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Pneumonia is one of the highest global causes of deaths especially for children 

under 5 years old. This happened mainly because of the difficulties in identifying 

the cause of pneumonia. As a result, the treatment given may not be suitable for 

each pneumonia case. Recent studies have used deep learning approaches to obtain 

better classification within the cause of pneumonia. In this research, we used 

siamese convolutional network (SCN) to classify chest x-ray pneumonia image into 

3 classes, namely normal conditions, bacterial pneumonia, and viral pneumonia. 

Siamese convolutional network is a neural network architecture that learns 

similarity knowledge between pairs of image inputs based on the differences 

between its features. One of the important benefits of classifying data with SCN is 

the availability of comparable images that can be used as a reference when 

determining class. Using SCN, our best model achieved 80.03% accuracy, 79.59% 

f1 score, and an improved result reasoning by providing the comparable images. 
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1. INTRODUCTION 

Pneumonia is one of the leading causes of mortality in children under 5 years old besides preterm birth 

complications [1]. In 2015, pneumonia is responsible for around 15% of all deaths or almost 920,136 number of 

children in this age group [2]. Pneumonia is an inflammation of lung tissue as a result of infectious agents [3]. 

The most common type of pneumonia is bacterial pneumonia and viral pneumonia [4]. Bacterial pneumonia 

is caused by bacteria such as Streptococcus pneumoniae Haemophilus influenzae type b (Hib), and 

Mycoplasma pneumoniae [5]. Viral pneumonia is often caused by respiratory virus including influenza, 

parainfluenza virus, and adenovirus [6]. 

The main problem of pneumonia treatment is the difficulty to make a clinical decision as a result of 

the inability to identify the infectious organism [7]. To overcome this problem, pneumonia disease is usually 

treated using antibiotics. However, the use of antibiotics to treat viral pneumonia is ineffective [4] and misuse 

of antibiotics can increase the risk of antibiotic resistance [7]. Thus, it is important to identify the type of 

microorganism on the diagnosis of pneumonia to receive suitable treatments. Medical imaging techniques has 

been used to support diagnosis result such as ultrasonography, radiography, and tomography. Image 

processing and machine learning algorithms also played important role to assist doctor in making faster and 

more accurate diagnosis [8]. Some researchers have combined these approaches on medical imaging  

result i.e. [9] used possibilistic c-means for ultrasound images, [10] used wavelet decomposition for chest 

radiograph, and [11] used deep neural network for MRI images segmentation. 

https://creativecommons.org/licenses/by-sa/4.0/
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As there are no test that can fully identify specific cause of pneumonia, a test to distinguish between 

bacterial and viral pneumonia would be a major advance [12]. The most common test is using host 

biomarkers (i.e. procalcitonin (PCT), C reactive protein (CRP), white blood cell indicators), but these tests 

resulting in complex outcome and is lack of an accurate reference comparator test [12]. Accordingly, chest  

x-ray (CXR), a medical imaging technique, is used to provide more comprehensive clinical signs. In clinical 

decision, CXR supports bacterial or viral etiology and even for complications [7]. As a result, in this work, 

deep learning method will be used to classifying the result of CXR into normal condition, bacterial 

pneumonia, and viral pneumonia. 

Deep learning method that mainly used for image problem is convolutional neural network (CNN). 

Several researchers have used CNN to classify medical imaging results such as [13] for classifying stroke, [14] for 

classifying type of muscle, and [15] for classifying abdominal ultrasound images. The used of CNN for 

classifying CXR has also been performed in [16] and [17] for classifying two classes, normal condition and 

pneumonia. The result shows high accuracy in both works. However, the predicted result still lacks on 

reasoning part that supports the results. 

Another variation of CNN is siamese convolutional network (SCN). SCN using two identical CNN 

with the same architecture and the same weight [18]. This network receives a pair of images as input and 

returns a similarity score between them. SCN has been used by [19] on tracking problems and is able to 

perform well in those problems. Another work is done by [20] for one shot character recognition. They form 

a pair from a single data image to suit the SCN input. For the one-shot learning problem, they used different 

class collections of alphabets for testing and classified each of the alphabets using SCN. Whereas our work 

will use similar type of approach but with the same class of data. Using this approach, we could also use  

the compared images to support classification results, considering the fact that similar methods still deficient 

in the reasoning part. 

