
TELKOMNIKA Telecommunication, Computing, Electronics and Control

Vol. 18, No. 3, June 2020, pp. 1422~1432

ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, Decree No: 21/E/KPT/2018

DOI: 10.12928/TELKOMNIKA.v18i3.14791  1422

Journal homepage: http://journal.uad.ac.id/index.php/TELKOMNIKA

Cleveree: an artificially intelligent web service

for Jacob voice chatbot

Octavany, Arya Wicaksana
Department of Informatics, Universitas Multimedia Nusantara, Indonesia

Article Info ABSTRACT

Article history:

Received Aug 3, 2019

Revised Jan 20, 2020

Accepted Feb 26, 2020

 Jacob is a voice chatbot that use Wit.ai to get the context of the question and

give an answer based on that context. However, Jacob has no variation

in answer and could not recognize the context well if it has not been learned

previously by the Wit.ai. Thus, this paper proposes two features of artificial
intelligence (AI) built as a web service: the paraphrase of answers using

the Stacked Residual LSTM model and the question summarization using

Cosine Similarity with pre-trained Word2Vec and TextRank algorithm.

These two features are novel designs that are tailored to Jacob, this AI
module is called Cleveree. The evaluation of Cleveree is carried out using

the technology acceptance model (TAM) method and interview with Jacob

admins. The results show that 79.17% of respondents strongly agree that both

features are useful and 72.57% of respondents strongly agree that both
features are easy to use.

Keywords:

Cosine similarity

LSTM

Stacked residual

TextRank

Web service

This is an open access article under the CC BY-SA license.

Corresponding Author:

Arya Wicaksana,

Department of Informatics,

Universitas Multimedia Nusantara,

Scientia Boulevard St., Gading Serpong, Tangerang-15810, Banten, Indonesia.

Email: arya.wicaksana@umn.ac.id

1. INTRODUCTION

A chatbot is a messaging program that interacts with users like chatting with people. There is

research on developing a dialogue system or chatbot using natural language that is useful for education,

customer service, and entertainment purposes [1-3]. In Universitas Multimedia Nusantara (UMN), there is

a web-based voice chatbot called Jacob which is developed by Wijaya in [4]. Jacob uses the Wit.ai platform

to get the context of the user’s question by extracting the intent (the goal of the user is coming to the chatbot)

and entities (important variable in intent that helps add relevance to an intent) of the question. Therefore,

the chatbot could reply to the question based on the context (intent and entities). However, Jacob has two

shortcomings when interacting with the user. First, Jacob only replies with answers that are already

programmed in its knowledge base, which results in repetitive answers. The second issue is that Jacob

sometimes misunderstood the context of the question because it has never been learned before by the Wit.ai

platform. This is due to the problem where similar sentences could have the same meaning or context. Thus,

the Wit.ai platform could mistakenly give different context or even does not recognize the context at all.

The solution to the first problem is by varying the answers using a paraphrase. In natural language

processing (NLP), paraphrases are an interesting task to solve. It is difficult to build a paraphrase recognition

system because paraphrases are hard to define [5]. In the linguistic literature, paraphrases are sentences or

phrases that have an approximate equivalence of meaning in the different wording [5]. Thus, a deep neural

network is used in this study to generate the paraphrase of the answer. For NLP tasks, recurrent neural

https://creativecommons.org/licenses/by-sa/4.0/

TELKOMNIKA Telecommun Comput El Control 

Cleveree: an artificially intelligent web service for Jacob voice chatbot (Octavany)

1423

network (RNN) architecture gives a good performance, especially to a special kind of RNN called Long

short-term memory (LSTM), by reducing the perplexity and word error rate [6, 7]. LSTM is widely well

known due to its capability of learning long-term dependencies and reducing the vanishing gradient problem.

LSTM could be implemented to predict the next word by the previous words in language modeling and

generating text and implemented in chatbot application [2]. Yavuz et al. in [8] develop a response generation

using LSTM and hierarchical pointer network. Furthermore, there is an LSTM model that is used to generate

paraphrase by adding the residue, called stacked residual LSTM [9]. We use this model because it has better

results than Sequence to Sequence, Bi-directional LSTM, attention-based LSTM model [9]. The pre-trained

model of stacked residual LSTM from [9] is implemented to generate paraphrase of answers in this paper.

