagonal element into 1. Based on this finding, a slight modification of  

the formulas provided in the KPCA section will obtain the necessary whitening transformation [21]. Here 

(𝛼1𝜆1), (𝛼2𝜆2), … . . , (𝛼𝑘𝜆𝑘) and 𝜆1 ≥ 𝜆2 ≥ 𝜆𝑘 are the eighpairs of 𝐸{�̂�(𝑋)�̂�(𝑋)𝑇} then the transformation 

matrix 𝑄 will take a form[𝜆1

−
1

2𝛼1, 𝜆2

−
1

2𝛼2, … . . 𝜆𝑚

−
1

2𝛼𝑚]

𝑇

. Kernel Independent component analysis results for  

the two-speaker’s audio data is shown in Figure 2 (a). 

 

3.3.  Application of kernel linear discriminant analysis (KLDA) 

LDA is a conventional, supervised method of extracting speaker-specific characteristics [19] that has 

proven to be one of the most effective pre-processing classification techniques. It has also long been used  

in speech recognition [22]. The main goal of LDA is to find a new orthogonal data set to provide the optimal 

class separation.  

In KLDA we are essentially following the discussion of its linear counterpart, except in this case this 

is intended to happen implicitly in the kernel feature space F. Let's say again that a kernel function with  

a feature map and a kernel field space has been chosen. In order to define the transformation matrix 𝐴 of KLDA, 

we define the objective function first as Γ ∶ ℱ → ℛ, because of the supervised nature of this method, it depends 

not only on the test data 𝑋 but also on the indicator ℒ. Let's describe ubiquitous Γ(V). 

 

Γ(V) =
𝑉𝑇ℬ𝑉

𝑉𝑇𝒲𝑉
,      𝑉 ∈: ℱ\{0}       (17) 

 

where ℬ is the scatter matrix of the interclass, while 𝒲 is the scatter matrix of the interclass. Here, the scatter 

matrix ℬ between classes shows the scatter of the mean vectors 𝜇𝑗 around the overall mean vector 𝜇. 

 

ℬ = ∑
𝑘𝑗

𝑘
(𝜇𝑗 − 𝜇)𝑟

𝑗=1 (𝜇𝑗 − 𝜇)
𝑇
  ;  𝜇 =

1

𝑘
∑ 𝜙(𝑥𝑖)

𝑘
𝑖=𝑘 ;    𝜇𝑗 =

1

𝑘𝑗
∑ 𝜙(𝑥𝑖) ℒ(𝑖)   (18) 

 

with the class label 𝐽, the in-class scatter matrix 𝒲 represents the weighted average scatter of the sample vector 

covariance matrices 𝐶𝑗. 

 

𝒲 = ∑
𝑘𝑗

𝑘
𝐶𝑗  ;  

𝑟
𝑗=1 𝐶𝑗 =

1

𝑘𝑗
∑ (𝜙(𝑥𝑖) − 𝜇𝑗) (𝜙(𝑥𝑖 − 𝜇𝑗))

𝑇

ℒ(𝑖)=𝑗      (19) 

 

Kernel linear discriminant analysis results for the two-speaker’s audio data is shown in Figure 2 (b). 
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(a) 

 

 

(b) 

 

Figure 2. Kernel independent component analysis and kernel linear discriminant  

analysis results for the two-speaker’s audio data; (a) kernel independent component analysis  

and (b) kernel lnear discriminant analysis 

 
 

4. EXPERIMENTAL SETUP  

To evaluate the efficiency of kernel-based speaker-specific feature extraction techniques, an isolated 

word recognition experiment was performed. The experiment includes 520 Japanese words from the ATR 

Japanese C language set Voice database, 80 speakers (40 men and 40 Female). Audio samples of 10 iTaukei 

speakers were collected at random and under unfavourable conditions. The average duration of the training 

samples was six seconds per speaker for all 10 speakers and out of twenty utterances of each speaker just one 

was used for training purpose [23-27]. For matching purposes the remaining 19 voice samples were used from 

the corpus. We have recorded utterances for this investigation were at one sitting for each speaker. The text for 

the utterances was randomly selected by speaker. The main voice recordings consist of both male and female 

speakers of twenty utterance of each using sampling rate of 16 kHz with 16 bits/sample.  

