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 Jacob is a voice chatbot that use Wit.ai to get the context of the question and 

give an answer based on that context. However, Jacob has no variation  

in answer and could not recognize the context well if it has not been learned 

previously by the Wit.ai. Thus, this paper proposes two features of artificial 
intelligence (AI) built as a web service: the paraphrase of answers using  

the Stacked Residual LSTM model and the question summarization using 

Cosine Similarity with pre-trained Word2Vec and TextRank algorithm. 

These two features are novel designs that are tailored to Jacob, this AI 
module is called Cleveree. The evaluation of Cleveree is carried out using  

the technology acceptance model (TAM) method and interview with Jacob 

admins. The results show that 79.17% of respondents strongly agree that both 

features are useful and 72.57% of respondents strongly agree that both 
features are easy to use. 
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1. INTRODUCTION  

A chatbot is a messaging program that interacts with users like chatting with people. There is 

research on developing a dialogue system or chatbot using natural language that is useful for education, 

customer service, and entertainment purposes [1-3]. In Universitas Multimedia Nusantara (UMN), there is  

a web-based voice chatbot called Jacob which is developed by Wijaya in [4]. Jacob uses the Wit.ai platform 

to get the context of the user’s question by extracting the intent (the goal of the user is coming to the chatbot) 

and entities (important variable in intent that helps add relevance to an intent) of the question. Therefore,  

the chatbot could reply to the question based on the context (intent and entities). However, Jacob has two 

shortcomings when interacting with the user. First, Jacob only replies with answers that are already 

programmed in its knowledge base, which results in repetitive answers. The second issue is that Jacob 

sometimes misunderstood the context of the question because it has never been learned before by the Wit.ai 

platform. This is due to the problem where similar sentences could have the same meaning or context. Thus, 

the Wit.ai platform could mistakenly give different context or even does not recognize the context at all. 

The solution to the first problem is by varying the answers using a paraphrase. In natural language 

processing (NLP), paraphrases are an interesting task to solve. It is difficult to build a paraphrase recognition 

system because paraphrases are hard to define [5]. In the linguistic literature, paraphrases are sentences or 

phrases that have an approximate equivalence of meaning in the different wording [5]. Thus, a deep neural 

network is used in this study to generate the paraphrase of the answer. For NLP tasks, recurrent neural 

https://creativecommons.org/licenses/by-sa/4.0/
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network (RNN) architecture gives a good performance, especially to a special kind of RNN called Long 

short-term memory (LSTM), by reducing the perplexity and word error rate [6, 7]. LSTM is widely well 

known due to its capability of learning long-term dependencies and reducing the vanishing gradient problem. 

LSTM could be implemented to predict the next word by the previous words in language modeling and 

generating text and implemented in chatbot application [2]. Yavuz et al. in [8] develop a response generation 

using LSTM and hierarchical pointer network. Furthermore, there is an LSTM model that is used to generate 

paraphrase by adding the residue, called stacked residual LSTM [9]. We use this model because it has better 

results than Sequence to Sequence, Bi-directional LSTM, attention-based LSTM model [9]. The pre-trained 

model of stacked residual LSTM from [9] is implemented to generate paraphrase of answers in this paper. 

In the face of the unexpected results of intent and entities, it is necessary to update the knowledge  

in the Wit.ai platform from the history of questions. Based on the study about Jacob, there are conversation 

logs that record all the conversations between Jacob and the user. So, we propose the solution to prevent  

an administrator to manually read all of the questions in the conversation logs by extracting the summary of 

questions, which selects the most frequently asked questions from the entire conversation logs [10]. Ideally, 

the extractive summarization should contain around 20% of the sentences from the entire text [11]. There are 

six algorithms for extractive summarization that have been evaluated by Victor et al in [12], which are Luhn, 

TextRank, LexRank, LSA, SumBasic, and KLSum. Based on the results, Luhn and TextRank have the best 

performance to get the extractive summary for the speech-to-text case [12]. Between those both algorithms, 

we choose TextRank because the TextRank algorithm is a graph-based ranking algorithm that has been 

proven to be successful for the identification of the most important or relevant sentences (vertex) in the text 

(graph) [13]. According to [10, 14] TextRank algorithm with cosine similarity using Word2Vec could 

enhance the ranking process. 

 

 

2. RESEARCH METHOD 

This section contains a brief explanation of LSTM as the main method implemented in this study. 

Then, we describe TextRank algorithm, Cosine Similarity, and Word Embedding. In order to that, we also 

explain our proposed method. 

