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 Quantum algorithms are well-known for their quadratic if not exponential 

speedup over their classical counterparts. The two widely-known quantum 

algorithms are Shor’s quantum factoring algorithm and Grover’s quantum 

search algorithm. Shor’s quantum factoring algorithm could perform integer 

factorization in O(logN). Grover’s quantum search algorithm could solve  

the unsorted search problem in O(√N). However, both algorithms are 

introduced as theoretical concepts in the original papers due to the limitations 

of quantum technology at that time. In this paper, an improved way is presented 

to realize the two algorithms into a web application using state-of-the-art quantum 

technology. The web-app is designed and built considering the uses of a quantum 

simulator and libraries provided by ProjectQ and Rigetti Forest. The result shows 

that both algorithms are realizable into web-applications. 
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1. INTRODUCTION 

Quantum computing could drive the progress of breakthroughs in science by leveraging quantum 

mechanical phenomena to employ information [1-5]. In 1994, MIT’s Peter Shor shows that it’s possible to 

factor a number into its primes on a quantum computer in polynomial time [6-9]. This is a problem that takes 

classical computers “an exponentially long time” to solve for large numbers [10, 11]. In 1996, Lov Grover 

introduces a fast quantum mechanical algorithm for unsorted database search. The quantum search algorithm 

takes O(√N) for the unsorted database search problem [12] and allows quadratic speedup over its classical 

counterpart by using amplitude amplification in quantum computing. The two quantum algorithms are 

introduced as theoretical concepts in their original papers with no detailed implementation. 

Today’s state-of-the-art quantum computing technologies [13] are delivered by Rigetti, IBM, ETH 

Zurich, Microsoft, Intel, and Google. The software platforms respectively are Forest, Qiskit, ProjectQ, and 

Quantum Development Kit. The Bristlecone is Google’s latest quantum computer with the most number of 

qubits to-date (72 qubits) [13] along with Sycamore (53 qubits) [14, 15]. Rigetti Forest, on the other hand, is 

a quantum virtual machine (QVM) that is available for public use to do quantum programming and 

computational simulations on a classical computer [16]. ETH Zurich’s ProjectQ is a publicly accessible 

Python library and framework that allows quantum computing using a classical computer [17]. These two 

quantum virtual machine (Forest and ProjectQ) are suitable for realizing the Shor’s quantum factoring 

algorithm and Grover’s quantum search algorithm into a web application due to their quantum library support 

for each algorithm. 

https://creativecommons.org/licenses/by-sa/4.0/
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A related study on the realization of a quantum algorithm into a web application could be found in 

quantum computing playground (QCP) [18]. The QCP demonstrates the work of Shor’s quantum factoring 

algorithm and Grover’s quantum search algorithm. It is a web-based WebGL Chrome experiment that is 

created by a group of Google engineers in 2014 using QScript. However, the QCP’s web-app has a limitation 

of using only one quantum register with size up to 22 qubits and no possible portability nor connectivity to 

the gate level quantum hardware. It also does not support connectivity with the state-of-the-arts quantum 

technologies.  

Thus, this paper proposes an improved way of design and implementation for the two quantum 

algorithms (Shor’s and Grover’s) into a web application. It is to address the lack of design and 

implementation details up to this date for both quantum algorithms using state-of-the-arts quantum 

technologies [19-22]. Web platform is chosen for the realization of the quantum algorithms to allow ease of 

use and access. The quantum technologies that are used for the web-app realization are Rigetti Forest for 

Grover’s quantum search algorithm and ETH Zurich ProjectQ for Shor’s quantum factoring algorithm.  

The two quantum computing technologies are chosen due to their support and availability for general users: 

documentation and examples. Both Forest and ProjectQ use Python as their programming language, hence 

Flask micro web framework could be used for the web-app development since it is also written in Python. 

The performance of the web-app realization in terms of the execution time is compared with the QCP’s result 

under the same simulation scenario and parameters. 

 

 

2. RESEARCH METHOD 

The research methods used are literature reviews, design and implementation, and testing and 

evaluation. The literature reviews include quantum bit, universal quantum gate, Shor’s quantum factoring 

algorithm [23], Grover’s quantum search algorithm, Quantum Computing Playground, ETH Zurich ProjectQ 

framework, and Rigetti Forest SDK. The design of the implementation of the quantum algorithm is described 

using a flowchart. In this research, the quantum error correction and ancilla qubits are not taken into account. 