In the face of the unexpected results of intent and entities, it is necessary to update the knowledge

in the Wit.ai platform from the history of questions. Based on the study about Jacob, there are conversation

logs that record all the conversations between Jacob and the user. So, we propose the solution to prevent

an administrator to manually read all of the questions in the conversation logs by extracting the summary of

questions, which selects the most frequently asked questions from the entire conversation logs [10]. Ideally,

the extractive summarization should contain around 20% of the sentences from the entire text [11]. There are

six algorithms for extractive summarization that have been evaluated by Victor et al in [12], which are Luhn,

TextRank, LexRank, LSA, SumBasic, and KLSum. Based on the results, Luhn and TextRank have the best

performance to get the extractive summary for the speech-to-text case [12]. Between those both algorithms,

we choose TextRank because the TextRank algorithm is a graph-based ranking algorithm that has been

proven to be successful for the identification of the most important or relevant sentences (vertex) in the text

(graph) [13]. According to [10, 14] TextRank algorithm with cosine similarity using Word2Vec could

enhance the ranking process.

2. RESEARCH METHOD

This section contains a brief explanation of LSTM as the main method implemented in this study.

Then, we describe TextRank algorithm, Cosine Similarity, and Word Embedding. In order to that, we also

explain our proposed method.

2.1. Long short-term memory (LSTM)

LSTM is a variant of the recurrent network which is different from the feed-forward network and is

introduced by [15]. Recurrent network feeds its outputs back into its own inputs so the response of

the network to a given input may depend on previous inputs [16]. LTSM computes the hidden state ℎ𝑡 by

adding a memory cell 𝐶𝑡 at every time step 𝑡 [9]. When the unit computes the memory cell and hidden state

at time step t, it considers the input state at time step 𝑡, the hidden state ℎ𝑡−1, and the memory cell 𝐶𝑡−1 at

time step 𝑡 [9]. LSTM has three gates that each gate consists of one sigmoid layer and pointwise

multiplication operation which known as forget gate (𝑓𝑡), input gate (𝑖𝑡), and output gate (𝑜𝑡) [17]. The gates

are described in Figure 1.

Figure 1. LSTM cell contains forget gate, input gate, new memory cell, and output gate [17]

2.1.1. Stacked residual LSTM

Stacked Residual LSTM is a model that was proposed by Prakash et al. and the addition of residual

connections to generate paraphrase and this model can help overcome a degradation problem [9]. Residual

connections are added after every n layers as the pointwise addition [9]. Figure 2 shows that the residual

connections are added after every two layers as the pointwise addition.

  ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 3, June 2020: 1422 - 1432

1424

Figure 2. A unit of Stacked Residual LSTM [9]

2.2. TextRank

TextRank is a graph-based ranking algorithm for the identification of the most important or relevant

sentences in the text [13]. One vertex represents a sentence and the edges represent the relation score

(weight) between two sentences. A vertex with the highest score of TextRank is the most relevant or

important in the graph. TextRank is a weighted directed graph 𝐺 = (𝑉, 𝐸), where the graph 𝐺 consists of

a set of vertices 𝑉 and a set of edges 𝐸. For a given vertex 𝑉𝑖, 𝐼𝑛(𝑉𝑖) represents the set of vertices that point

to vertex 𝑉𝑖, and 𝑂𝑢𝑡(𝑉𝑖) represents the set of vertices that point from vertex 𝑉𝑖 . The weight from vertex i to

vertex j is represented as 𝑊𝑖𝑗 . The formula of TextRank can be defined as shown in (1) [18],

𝑇𝑅(𝑉𝑖) = (1 − 𝑑) + 𝑑 ∑𝑉𝑗∈𝐼𝑛(𝑉𝑖)

𝑊𝑗𝑖

∑
𝑉𝑘∈𝑂𝑢𝑡(𝑉𝑗)

𝑊𝑗𝑘
𝑇𝑅(𝑉𝑗) (1)

in (1), 𝑇𝑅(𝑉𝑖) represents the score of vertex 𝑉𝑖; 𝑑 is the damping factor with value is between 0 to 1.