Throughout the experiment, 10400 utterances were used as training data and the remaining 31,200 

utterances were used as test data. The sampling rate of the audio signal is 10 kHz. 12 Mel-Cepstral coefficients 

extracted using 25.6 ms Hamming windows with 10 ms shifts [28-32]. The features of KPCA were extracted 

from 13 Mel-cepstral coefficients including zero coefficients corresponding to 39 vector coefficients and their 

increment and acceleration coefficients. Around 1,000,000 frames were used as training data in this 

experiment, and it is computationally impossible to calculate matrix K with this amount of data. N frames are 

randomly picked from the training data to reduce the number of frames. The number N= 1024 was chosen to 

make the system computationally feasible. 

Table 1 represents efficiency and EER of the ASR system for KLDA, KICA and KLDA respectively 

for ATR Japanese C language. Table 2 represents efficiency and EER of the ASR system for KLDA, KICA 

and KLDA respectively for10 iTaukei speakers cross language. Figure 3 show the equal error rate (EER) of 
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KLDA KICA, and KPCA based modeling technique. The ASR efficiency of of KLDA KICA, and KPCA based 

modeling technique are 99.9%, 99.6%, and 98.1% and EER are 4.7%, 4.9% and 5.1% respectively for 6 sec of 

audio signal. The EER improvement of KLDA technique based ASR system compared with KICA and KPCA 

is 4.25% and 8.51% respectively.  
 
 

 

(a) 
 

 

(b) 
 

Figure 3. EER of KLDA, KICA and KLDA technique for 6 sec of voice data;  

(a) ATR Japanese C language and (b) iTaukei speaker’s cross language 
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Table 1. Efficiency and EER of the ASR system for KLDA, KICA and KLDA respectively  

for ATR Japanese C language 
 KLDA KICA KPCA 
 Efficiency in % EER in % Efficiency in % EER in % Efficiency in % EER in % 

6 sec 99.7 1.95 99.6 2.31 99.1 3.41 

4 sec 99.5 2.29 99.1 3.20 98.2 4.11 

2 sec 98.8 3.23 98.3 4.32 97.6 5.3 

 

 

Table 2. Efficiency and EER of the ASR system for KLDA, KICA and KLDA respectively  

for10 iTaukei speakers cross language 
 KLDA KICA KPCA 

 Efficiency in % EER in % Efficiency in % EER in % Efficiency in % EER in % 

6 sec 94.9 2.04 94.6 3.4 94.1 4.1 

4 sec 94.3 2.34 94.1 3.7 93.5 4.8 

2 sec 93.5 3.2.0 93.1 4.1 92.6 5.3 

 

 

5. CONCLUSION  

An experimental evaluation of the performance of the ASR system has been done on 6 sec of voice 

data of ATR Japanese C language. For the 10400, voice samples of the ATR Japanese C language speaker 

recognition accuracy 99.7%, 99.6%, and 99.1% and equal error rate (EER) is 1.95%, 2.31%, and 3.41% 

respectively for KLDA, KICA, and KPCA. The EER improvement of the KLDA technique-based ASR system 

compared with KICA and KPCA is 4.25% and 8.51% respectively. We find that non-linear transformations 

usually lead to better classification than non-linear transformations, and are therefore a promising new research 

direction. We also found that the supervised transformations are usually stronger than those not supervised. 

We think it would be worth searching for other supervised approaches which could be built similarly to  

the KLDA or KICA-based ASR application methodology. Such transformations significantly improved  

the phonological knowledge ASR training framework by providing a comprehensive and accurate 

classification of speaking contextual features unique to real-time speakers. 
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