The web-app realization of the Shor’s quantum factoring algorithm is done using the ETH Zurich 

ProjectQ framework and Flask. Meanwhile for Grover’s quantum search algorithm is done using Rigetti 

Forest SDK with pyQuil library and Flask. Two computers with different hardware specifications are used 

for the implementation part. The testing is done using the white-box testing methodology and the 

performance of the web-app is measured by the execution time and compared with the Quantum Computing 

Playground under the same simulation scenario and parameters as presented in [24, 25]. 

 

2.1. Shor’s implementation design 

Figure 1 shows Shor’s quantum factoring algorithm flowchart. First, the user is asked to input a 

positive integer value i.e. N. The input is evaluated and returned with true if N modulo by 2 equals 0, and 

returns false otherwise. The next process is the inspection process if N is prime or not. Same as the previous 

process, this process will return true or false depending on the value of N entered. If the value of N can be 

used up modulated by a number smaller than itself, this process will return a false value. Furthermore,  

the value of the variable q is determined by finding a rank of 2 that is greater or equal to the value of N2. This 

process will add one to the power variable until a displacement of two is greater than the target. This process 

flowchart can be seen in Figure 2 notated by off-page reference 1. After that, the value of the variable x is 

determined randomly. The sub-quantum routine of Shor's quantum factoring algorithm will be run if x is 

coprime with N and N is not prime nor even. 

On-page reference C describes the initialization process of variables which will later be used in the 

quantum computation process which is notated by the on-page reference D in Figure 2. The n value in this 

process stores the bit size needed to represent integers up to the variable q minus one. Next, the quantum 

register is initialized to size n, the bit size previously calculated. This quantum register will then be passed 

through the Hadamard gate to enter the superposition state of all numbers from zero to q minus one. A qubit 

will also be initialized as a ctrl_qubit variable. The measurement variables are created as n-sized arrays to 

store the value of modular exponentiation at a later step. 

The next process is modular exponentiation. This step is repeated for n number of times.  

The current_x value is filled with the value from the calculation of pow (x, 1 << (n-1-k, N)) where k is  

the iterator of the repetition of the process. Then, the ctrl_qubit variable is brought to a superposition state 

before the control statement is executed. If the conditions in the Control statement are satisfied, the modular 

multiplication calculation is continued. The modular multiplication process executes using the quantum 

register a as the base, current_x as the multiplier, and N as the value that will perform the modulo operation 

on the previous multiplication result. The last step in the quantum computation process is the measurement of 

the value of ctrl_qubit. The measured value is put into the measurement array at the k-index, where k is  
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the iterator of this process loop. The period of N could be found by adding up all values of the array 

measurements and look for the best rational approximation from that value. 

After the period of N, represented by the variable r is found, r’s value is checked whether or not it is 

odd. If it is odd, the value is multiplied by 2. The two factors of N could be determined by calculating the 

values of GCD ((x(r/2)+1), N) and GCD ((x(r/2)-1), N). Both values are stored in variables f1 and f2 

respectively. If the product of f1 and f2 multiples do not produce N and is more than 1, the value of f1 

becomes the product of f1 by f2 and f2 becomes the result of the division of N by f1. If the factor of N found, 

the program will issue both values. If not, the program notifies that the calculation is failed. This failure is 

part of the probabilistic nature of quantum superposition. The flowchart design for this last step is shown in 

Figure 3. 
 
 

 
 

Figure 1. Shor’s quantum factoring algorithm flowchart (part one) 
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Figure 2. Shor’s quantum factoring algorithm flowchart (part two) 
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Figure 3. Shor’s quantum factoring algorithm flowchart (part three) 
 

 

2.2. Grover’s implementation design 

Figure 4 shows Grover’s quantum search algorithm flowchart. First, the user enters input dataset and 

target to be searched. The program will convert target to binary representation and stored in variable 

dataTarget. Then, the program will search for max value in the dataset. The max value binary representation 

will be stored in variable bit string. The number of quantum bits that will be used depends on the length of 

the bit string. Quantum program is needed in Rigetti Forest SDK. The Oracle function and Diffusion matrix 

are created and added to the quantum program as a new gate. The first step in Grover’s quantum search 

algorithm is to apply Hadamard transform on every qubit to make every state have the same amplitude. The 

next step is the amplitude amplification process, which is obtained by doing Oracle function and Matrix 

Diffusion with 
ᴨ

4
𝑁 loops. Oracle function will return 1 for the correct state and return 0 for the wrong state. 

Diffusion matrix will inverse the amplitude around the amplitudes mean. 