Normally, the damping factor is set to 0.85 [13].

2.2.1. Word embedding

Word embedding is a vector representation of words based on the context of the sentences or

semantic relationships between words. The vector contains real number [19]. Mikolov et al. proposed two

models that focus on learning word vectors which are continuous bag-of-words (CBoW) and Continuous

Skip-gram (SG) as shown in Figure 3. These two models called Word2Vec. CBoW is optimized to predict

a word based on words around it or the context. SG is optimized to predict the context based on the current

word [20].

Figure 3. Continuous bag-of-words (left) and skip-gram (right) [20]

TELKOMNIKA Telecommun Comput El Control 

Cleveree: an artificially intelligent web service for Jacob voice chatbot (Octavany)

1425

2.2.2. Cosine similarity

Cosine Similarity calculates the similarity by measuring the cosine of the angle between two

vectors. A result is a number between zero and one. If the result is close to one, the more similar its two

vectors [21]. In this paper, the vectors represent the sentence vectors which are calculated using Word2Vec.

The similarity between vector i ⃗ and vector j ⃗ can be defined as shown in (2):

𝑠𝑖𝑚(𝑖, 𝑗) = 𝑐𝑜𝑠 (𝑖, 𝑗) =
𝑖.𝑗

||𝑖||2∗ ||𝑗||2
 (2)

in Formula 2, symbol . at 𝑖. 𝑗 denotes the dot-product of vector 𝑖 and vector 𝑗. The notation of ||𝑖||2 represents

the vector magnitude of vector 𝑖. In [22], Cosine Similarity is also used to measure the sentence similarity

with the Malayalam language.

2.3. Proposed method

2.3.1. Design

The design of Cleveree takes into consideration several Jacob specifications. Jacob uses English as

the language and Wit.ai platform to get the intent and entities from the conversation. Jacob’s knowledge base

is stored using the MySQL database and there is no implementation of any artificial intelligence features

in Jacob except for the Wit.ai platform. Jacob is a web-based application built using PHP programming

language and Laravel Framework. Jacob could only respond to questions that have answers in the database,

furthermore, one question has only one answer. The Wit.ai platform sometimes could give different context

or does not recognize the context for similar questions. Therefore, two artificial intelligence features are

proposed to be added to Jacob. The purpose is to make Jacob more intelligent by replying to the same or

similar questions with a variation of answers. In addition to that is to update the knowledge base into

the Wit.ai platform.

The Cleveree is designed as a web service with Python programming language and Flask framework

to allow the application to be platform and technology independent. The web service designed with four

accessible URLs is shown in Figure 4. The URLs are for paraphrase generation, questions summarization,

add training data, and training the model. When the data is sent to the web service, the web service is

designed to receive the data using POST method request. Thus, this web service could be accessed by any

web application not only Jacob. Additional changes are made in Jacob’s knowledge base, it is to add three

tables to store the results of paraphrase generation and summarization.

Figure 4. Cleveree web service model

Cleveree uses a pre-trained model Stacked Residual LSTM for paraphrase generation. In Figure 4,

new training data could be added via URL “/addingdata”. This action could only be done using an admin

role. The admin could choose to train the model with the new dataset to increase the knowledge and

the variation of sentences. This process runs in the background so admin can do other activities.

When Jacob calls the URL “/training” and the training process is running, we create a new

vocabulary based on the new dataset. After that, the weights in neural networks are always re-initialized.

All of the characters are in lowercase and punctuation is not taken into account for the input and output in

  ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 3, June 2020: 1422 - 1432

1426

the model. If the word is not found in the vocabulary database, the word is set to <UNK> to represent

an unknown word as in [9]. This aims to learn new words and new sentences. The training process runs in

the background so admin can do other activities.

Jacob receives the sentence or question from the user, and sends a request to URL “/paraphrase”.

