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1. INTRODUCTION  

In nonlinear dynamic systems, chaos synchronization is the first phenomenon which discovered by 

Fujisaka and Yamada in 1983, but did not receive great interest until 1990 when Pecora and Carrol developed 

this phenomenon between two identical chaotic systems with different initial condition [1-4]. Chaos 

synchronization has attracted considerable attention due to its important applications in physical systems [1], 

biological systems [5], Encryption [6] and secure communications [7], etc. After then, several attempts were 

made to create many types of synchronization phenomena such as Complete Synchronization (CS) [2, 4, 8], 

Anti-Synchronization (AS) [9, 10], Hybrid Synchronization (HS) [11], Generalized Synchronization (GS) 

[12], Projective Synchronization (PS) [13], Hybrid Projective Synchronization (HPS) [14] and Generalized 

Projective Synchronization (GPS) [15]. Amongst all types of synchronization schemes, PS and HPS attracted 

lots of attention because it can obtain faster communication in application to secure communication [13, 14]. 

Both of them are characterized that the two systems could be synchronized up to a constant diagonal matrix, 

but in the first feature, all diagonal elements of scaling matrix should be equal whereas these diagonal 

elements are different in the second feature. Obviously, choosing the constant matrix as unity will lead to CS. 

So, CS and AS are the special cases of PS and HS belong to the special case of hybrid projective 

synchronization. HPS gives more complexity to the controller and the message cannot be easily decoded by 

the intruder.  

In projective and HPS processes, various strategies have been introduced to stabilize dynamic error 

systems, including adaptive control [16], active control, nonlinear control [17-20] and linear feedback  

control [21-23]. Among many control strategies, the nonlinear control strategy has been continuously for 
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which great interest to many scientists, due to its effectiveness, reliability, and widely has been used as  

a single powerful strategy for synchronizing different class of the nonlinear dynamic systems [24, 25].  

But, the control input design should be based on the functions of the controlled system according to the 

traditional nonlinear control. In order to simplify the control input, adaptive nonlinear control has been 

designed to facilitate the control input process. To ensure that the designed controller has a good control 

effect, the controller is designed for a non-linear control system based on the theory of stability Lyapunov 

with known and unknown parameters. Then, controllers designed to synchronize a hyperchaotic system were 

used. These findings may be important in understanding and controlling problems in modern society.  

Also the effectiveness and strength of controllers are verified by numerical simulation results. 

 

 

2. PROJECTIVE AND HYBRID PROJECTIVE SYNCHRONIZATION 

The PS and HPS are illustrated in this section. There are two nonlinear dynamical systems, the first 

is called drive system, whereas the second, is called response system, and the response system controls  

the drive system. The drive system and response system yields the (1) and (2), respectively [18] and [21]. 

 

�̇� = 𝐴𝑥 + 𝑓(𝑥) (1) 

 

�̇� = 𝐵𝑦 + 𝑔(𝑦) + 𝑈 (2) 

 

where 𝐴, 𝐵 are a 𝑛 × 𝑛 parameters matrices, 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑛]
𝑇 ∈ 𝑅𝑛×1, 𝑦 = [𝑦1, 𝑦2, … , 𝑦𝑛]

𝑇 ∈ 𝑅𝑛×1 are 

state vector, 𝑓(𝑥) and 𝑔(𝑦) are the nonlinear functions for system 1 and system 2, respectively. Also,  

𝑈 = [𝑢1, 𝑢2, … , 𝑢𝑛]
𝑇 ∈ 𝑅𝑛 is a control input vector. Whereas the error dynamical system is defined as 

  

𝑒 = 𝑦 − 𝑆𝑥 (3) 

 
 

where 𝑒 = [𝑒1, 𝑒2, … , 𝑒𝑛]
𝑇 ∈ 𝑅𝑛×1 in general, 𝑆 is n-order diagonal matrix i.e. 𝑆 = 𝑑𝑖𝑎𝑔(𝑠1, 𝑠2, … . , 𝑠𝑛), 𝑆 is 

called scaling matrix and 𝑠1, 𝑠2, … , 𝑠𝑛 are called scaling factor. Our goal is to propose a suitable controller 𝑈 

to make the response system asymptotically approaches the drive system, and finally the synchronization 

phenomena will be achieved in the sense that the limit of the error dynamical system approaches zero i.e. 