 

 

2. RESEARCH METHOD 

2.1. Data description 

The used dataset is Labeled Optical Coherence Tomography (OCT) and Chest X-Ray Images for 

Classification [16]. This dataset contains 5863 chest x-ray (CXR) images from patients one to five years of 

age at Guangzhou Women and Children’s Medical Center [16]. It also divides the data into 3 classes, normal 

condition, bacterial pneumonia, and viral pneumonia. Diagnoses of all CXR images have also been reviewed 

by two radiologists [16]. 

 

2.2. Proposed model 

2.2.1. Siamese convolutional network architecture 

Figure 1 described siamese convolutional network (SCN) architecture that will be used in this 

work. This network received a pair of 224x224 chest x-ray images as input. Then, input will be fed into 

convolutional network to extract features from each image. Connection function was used for combining 

each output of convolutional network. We used cosine distance as a connection function to evaluate 

similarity between each input. Cosine distance has been used for pattern recognition problems as this 

function is invariant to the magnitudes of samples [20]. This function formula is [21]. 

 

 

 
 

Figure 1. Overall siamese convolutional network architecture 
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where A and B are the output of convolutional network as a vector with corresponding to 

𝐴 =  𝑎1, 𝑎2, … , 𝑎𝑛 and 𝐵 =  𝑏1, 𝑏2, … , 𝑏𝑛 n will be the number of vector attributes. The output of this connected 

function will be forwarded into fully connected layer with 2 hidden layers. Dropout layer was added between each 

hidden layer as a regularization. In the last layer, we used sigmoid activation to produce similarity result that is 

bound to [0, 1]. 

Most of the SCN model used parameter sharing on its two convolutional networks weight and bias. 

According to [22], removing this constraint can deal with more specific matching task than general task.  

As our problem used the same class for testing, we also did not use parameter sharing in the network. 

Furthermore, to enhancing matching task for every class, we used separate model for each class. Using this approach, 

each model learned to gain best features for comparison between corresponding class with other classes. 
 

2.2.2. Convolutional network architecture 
In convolutional network, we used 14 layers that contain 9 convolutional layers and 5 max-pooling 

layers as described in Figure 2. The number of channels from each layer are 32, 64, 64, 64, 64, 128, 128, 128, 

128, 128, 256, 256, 256, and 512. Each convolutional layer used a 3x3 filter with two strides and zero 

paddings. On each convolutional layer, ReLu activations will be used to remove negative value.  

The max-pooling filter size is 2x2 with two strides and zero paddings. This way, the image will be down 

sampled and focusing on important features. To reduce overfitting, regularization techniques such as  

dropout [23] and batch normalization will be used [24]. The output of this network has a size of 1x1x512 and 

will be flattened into vector 1x512 before forwarded to fully connected network. 
 
 

 
 

Figure 2. Selected convolutional network for SCN architecture 
 
 

2.3. Splitting dataset 
In this work, we divided the dataset into training (70%), validation (10%), and testing (20%) sets. 

this training and validation data will be used for pair creation. As a result, we used different amounts of data 

for training and validating the network. 

 

2.4. Pair creation 
As SCN input comprises a pair of images, a preprocessing method to form a pair from the dataset 

must be performed. Figure 3 shows set of pairs that will be fed into the network. For same class pair or 

genuine pair, we paired data from the same class. While on the different class pair or impostor pair, the first 

input always comes from the same class that corresponds to the model. The second input consists of data 

from different classes than the first input. In our work, we used an equal number of genuine pairs and 

impostor pairs to avoid class imbalance. The amount of created genuine pairs can be calculated using 

combinatorics. For n number of data from the same class, there are (
𝑛
2

) amount of pair data available to use. 