Then, starting with lowercase all of the words in the sentence. Next, load the paraphrase model that has been

trained before. The model gives the prediction as a result of paraphrase based on the sentence as shown in

Figure 5. The prediction is a list of numbers. The number represents the id of word so every word has

a different number representation. Then, the number is converted to word and concatenate all of the words.

Last, the paraphrased sentence is stored in Jacob’s database so the admin can validate and delete the result in

the Jacob admin system. If there are errors and admin still understand the context, admin can correct

the sentence then validates it so the sentence can be used as an answer. The errors of sentences can be

grammatical errors, syntactical errors, and semantic errors.

Figure 5. Flowchart of paraphrase generation

There are several steps to do question summarization when Jacob calls the URL “/summary” and it

describes in Figure 6. First, get the conversation log files that haven’t been summarized. This conversation

log files are stored when there is a user interacts with Jacob. Second, do the summary preprocessing.

In summary preprocessing, we remove all the punctuations and numbers, tokenize the sentences into words,

change all of the words to lowercase, remove stopwords, and load the pre-trained word vectors.

Then, calculate the sentence vectors by averaging the total of word vectors for each sentence. Third, create

the similarity matrix with size n x n, where n is the total of sentences. The value for each row and column is

calculated using the Cosine Similarity method that represents the similarity of each two-sentence vectors.

The row in the matrix represents the first sentence and the column represents the second sentence that wants

to compare. Fourth, do summary extraction using the TextRank algorithm. The weights in every edge of

the graph use the value from the similarity matrix. Then, calculate the scores for every edge using (1) until it

reaches the convergence [13]. The last, choose 25% sentences which have the highest score from

the entire questions or requests that ask by user [10, 11]. Same as the result of paraphrase, the results of

question summarization are stored in the database and admin can validate or delete the result of

question summarization.

TELKOMNIKA Telecommun Comput El Control 

Cleveree: an artificially intelligent web service for Jacob voice chatbot (Octavany)

1427

Figure 6. Flowchart of summarization

We use the Whitebox testing approach to measure the implementation of the Cosine Similarity

method. It is because this testing is suitable to test the algorithm. Unlike the other research about Artificial

Intelligence generally, in this paper, we use the Technology Acceptance Model (TAM) as an evaluation

method. TAM is used to predict the acceptance of technology in an organization. The results of TAM are

determined based on two perceived variables which are Perceived Usefulness and Perceived Ease of

Use [23]. We use the initial scale items for Perceived Usefulness and Perceived Ease of Use [24, 25].

Training data for the Stacked Residual LSTM model is stored in Text Documents, consisting of train

source and train target. There is no test dataset for this model, but for the evaluation, we use an interview

with Jacob admins to know the paraphrase results are feasible or not. Other than paraphrase results, we do

an interview to support the evaluation results using TAM and to know the summarization results are feasible

or not. Evaluations use TAM and interview, we do these two evaluations with three admins.

2.3.2. Implementation

This part explains the integration of Cleveree module into Jacob application, the result of

the implementation of Stacked Residual LSTM, Cosine Similarity, and TextRank. Cleveree module is built

like the description in the research method which is built as a web service and the result is shown in Figure 7.

  ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 3, June 2020: 1422 - 1432

1428

Figure 7. Screenshot of command prompt that shows the Cleveree server is on

2.3.3. Integration in jacob admin system

The integration in this part means the time when Cleveree is called by Jacob. Jacob calls the URL

“/paraphrase” when the admin wants to create a new answer and when Jacob gives the answer to the user that

is shown in Figure 8. Then, Jacob calls the URL “/summary” when admin opens the login page which is

shown in Figure 9. Jacob calls the URL “/addingdata” when admin creates a new answer so the sentences are

added to train source and train target data. Based on the answer that created by admin, Cleveree would create

the paraphrased sentence. Then, admins can accept or revise the sentence. Last, Jacob calls the URL

“/training” when an admin wants to update the knowledge and variation of answers based on a new dataset.