 

𝑙𝑖𝑚𝑡→∞‖𝑒‖ = 𝑙𝑖𝑚𝑡→∞‖𝑦 − 𝑆𝑥‖ = 0 (4) 

 

The scaling matrix 𝑆 play an important role to determine the phenomenon of synchronization, such 

as if 𝑆 is constant matrix and  

− 𝑠1 = 𝑠2 = ⋯ = 𝑠𝑛, then this phenomenon is called PS 

− 𝑠1 ≠ 𝑠2 ≠ ⋯ ≠ 𝑠𝑛, then this phenomenon is called HPS 

− ∀𝑠𝑖 = 1, then this phenomenon is called CS 

− ∀𝑠𝑖 = −1, then this phenomenon is called AS 

− ∀𝑠𝑖 = ±1, then this phenomenon is called HS 

 

 

3. APPLICATIONS 

In this section, we take 4-D non-linear dynamical system which discover by Zhang et al  

in 2017 [26], for example to show how to use the results obtained in this paper to analyse the synchronization 

class of hyperchaotic systems. The mathematical model is representing by the following: 

 

{ 

�̇� = 𝑎(𝑦 − 𝑥) − 𝑓𝑤
�̇� = 𝑥𝑧 − 𝑞𝑦             
�̇� = 𝑏 − 𝑥𝑦 − 𝑐𝑧      
�̇� = 𝑟𝑦 − 𝑑𝑤          

 (5) 

 

where 𝑥, 𝑦, 𝑧 and 𝑤 are state variable, 𝑥𝑧 and 𝑥𝑦 are two nonlinear terms and 𝑎, 𝑏, 𝑐, 𝑑, 𝑓, 𝑟 and 𝑞 are positive 

parameters. And the system (5) is hyperchaotic attractors due to has possess two positive Lyapunov 

exponents as 𝐿𝐸1 = 0.24, 𝐿𝐸2 = 0.23 at 𝑎 = 5, 𝑏 = 20, 𝑐 = 1, 𝑑 = 0.1, 𝑓 = 20.6, 𝑟 = 0.1 and 𝑞 = 1. 

The projections of hyperchaotic attractor of the above system are shown in Figure 1. 
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(a) 

 
(b) 

 

Figure 1. The attracters of the system (1) in: (a) y-w plane, (b) x-z-y space 

 

 

According to (1) and (2), system (5) can be represent as 
 

[

�̇�1
�̇�2
�̇�3
�̇�4

] = [

−𝑎 𝑎 0 −𝑓
0 −𝑞 0 0
0 0 −𝑐 0
0 𝑟 0 −𝑑

]

⏟              
𝐴

[

𝑥1
𝑥2
𝑥3
𝑥4

] + [

0
0
𝑏
0

] + [

0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

] [

0
𝑥1𝑥3
𝑥1𝑥2
0

]

⏟                  
𝑓(𝑥)

 (6) 

 

[

�̇�1
�̇�2
�̇�3
�̇�4

] = [

−𝑎 𝑎 0 −𝑓
0 −𝑞 0 0
0 0 −𝑐 0
0 𝑟 0 −𝑑

]

⏟              
𝐵

[

𝑦1
𝑦2
𝑦3
𝑦4

] + [

0
0
𝑏
0

] + [

0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

] [

0
𝑦1𝑦3
𝑦1𝑦2
0

]

⏟                  
𝑔(𝑦)

+ [

𝑢1
𝑢2
𝑢3
𝑢4

] (7) 

 

where 𝑈 = [𝑢1, 𝑢2, 𝑢3, 𝑢4] 
𝑇 is the controller to be designed 

 

 

4. PROJECTIVE SYNCHRONIZATION (PS) 

This phenomenon take place under the condition “that all diagonal elements 𝑠𝑖 of the constant 

scaling matrix 𝑆(𝑡), possess the same value”. Herein, three cases are considered as 

− ∀ 𝑠𝑖 = 3 

− ∀ 𝑠𝑖 = 1 

− ∀ 𝑠𝑖 = −1 

 

4.1. The Controllers at scaling factor ∀ 𝒔𝒊 = 𝟑 

According to (3), the error of PS �̇�𝑖 ∈ 𝑅
4 between the system (6) and the system (7) is depict by:  