Hence, the split data training and validation will be processed into a form of data pair. Using these pair data, 

we randomly picked 10000 pair of training data and 2000 pair of validation data for training phase. 
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Figure 3. Set of pairs for each class model 
 

 

2.5. Training 
We trained our SCN using mini batch with batch size 16. To generate each batch, the paired data 

were put into generator. In addition, generator also performed additional preprocessing to the images.  

First, images were resized into 224x224. Then, flip horizontal augmentation was performed randomly to  

the images. We also normalized the images based on the mean and standard deviation from 1000 samples 

training data. Figure 4 shows preprocessing flow in the generator. To train the network, Adam optimizer was 

used to optimize the network. The chosen hyperparameters are shown in Table 1. 

 

 

 
 

Figure 4. Preprocessing in the generator 
 

 

Table 1. SCN Hyperparameter Settings 
Hyperparameter Value 

Learning Rate 0.001 

Dropout Rate 0.5 

Learning Decay 0 
β1 0.9 

β2 0.999 

 
 

As the output of this network is a binary classification, which similarity result was measured, we used 

binary cross entropy (BCE) for the loss function. BCE is usually used by SCN with sigmoid activations on the last 

layer [25]. As shown in (2) shows the loss function formula which guide our SCN learning process [26], 

 

𝑐 =
1

𝑚
∑ [𝑡𝑘𝐼𝑛 𝑦𝑘 + (1 − 𝑡𝑘)𝐼𝑛(1 − 𝑦𝑘)]𝑚

𝑘=1  (2) 

 

where C is the BCE loss function value from data k to m, tk and yk is an actual target and prediction result of 

data k.  

Network from each class was trained for 20 epochs, as the loss has been increasing around the last 5 

epochs. The best weights configuration was saved associates to the lowest validation loss. Such weight will 

be loaded to the network before using it for testing data. 

 

2.6. Testing 
Initially, we changed the testing data into a pair. Generator was used to create a pair between testing 

data with randomly picked data training for each representative class. Figure 5 describes the input class from 

each pair. The first input always consists of the data corresponding to the class model. For the second input, 



                ISSN: 1693-6930 

TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 3, June 2020:  1302 – 1309 

1306 

we put the testing data, which can be the data from any class. Using these rules, there was no alteration 

between the paired data input used for training and testing. Thus, the model was able to find similarity 

features for each class. We defined rank as the number of repeated testing on the same category. This term 

was also used in [21] to evaluate the network. Then, classification result was based on maximum similarity 

from C number of classes as shown in 3 [20].  

 

𝐶𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐𝑝(𝑐) (3) 

 

where C* defines classification result from all class, c as list of all class, and 𝑝(𝑐) as mean prediction result 

based on number of ranks. 

 
 

 
 

Figure 5. Overall testing flow 
 

 

3. RESULTS AND ANALYSIS  

3.1. Comparing architecture 

First, we wanted to compare our architecture with the other ones that have been used for pneumonia 

classification. The compared network is InceptionV3 nets which are used by [16] and network from [17].  

As both architectures are CNN, we drop the fully connected layer on those networks and use them as  

a convolutional network for our SCN. To know a glimpse of each network performance, we used 2000 

training data pair and 400 validation data pair. Table 2 shows the accuracy for each architecture. 
 
 

Table 2. Comparison of Different Architecture 
Architecture Accuracy 

This Paper 77.05% 
(Saraiva et al.) [17] 73.46% 

InceptionV3 [27] 72.18% 

 

 

The proposed model in this paper achieves higher accuracy than the other network when used for 

SCN. If we compare the number of layers on those networks, Saraiva model consist of 9 layers and 

InceptionV3 has 48 number of layers, whereas our architecture is formed by 14 layers. Therefore, our 

architecture has deeper layer than Saraiva model, but not as deep as InceptionV3 nets. 

 

3.2. Evaluation 
Table 3 details the training results that consist of lowest loss validation, validation accuracy, and 

epoch position for each class. Based on the loss validation, each model performs quite well to learn similarity 

between each class. Thus, these models are used to predict testing data. When predicting data, one benefits of 

using SCN for classification is the availability of other images for comparison. The amount of compared 

images is equal to the number of ranks. By doing so, high similarity images can be used for case references. 