Figure 8. A case when URL “/paraphrase” is called

Figure 9. The case when URL “/summary” is called

2.3.4. Implementation of pre-trained model of stacked residual LSTM

The implementation of this pre-trained model is using Tensorflow package in Python programming

language. The input and output dimensions are the same, the dimension size is 256. The dimension of word

embedding is the same as the input and output dimensions. In training, the model uses 0.001 with a fixed

value as the learning rate and Adam optimizer. The batch size is set to 32 and the number of iterations is set

to 1,500. Every two LSTM layer is added with the residue as in [9]. The total training data is 516 sentences

and the total vocabulary is 901 words, but it can increase if admin adds the new sentences of the answer.

The training data contains sentences about the Dual Degree program of Informatics in Universitas

Multimedia Nusantara and its get from interview with the Marketing Division of Universitas Multimedia

Nusantara. Before process the sentence into the model, we need to do preprocessing. In the preprocessing,

we use nltk package to remove punctuation and tokenize the sentence to words. Figure 10 represents

the indicator when the training process is running. In the training process, we show the source, target, and

predict sentence. This process is running in the background for the administrator to carry out other activities.

TELKOMNIKA Telecommun Comput El Control 

Cleveree: an artificially intelligent web service for Jacob voice chatbot (Octavany)

1429

Figure 10. Training process of stacked residual LSTM

2.3.5. Implementation of cosine similarity and TextRank

The implementation of the Cosine Similarity method uses numpy package for preprocessing and

calculation vectors of each sentence pairs. TextRank algorithm is implemented using networkx package.

In preprocessing data of summarization feature is used nltk package to remove stopwords and tokenize

sentence to list of words.

3. RESULTS AND ANALYSIS

3.1. Testing

3.1.1. Testing for implementation of cosine similarity

Based on the scenario in Table 1, we have two vectors. If we manually calculate using Formula 2,

we can get the value of Cosine Similarity is 1 because both vectors exactly have the same direction.

In Table 2, we have two different values of vectors and we get the Cosine Similarity score is 0.7774 using

Formula 2. Figure 11 and Figure 12 are the results that are given by our module, Cleveree. Thus, we can

conclude that the implementation of the Cosine Similarity method in Cleveree is success.

Table 1. First scenario to test the implementation of cosine similarity method
Variable Condition

Vector dimension Five

Vector 1 [0,18 0,3 -0,18 0,49 -0,18]

Vector 2 [0,18 0,3 -0,18 0,49 -0,18]

Expected output The result of the manual calculation for vector magnitude, dot product, and cosine similarity is the same as

the result shown in Figure 11.

Figure 11. The similarity result using cosine similarity method for the first scenario

Table 2. Second scenario to test the implementation of cosine similarity method
Variable Condition

Vector dimension Ten

Vector 1 [0,29 0,19 -0,81 0,59 -0,44 0,29 0,19 -0,81 0,59 -0,44]

Vector 2 [0,81 0,35 -0,98 0,18 0,03 0,81 0,35 -0,98 0,18 0,03]

Expected output The result of the manual calculation for vector magnitude, dot product, and cosine similarity is the same as

the result shown in Figure 12.

  ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 3, June 2020: 1422 - 1432

1430

Figure 12. The similarity result using cosine similarity method for the second scenario

3.2. Evaluation

The evaluations are carried out using the TAM evaluation method and interview with three

Jacob administrators. The TAM evaluation is done using questionnaires to measure the Perceived Usefulness

and Perceived Ease of Use. Figure 13 presents the percentage for each question in Perceived Usefulness

variables where question number one (Job Difficult Without), three (Job Performance), and fourteen

(Usefull for Summary Feature) have the highest score. It is because Cleveree’s features can help and increase

the performance of the Jacob admin job, especially in the Question Summarization feature. The smallest

score is achieved on question number twelve about Makes Job Easier. It is due to the few usage instructions

in Jacob administrator pages so sometimes admin feels confused using the admin system. Overall, the total

percentage for Perceived Usefulness is 79.17% (strongly agree) that these two features of the Cleveree

module are useful.

Figure 14 represents the percentage for each question in Perceived Ease of Use variables where

question numbers fourteen (ease to use for summary feature) and fifteen (ease to use for paraphrase feature)

have the highest score. It is because both features make the way to update Jacob's knowledge easier.