 

�̇�𝑖 = 𝑦𝑖 − 3𝐼𝑖  𝑥𝑖 ,       𝐼 = 𝑑𝑎𝑖𝑔[1,1, … ,1],   𝑖 = 1,2,3,4  
 

and lead to  
 

{  

�̇�1 = 𝑎(𝑒2 − 𝑒1) − 𝑓𝑒4 + 𝑢1                                
�̇�2 = −𝑞𝑒2 + 𝑒3𝑦1 + 3(𝑦1−𝑥1)𝑥3 + 𝑢2            

�̇�3 = −𝑐𝑒3 − 𝑒2𝑦1 + 3(𝑥1 − 𝑦1)𝑥2 − 2𝑏 + 𝑢3
�̇�4 = −𝑑𝑒4 + 𝑟𝑒2 + 𝑢4                                          

 (8) 

 

Theorem 1. If design control 𝑈 = [𝑢1, 𝑢2, 𝑢3, 𝑢4] 
𝑇  as: 

 

{  

𝑢1 =  0                                                

𝑢2 = −𝑎𝑒1 − 𝑟𝑒4 + 3(𝑥1 − 𝑦1)𝑥3
𝑢3 = 2𝑏 + 3(𝑦1 − 𝑥1)𝑥2                
𝑢4 = 𝑓𝑒1                                             

 (9) 
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Then the system (8) can be controlled i.e., PS between system (6) and system (7) is achieved. 

Proof: By inserting the controller (9) in the error system (8) we get: 

 

{

�̇�1 = 𝑎(𝑒2 − 𝑒1) − 𝑓𝑒4                
�̇�2 = −𝑞𝑒2 − 𝑟𝑒4 − 𝑎𝑒1 + 𝑒3𝑦1
�̇�3 = −𝑐𝑒3 − 𝑒2𝑦1                        
�̇�4 = −𝑑𝑒4 + 𝑟𝑒2 + 𝑓𝑒1             

 (10)  

 

Construct the Lyapunov function as the following: 

 

𝑉(𝑒) = 𝑒𝑇𝑃 𝑒,    𝑃 = 𝑑𝑖𝑎𝑔( 
1

2
,
1

2
,
1

2
,
1

2
 ) (11)           

 

and derivative 𝑉 (𝑒) along time of (10) is: 

 

�̇�(𝑒) = 𝑒1(𝑎(𝑒2 − 𝑒1) − 𝑓𝑒4) + 𝑒2(−𝑞𝑒2 − 𝑟𝑒4 − 𝑎𝑒1 + 𝑒3𝑦1)  

+𝑒3(−𝑐𝑒3 − 𝑒2𝑦1) + 𝑒4(−𝑑𝑒4 + 𝑟𝑒2 + 𝑓𝑒1)  

 

Above equation can reduce as: 

 

�̇�(𝑒) = −𝑎𝑒1
2 − 𝑞𝑒2

2 − 𝑐𝑒3
2 − 𝑑𝑒4

2 = −𝑒𝑇𝑄 𝑒,       𝑄 = 𝑑𝑖𝑎𝑔[𝑎 𝑞 𝑐 𝑑]   

 

the matrix 𝑄 is positive definite. So, �̇�(𝑒) is negative definite. The Lyapunov's direct method is satisfied. 

Therefore, the response system (7) is PS with the drive system (6) asymptotically, the proof is complete. 

 

4.2. The Controllers at scaling factor ∀ 𝒔𝒊 = 𝟏 

For all scaling factor are equal 1, the error of PS between the drive system (6) and the response 

system (7) is given by:  

 

{

�̇�1 = 𝑎(𝑒2 − 𝑒1) − 𝑓𝑒4 + 𝑢1                   
�̇�2 = −𝑞𝑒2 + 𝑒1𝑥3 + 𝑒3𝑥1+𝑒1𝑒3 + 𝑢2 
�̇�3 = −𝑐𝑒3 − 𝑒1𝑥2 − 𝑒2𝑥1 − 𝑒1𝑒2 + 𝑢3
�̇�4 = −𝑑𝑒4 + 𝑟𝑒2 + 𝑢4                             

 (12) 

 