Particularly in medical imaging data, the role of these images is essential to support the classification result. 

Figure 6 shows the illustration of comparison images with its corresponding similarity value. 
 

 

Table 3. Training result for each class 
Class Lowest Loss Validation Validation Accuracy Epoch Position 

Normal 0.10897 96.05% 8 

Bacterial 0.39441 83.20% 13 
Virus 0.43917 83.10% 5 
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Test Data #2 (Label: Bacteria, Predicted: Bacteria) 

Compare with: Bacteria 

 
 

Figure 6. Illustration of comparison visualization for siamese convolutional network 

 

 

As the prediction result and actual target are also bacteria class, which is a correct classification, 

each comparison mostly shows high similarity scores. Table 4 describes the result of testing data prediction 

using different number of ranks. The higher number of ranks, in accordance with higher number of compared 

data, resulting in higher accuracy. The best accuracy that we achieve is 80.03% using rank-20. Thus, we 

evaluate this model using confusion matrix, precision, recall, and f1 score. Table 5 shows the confusion 

matrix for this classification result. 
 

 

Table 4. Testing result  

based on number of rank 
Rank Accuracy 

1 74.91% 

5 77.05% 
10 78.33% 

20 80.03% 
 

Table 5. Confusion matrix using rank-20 classification 
Confusion Matrix Predicted 

Normal Bacteria Virus Total 

Actual Normal 297 8 12 317 

Bacteria 15 440 101 556 
Virus 15 83 201 299 

Total 327 531 314 1172 
 

 

 

Using this confusion matrix, we calculate other evaluation metrics such as precision, recall, and f1 

score. The complete evaluation metrics are described in Table 6. To make sure that our model is not biased to 

specific class, we compared the overall accuracy with the average f1 score, as this value takes recall and 

precision into account. If we compared these values, there is no significant difference. However, if we 

compared f1 score between normal class and virus class, the difference is quite big. When we look at  

the confusion matrix, most of the wrong classifications on virus class, are classified as bacteria. Intuitively, 

there are some cases on virus class that are also similar with the bacteria cases. This makes the model 

prediction was mixed between those two classes. Nevertheless, as there is no significant difference between 

average f1 score with overall accuracy, our model is not biased to specific class and performs quite well to 

classify data in general. 
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Table 6. Complete list of evaluation metrics 
Metrics Normal Bacteria Virus Average 

Recall 93.69% 79.13% 67.22% 80.03% 

Precision 90.82% 82.86% 64.01% 79.23% 
F1 Score 92.24% 80.96% 65.58% 79.59% 

Overall Accuracy 80.03% 

 

 

3.3. Filter visualization 
Figure 7 shows filter visualization from the first convolutional layer. In the first input, the extracted 

features in this layer centering on the right and left side of the lungs. For the bacterial class, the result detailed 

more on the right side of the lung. On the opposite, the filter result on second input mostly extracts the same 

features on first convolutional for each class. 
 

 

 
 

Figure 7. Filter visualization from the first convolutional layer 
 
 

4. CONCLUSION 

In this work, we propose x-ray imaging classification using siamese convolutional network (SCN) 

which is often used for similarity learning. Our model also drops the constraint of parameter sharing and 

enhancing features on each class using model separation. The SCN architecture we are used consists of  

2 convolutional networks with 14 layers (9 convolutional layers and 5 max pooling layers) respectively, 

cosine distance as connection function, and fully connected layer with 2 hidden layers. When used for SCN, 

our architecture achieves better results than other architecture such as inception v3 and model from [17].  

This architecture was able to achieve 80.03% accuracy and 79.59% f1 score. We also show the comparison 

image which used to support the decision from classification result. Therefore, our model has a better result 

reasoning and details comparing to the similar methods like CNN. 

For future works, as the amount of pair result is combinatorics, there is plenty of training data that 

can be added to improve the model performance. More experiments on hyperparameter settings also help to 

improve the model. Finally, we plan to improve the result visualization using class activation map (CAM) 

that is suitable for SCN. It would maximize the purpose of comparison images and give a better 

understanding of the result. 
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