The smallest score is obtained on question number nine about Unexpected Behavior. It is due to

the paraphrasing results that do not match with the actual context, thus making the system unpredictable.

Other than unexpected behavior, question numbers three (frustrating), four (dependence on manual), and five

(mental effort) also have the smallest score because it has a negative meaning. Paraphrasing results

sometimes give semantical, syntactical, or grammatical errors so admins must understand the meaning of

the sentence first before verifying the results so it causes the frustrating and mental effort to admins.

Dependence on Manual also gets the smallest score because as a whole of a system it needs a manual book so

admin can learn how to use both features. Overall, the total percentage for Perceived Ease of Use is 72.57%

(strongly agree).

Based on the interview results conducted to evaluate the Cleveree in a qualitative way, it is known

that the paraphrase generation gives good results. However, some of the paraphrased sentences still require

improvement. There is an incomprehensible sentence from the results of paraphrase because a word appears

not in the right place (syntactical error). Thus, it is impacting the context and meaning of the whole sentence.

This result does not match with the actual context (semantic error). The cause of this problem is where

sentences and words are not available in the training dataset. Hence, the model has never learned

the sentences and words before. Another result of the question summarization feature successfully gives

the desired question by Jacob’s administrators and shows the important questions asked by users.

Figure 13. The bar chart for the results of perceived usefulness variables

TELKOMNIKA Telecommun Comput El Control 

Cleveree: an artificially intelligent web service for Jacob voice chatbot (Octavany)

1431

Figure 14. The bar chart for the results of perceived ease of use variables

4. CONCLUSION

We proposed and developed the Cleveree artificial intelligence module for the Jacob voice chatbot

application. Cleveree delivers two features: paraphrase of answers and questions summarization. These two

features are useful for updating Jacob’s knowledge base manually with the help of an administrator.

The development of the Cleveree module as a web service eases the integration of the module into Jacob.

The pre-trained model of Stacked Residual LSTM is also proven to be successful in generating paraphrase of

answers. It is also displayed in this study that the model could be used to generate paraphrase based on

the given training dataset. The questions summarization feature powered by the Cosine Similarity method

with pre-trained Word2Vec and TextRank algorithm produces satisfactory results as verified by Jacob’s

administrators. The TAM evaluation method shows that 79.17% of respondents strongly agree that the two

features are useful and 72.57% of respondents strongly agree that the two features are easy to use.

REFERENCES

[1] P. A. Angga, et al., "Design of chatbot with 3D avatar, voice interface, and facial expression," 2015 International

Conference on Science in Information Technology, pp. 326-330, 2015.

[2] M. H. Su, et al., "A Chatbot Using LSTM-based Multi-Layer Embedding for Elderly Care," 2017 International
Conference on Orange Technologies (ICOT), pp. 70-74, 2017.

[3] F. P. Putri, H. Meidia, and D. Gunawan, “Designing Intelligent Personalized Chatbot for Hotel Services”, ACAI

2019: Proceedings of the 2019 2nd International Conference on Algorithms, Computing and Artificial Intelligence,

pp. 468-472, 2019.
[4] S. Wijaya and A. Wicaksana, "Jacob Voice Chatbot Application Using Wit.ai for Providing Information in UMN,"

International Journal of Engineering and Advanced Technology, vol. 8, no. 6S3, pp. 105-109, September 2019.

[5] R. Bhagat and E. Hovy, "What Is a Paraphrase?," Association for Computational Linguistic. vol. 39, no. 3,

pp. 463-472, September 2013.
[6] V. A. Bhagwat, "Deep Learning for Chatbots," M.S. Thesis, Sch. of Comp. Science, San Jose State Univ., San Jose,

CA, 2018.

[7] M. Sundermeyer, H. Ney, and R Schlüter, "From Feedforward to Recurrent LSTM Neural Networks for

Language Modelling," IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 23, no. 3,
pp. 517-529, 2015.

[8] S. Yavuz, et al., "DEEPCOPY: Grounded Response Generation with Hierarchical Pointer Networks," 32nd

Conference on Neural Information Processing Systems, Montréal, 2019.