Theorem 2. The systems (6) & (7) will be asymptotically stable, if the controller is designed as follows: 

 

{

𝑢1 = −𝑒2𝑥3 + 𝑒3𝑥2
𝑢2 = −𝑎𝑒1 − 𝑟𝑒4   
𝑢3 = 0                      
𝑢4 = 𝑓𝑒1                  

 (13) 

 

Proof: By substituting the controllers (13) in the system (12), we can obtain: 

 

{

�̇�1 = 𝑎(𝑒2 − 𝑒1) − 𝑓𝑒4 − 𝑒2𝑥3 + 𝑒3𝑥2                
�̇�2 = −𝑞𝑒2 + 𝑒1𝑥3 + 𝑒3𝑥1 + 𝑒1𝑒3 − 𝑎𝑒1 − 𝑟𝑒4
�̇�3 = −𝑐𝑒3 − 𝑒1𝑥2 − 𝑒2𝑥1 − 𝑒1𝑒2                        
�̇�4 = −𝑑𝑒4 + 𝑟𝑒2 + 𝑓𝑒1                                        

 (14) 

 

the Lyapunov function and its derivative are yields Eqs. (15) and (16), respectively  

 

𝑉(𝑒) =
1

2
∑  𝑒𝑖

24
𝑖=4 =

1

2
(𝑒1
2 + 𝑒2

2 + 𝑒3
2 + 𝑒4

2) (15) 

 

�̇�(𝑒) = −𝑎𝑒1
2 − 𝑞𝑒2

2 − 𝑐𝑒3
2 − 𝑑𝑒4

2 < 0 (16) 

 

since 𝑉(𝑒) is a positive function and �̇�(𝑒) is negative. So, the response of system (7) is PS with the drive 

system (6) asymptotically. The proof is complete. 
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4.3. The Controllers at scaling factor ∀ 𝒔𝒊 = −𝟏 

For all scaling factor are taken the values -1, the error of PS between the system (6) and the system 

(7) is given by:  
 

{ 

�̇�1 = 𝑎(𝑒2 − 𝑒1) − 𝑓𝑒4 + 𝑢1                                                         
�̇�2 = −𝑞𝑒2 + 𝑒1𝑥3 + 𝑒3𝑥1 + (𝑦1 − 𝑥1)(𝑦3 − 𝑥3) + 𝑢2          

�̇�3 = −𝑐𝑒3 − 𝑒1𝑥2 − 𝑒2𝑥1 − (𝑦1 − 𝑥1)(𝑦2 − 𝑥2) + 2𝑏 + 𝑢3
�̇�4 = −𝑑𝑒4 + 𝑟𝑒2 + 𝑢4                                                                   

 (17) 

 

Theorem 3. Choose the controller 𝑈𝑖 as: 

 

{ 

𝑢1 =  𝑓𝑒4 − 𝑒2𝑥3 + 𝑒3𝑥2                           

𝑢2 = −𝑎𝑒1 − 𝑟𝑒4 − (𝑥1 − 𝑦1)(𝑥3 − 𝑦3)

𝑢3 = (𝑦1 − 𝑥1)(𝑦2 − 𝑥2)  − 2𝑏               
𝑢4 =  0                                                           

 (18) 

 

The error dynamic system (17) can be controlled. 

Proof: With this control, (17) can be rewritten as: 

 

{

�̇�1 = 𝑎(𝑒2 − 𝑒1) − 𝑒2𝑥3 + 𝑒3𝑥2              
�̇�2 = −𝑞𝑒2 − 𝑟𝑒4 − 𝑎𝑒1 + 𝑒1𝑥3 + 𝑒3𝑥1
�̇�3 = −𝑐𝑒3 − 𝑒1𝑥2 − 𝑒2𝑥1                        
�̇�4 = −𝑑𝑒4 + 𝑟𝑒2                                       

 (19) 

 

The time derivative of the Lyapunov function is: 

 

�̇�(𝑒) = −𝑎𝑒1
2 − 𝑞𝑒2

2 − 𝑐𝑒3
2 − 𝑑𝑒4

2 < 0  

 

which is negative definite So, �̇�(𝑒) < 0. Therefore, PS of the two systems can be achieved simultaneously. 