Figure 5 shows the continuation of Grover’s quantum search algorithm flowchart. The program will 

reserved memory space with the size of the number of qubit. Then, every qubits will be measured with 

measure function from pyQuil library. After that, the program will open a connection to the quantum virtual 

machine and run the quantum program. The result will be compared with the value inside variable dataTarget 

to check whether or not it is the same. 
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Figure 4. Grover’s quantum search algorithm flowchart (part one) 
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Figure 5. Grover’s quantum search algorithm flowchart (part two) 

 

 

3. RESULTS AND ANALYSIS  

In this section, five test scenarios are used for testing the web-app implementations for both 

quantum algorithms respectively. 

 

3.1. Shor’s web-app realization 

Here the implementation code in Python using ETH Zurich’s ProjectQ framework is described. 

Figure 6 (a) shows the initialization phase of ProjectQ’s quantum simulator. The quantum register n is 

allocated by the engine and put into superposition by using the Hadamard gate. The modular exponentiation 

process is implemented using function MultiplyByConstantModN as displayed in Figure 6 (b). 
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 (a) (b) 

 

Figure 6. (a) Quantum computing initialization code, and (b) modular exponentiation code 

 

 

The period finding is the important step of Shor’s quantum factoring algorithm. It is in fact the only 

part of the algorithm that requires a quantum computer. The implementation of the period finding is given in 

Figure 7. Figure 8 shows the final part of the algorithm which is finding the factors of the input. The web-app 

realization in Figure 9 shows successful design and implementation of the Shor’s quantum factoring 

algorithm. The given input is 33 which is not even nor prime. The factors are 3 and 11 which are correctly 

obtained by the simulation given in Figure 9. 

 

 

 
 

Figure 7. Period finding code 

 

 

 
 

Figure 8. Factors finding code 

 

 

 
 

Figure 9. Shor’s algorithm simulation for finding factors of 33 
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In Figure 10, the web-app realization of the Shor’s quantum factoring algorithm is able to find  

the factors of 91, which are 7 and 13. This exhibits the success of the implementation of the algorithm in 

ProjectQ framework and also the development of the web-app for the implementation to be accessed and 

used using web browser conveniently. 

 

 

 
 

Figure 10. Shor’s algorithm simulation for finding factors of 91 

 

 

3.2. Grover’s web-app realization 

There are 3 steps in implementing the Grover’s quantum search algorithm. These steps are 

initialization, amplitude amplification, and measure. Figure 11 shows the implementation code for 

initialization in Rigetti Forest. This initialization aims to make qubits have the same amplitude for each state. 

In this piece of code, initialization is obtained by applying the Hadamard gate to each qubit. Figure 12 shows 

the amplitude amplification implementation using Rigetti Forest. The number of repetitions needed is 
𝑛

4
√𝑁. 

In this iteration process, the Oracle function and Diffusion matrix are applied. 

 

 

 
 

Figure 11. Superposition initialization for all qubits  

 

 

 
 

Figure 12. Amplitude amplification code 

 

 

The Oracle function is not part of the Grover’s quantum search algorithm. Figure 13 shows a piece 

of code that is developed originally in this research to create an Oracle function in the form of a  

2-dimensional array. Diffusion matrix is part of Grover iteration and is implemented after Oracle functions. 

Figure 14 shows a piece of code to make a Diffusion matrix in the form of a 2-dimensional array. Figure 15 

is the implementation of the agorithm to measure the result state. This measurement drives the qubits to 

collapse to one of its eigenstates. The measurement results are stored in the memory with size equal to the 

number of the qubits used. Figure 16 shows the simulation result for finding 5 from dataset containing 9, 5, 0, 

11, 6 and 2. It also displays the number of qubit used for the search and the amplitudes for each of all 

possible states. Another simulation presented here is shown in Figure 17 where the dataset contains 1, 6, 2, 4, 

and 3 and the target value is 2. 
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Figure 13. Oracle function code 
 

 

 

 

 

Figure 14. Diffusion matrix code  

 

Figure 15. Qubits measurement 
 

 

 
 

Figure 16. Grover’s algorithm simulation for searching 5 
 

 

 
 

Figure 17. Grover’s algorithm simulation for searching 2 
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4. CONCLUSION  

This work shows that today state-of-the-art quantum computing technologies allow the realization of 

quantum algorithm is possible. Here the Shor’s quantum factoring algorithm and Grover’s quantum search 

algorithm are chosen. The realization of the two quantum algorithms into a web application are using 

different quantum computing technology. The Shor’s quantum factoring algorithm is realized using ETH 

Zurich’s ProjectQ and the Grover’s quantum search algorithm is realized using Rigetti Forest. The two 

quantum algorithms are successfully realized into a web application using the Flask framework. Simulations 

for each algorithm and problem are also given in this paper. The simulations rely on quantum simulator with 

only one time execution flow. The problem size that is able to be handled by the web-app follows  

the limitation from the respective quantum simulator. 
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