[9] A. Prakash, et al., "Neural Paraphrase Generation with Stacked Residual LSTM Networks," The 26th International
Conference on Computational Linguistics, October 2016.

[10] I. Ferreira, et al., "Bug Report Summarization: An Evaluation of Ranking Techniques," 2016 X Brazilian

Symposium on Software Components, Architectures and Reuse, pp. 101-110, 2016.

[11] S. A. Babar and P. D. Patil, “Improving Performance of Text Summarization,” Procedia Computer Science,
vol. 46, pp. 354-363, 2015.

[12] D. M. Victor, et al., "Application of Extractive Text Summarization Algorithms to Speech-to-Text Media,"

International Conference on Hybrid Artificial Intelligence Systems, pp. 540-550, 2019.
[13] R. Mihalcea and P. Tarau, "TextRank: Bringing Order into Text," Proceedings of the 2004 Conference on

Empirical Method in Natural Language Processing, pp. 404-411, 2004.

  ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 3, June 2020: 1422 - 1432

1432

[14] X. Zuo, S. Zhang, and J. Xia, "The enhancement of TextRank algorithm by using word2vec and its application on
topic extraction," Journal of Physics, conference series, vol. 887, no. 1, pp. 1-7, 2017.

[15] S. Hochreiter and J. Schmidhuber, "Long Short-Term Memory," Neural Computation, vol. 9, no. 8,

pp. 1735-1780, 1997.

[16] S. J. Russell and P. Norvig, “Artificial Intelligence: A Modern Approach,” 3rd ed. USA: Pearson Education, 2016.
[17] A. Mikami, "Long Short-Term Memory Recurrent Neural Network Architectures for Generating Music and

Japanese Lyrics," M. S. Thesis, Sch. of Comp. Science, Boston College, Chestnut Hill, MA, 2016.

[18] W. Li and J. Zhao, "TextRank Algorithm by exploiting Wikipedia for short text keywords extraction," 2016 3rd

International Conference on Information Science and Control Engineering, pp. 683-686, 2016.
[19] A. Leeuwenberg, et al, "A Minimally Supervised Approach for Synonym Extraction with Word Embeddings,"

The Prague Bulletin of Mathematical Linguistics, vol. 105, no. 1, pp. 111-142, 2016.

[20] T. Mikolov, et al., "Efficient Estimation of Word Representations in Vector Space," ICLR: Proceeding of

the International Conference on Learning Representations Workshop Track, Arizona, pp. 1301-3781, 2013.
[21] E. Bigdeli and Z. Bahmani, "Comparing Accuracy of Cosine-based Similarity and Correlation-based Similarity

Algorithms in Tourism Recommender Systems," 2008 4th IEEE International Conference on Management of

Innovation and Technology, pp. 469-474, Sep 2008.

[22] P. P. Gokul, B. K. Akhil, and K. K. M. Shiva. "Sentence similarity detection in Malayalam language using cosine
similarity," 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information &

Communication Technology, pp. 221-225, 2017.

[23] F. D. Davis, R. P. Bagozzi, and P. R. Warshaw, "User Acceptance of Computer Technology: A Comparison of Two

Theoretical Models," Management Science, vol. 35, no. 8, pp. 982-1003, Aug 1989.
[24] F. D. Davis, "Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology,"

Management Information System Research Center. pp. 319-340, Sep 1989.

[25] K. Dhammayanti, A. Wicaksana, and S. Hansun, “Position Placement Dss Using Profile Matching and Analytical

Hierarchy Process,” International Journal of Scientific & Technology Research, vol. 8, no. 11, pp. 204-207,
Nov 2019.

BIOGRAPHIES OF AUTHORS

Octavany received S. Kom. in Informatics from Universitas Multimedia Nusantara, Indonesia.
Her research interests and works are artificial intelligence and software engineering.

Arya Wicaksana is graduated from Universiti Tunku Abdul Rahman in VLSI Engineering

(M. Eng. Sc.) and Universitas Multimedia Nusantara in Computer Science (S. Kom.). Research

interests and works are: quantum computing and computational intelligence.