 

 

5. HYBRID PROJECTIVE SYNCHRONIZATION (HPS) 

If at least one of scaling factor is different, this phenomenon is called HPS. Herein, two cases are 

considered as 

− 𝑠1 = 1, 𝑠2 = 2,  𝑠3 = 3, 𝑠4 = 4 

− 𝑠1,3 = −1 , 𝑠2,4 = 1 

 

5.1. The Controllers at scaling factor 𝒔𝟏 = 𝟏, 𝒔𝟐 = 𝟐, 𝒔𝟑 = 𝟑, 𝒔𝟒 = 𝟒 

If the matrix 𝑆 is chosen as 𝑆 = 𝑑𝑖𝑎𝑔(1, 2, 3, 4), i.e.  
 

𝑒 = [

𝑦1
𝑦2
𝑦3
𝑦4

] − [

1 0 0 0
0 2 0 0
0
0

0
0

3
0

0
4

]

⏟        
𝑆

[

𝑥1
𝑥2
𝑥3
𝑥4

]      (20) 

 

According to the (20), the error of HPS system between the system (6) and the system (7), is given as 

 

{ 

�̇�1 = 𝑎(𝑒2 − 𝑒1) − 𝑓𝑒4 + 𝑎𝑥2 − 3𝑓𝑥4 + 𝑢1       
�̇�2 = −𝑞𝑒2 + 𝑒1𝑦3 + (𝑦3−2𝑥3)𝑥1 + 𝑢2              

�̇�3 = −𝑐𝑒3 − 𝑒2𝑦1 − (2𝑦1 − 3𝑥1)𝑥2 − 2𝑏 + 𝑢3
�̇�4 = −𝑑𝑒4 + 𝑟𝑒2 − 2𝑟𝑥2 + 𝑢4                              

 (21) 

 

Theorem 4. If the following controller is designed as: 

 

{
 
 

 
 

  

𝑢1 =  −𝑎𝑥2 + 3𝑓𝑥4 − 𝑒2𝑦3                                   

𝑢2 = −5𝑞𝑒1 + (2𝑥3 − 𝑦3)𝑥1 + 𝑒3𝑦1 −
1

200
𝑏𝑒4

𝑢3 = 2𝑏 + (2𝑦1 − 3𝑥1)𝑥2                                     
𝑢4 = 206𝑟𝑒1 + 2𝑟𝑥2                                              

 (22) 
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Then the system (21) will be controlled. 

Proof: Insert above control in (21), we get: 
 

{
 
 

 
 

  

�̇�1 = 𝑎(𝑒2 − 𝑒1) − 𝑓𝑒4 − 𝑒2𝑦3                        

�̇�2 = −𝑞𝑒2 − 5𝑞𝑒1 −
1

200
𝑏𝑒4 + 𝑒1𝑦3 + 𝑒3𝑦1

�̇�3 = −𝑐𝑒3 − 𝑒2𝑦1                                               
�̇�4 = −𝑑𝑒4 + 𝑟𝑒2 + 206𝑟𝑒1                             

 (23) 

 

The time derivative of the Lyapunov function is: 
 

�̇�(𝑒) = −𝑎𝑒1
2 − 𝑞𝑒2

2 − 𝑐𝑒3
2 − 𝑑𝑒4

2 + (𝑎 − 5𝑞)𝑒1𝑒2 + (𝑟 −
1

200
𝑏) 𝑒2𝑒4 + (206𝑟 − 𝑓)𝑒1𝑒4 (24) 

 

So, �̇�(𝑒) is negative definite, the system (21) was controlled based on control system (22). 
 

5.2. The Controllers at scaling factor 𝒔𝟏 = 𝟏, 𝒔𝟐 = −𝟏, 𝒔𝟑 = 𝟏, 𝒔𝟒 = −𝟏 

If the matrix 𝑆 is chosen as 𝑆 = 𝑑𝑖𝑎𝑔(1, −1, 1, −1), i.e.   
 

𝑒 = [

𝑦1
𝑦2
𝑦3
𝑦4

] − [

1 0 0 0
0 −1 0 0
0
0

0
0

1
0

0
−1

]

⏟            
𝑆

[

𝑥1
𝑥2
𝑥3
𝑥4

]  

 

According to the above equation, the error of hybrid projective synchronization system between the system 

(6) and the system (7), is given as 
 

{ 

�̇�1 = 𝑎(𝑒2 − 𝑒1) − 𝑓𝑒4 − 𝑎𝑥2 + 𝑓𝑥4 + 𝑢1
�̇�2 = −𝑞𝑒2 + 𝑒3𝑦1 + (𝑦1+𝑥1)𝑥3 + 𝑢2       

�̇�3 = −𝑐𝑒3 − 𝑒2𝑦1 + (𝑦1 + 𝑥1)𝑥2 + 𝑢3     
�̇�4 = −𝑑𝑒4 + 𝑟𝑒2 + 𝑢4                                  

 (25) 

 

Theorem 5. If design the following controller (26): 
 

{
 

 
 

𝑢1 =  𝑎𝑥2 − 𝑓𝑥4                             

𝑢2 = −(𝑥1 + 𝑦1)𝑥3 − 𝑎𝑒1 − 𝑟𝑒4
𝑢3 = (−𝑥1 − 𝑦1)𝑥2                        
𝑢4 = 𝑓𝑒1                                           

 (26) 

 

Then the system (25) will be controlled. 

Proof: The time derivative of the Lyapunov function is: 
 

�̇�(𝑒) = −𝑎𝑒1
2 − 𝑞𝑒2

2 − 𝑐𝑒3
2 − 𝑑𝑒4

2 (27) 
 

So, �̇�(𝑒) is negative definite, the system (25) was controlled based on control (26). 

 

 

6. NUMERICAL SIMULATION 

For simulation, the MATLAB version R2017a is adopted to solve the differential equation  

of controlled error dynamical system (8), system (12) and system (17) for PS and controlled error dynamical 

system (21), system (25) for HPS based on fourth-order Runge-Kutta scheme with time step ℎ = 0.01  

and the and the initial values of the drive system and the response system are following (3.2, 8.5, 3.5, 2.0) 
and (−3. 2, −8. 5, −3. 5, −2. 0) respectively. We choose the parameters 𝑎 = 5, 𝑏 = 20, 𝑐 = 1, 𝑑 = 0.1, 𝑓 =
20.6, 𝑟 = 0.1 and 𝑞 = 1.  

− For scaling factor ∀ 𝑠𝑖 = 3. Figure 2 show the PS of the systems (6) and (7) with control (9).  

− For scaling factor ∀ 𝑠𝑖 = 1. Figure 3 show the PS of the systems (6) and (7) with control (13).  

− For scaling factor ∀ 𝑠𝑖 = −1. Figure 4 show the PS of the systems (6) and (4) with control (18).  

− For scaling factor 𝑠1 = 1, 𝑠2 = 2,  𝑠3 = 3, 𝑠4 = 4. Figure 5 show the HPS of the systems (1) and (4) 

with control (22).  

− For scaling factor 𝑠1,3 = −1 , 𝑠2,4 = 1. Figure 6 show the HPS of the systems (1) and (4) with  

control (26). 
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Figure 2. The PS for the state variables with control (9) at scaling factors ∀ 𝒔𝒊 = 𝟑 

 

 

 
 

Figure 3. The PS for the state variables with control (13) at scaling factors ∀ 𝒔𝒊 = 𝟏 

 

 

 
 

Figure 4. The PS for the state variables with control (18) at scaling factors ∀ 𝒔𝒊 = −𝟏 
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Figure 5. The HPS for the state variables with control (22) at scaling factors 𝒔𝟏 = 𝟏, 𝒔𝟐 = 𝟐,  𝒔𝟑 = 𝟑, 𝒔𝟒 = 𝟒 
 

 

 
 

Figure 6. The HPS for the state variables with control (26) at scaling factors 𝒔𝒊 = ±𝟏 
 

 

7. CONCLUSION 

Based on the scaling matrix 𝑆, two types of synchronization phenomena are achieved, namely PS 

and HPS. Three error systems of PS and two error systems of HPS with controller have been proposed  

for obtaining PS and HPS between two identical 4-D hyperchaotic systems with unknown parameters based 

on Lyapunov's method and the nonlinear control strategy. Certainly, the projective synchronization,  

were achieved CS, AS as well as PS via this phenomenon. Whereas, the HPS, was achieved HS.  

The effectiveness of these proposed control strategies was validated by numerical simulation results. 
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