 

2.1.  Long short-term memory (LSTM) 

LSTM is a variant of the recurrent network which is different from the feed-forward network and is 

introduced by [15]. Recurrent network feeds its outputs back into its own inputs so the response of  

the network to a given input may depend on previous inputs [16]. LTSM computes the hidden state ℎ𝑡 by 

adding a memory cell 𝐶𝑡 at every time step 𝑡 [9]. When the unit computes the memory cell and hidden state 

at time step t, it considers the input state at time step 𝑡, the hidden state ℎ𝑡−1, and the memory cell 𝐶𝑡−1 at 

time step 𝑡 [9]. LSTM has three gates that each gate consists of one sigmoid layer and pointwise 

multiplication operation which known as forget gate (𝑓𝑡), input gate (𝑖𝑡), and output gate (𝑜𝑡) [17]. The gates 

are described in Figure 1. 

 

 

 
 

Figure 1. LSTM cell contains forget gate, input gate, new memory cell, and output gate [17] 

 

 

2.1.1. Stacked residual LSTM 

Stacked Residual LSTM is a model that was proposed by Prakash et al. and the addition of residual 

connections to generate paraphrase and this model can help overcome a degradation problem [9]. Residual 

connections are added after every n layers as the pointwise addition [9]. Figure 2 shows that the residual 

connections are added after every two layers as the pointwise addition. 



                ISSN: 1693-6930 

TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 3, June 2020:  1422 - 1432 

1424 

 
 

Figure 2. A unit of Stacked Residual LSTM [9] 

 

 

2.2.  TextRank 

TextRank is a graph-based ranking algorithm for the identification of the most important or relevant 

sentences in the text [13]. One vertex represents a sentence and the edges represent the relation score 

(weight) between two sentences. A vertex with the highest score of TextRank is the most relevant or 

important in the graph. TextRank is a weighted directed graph 𝐺 = (𝑉, 𝐸), where the graph 𝐺 consists of  

a set of vertices 𝑉 and a set of edges 𝐸. For a given vertex 𝑉𝑖, 𝐼𝑛(𝑉𝑖) represents the set of vertices that point 

to vertex 𝑉𝑖, and 𝑂𝑢𝑡(𝑉𝑖) represents the set of vertices that point from vertex 𝑉𝑖 . The weight from vertex i to 

vertex j is represented as 𝑊𝑖𝑗 . The formula of TextRank can be defined as shown in (1) [18], 

 

𝑇𝑅(𝑉𝑖) = (1 − 𝑑) + 𝑑 ∑𝑉𝑗∈𝐼𝑛(𝑉𝑖)

𝑊𝑗𝑖

∑
𝑉𝑘∈𝑂𝑢𝑡(𝑉𝑗)

𝑊𝑗𝑘
𝑇𝑅(𝑉𝑗)  (1) 

 

in (1), 𝑇𝑅(𝑉𝑖) represents the score of vertex 𝑉𝑖; 𝑑 is the damping factor with value is between 0 to 1. 

Normally, the damping factor is set to 0.85 [13]. 

 

2.2.1. Word embedding 

Word embedding is a vector representation of words based on the context of the sentences or 

semantic relationships between words. The vector contains real number [19]. Mikolov et al. proposed two 

models that focus on learning word vectors which are continuous bag-of-words (CBoW) and Continuous 

Skip-gram (SG) as shown in Figure 3. These two models called Word2Vec. CBoW is optimized to predict  

a word based on words around it or the context. SG is optimized to predict the context based on the current  

word [20]. 

 

 

 
 

Figure 3. Continuous bag-of-words (left) and skip-gram (right) [20] 
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2.2.2. Cosine similarity 

Cosine Similarity calculates the similarity by measuring the cosine of the angle between two 

vectors. A result is a number between zero and one. If the result is close to one, the more similar its two 

vectors [21]. In this paper, the vectors represent the sentence vectors which are calculated using Word2Vec. 

The similarity between vector i ⃗ and vector j ⃗ can be defined as shown in (2): 

 

𝑠𝑖𝑚(𝑖, 𝑗)  =  𝑐𝑜𝑠 (𝑖, 𝑗)  =  
𝑖.𝑗

||𝑖||2∗ ||𝑗||2
 (2) 

 

in Formula 2, symbol . at 𝑖. 𝑗 denotes the dot-product of vector 𝑖 and vector 𝑗. The notation of ||𝑖||2 represents 

the vector magnitude of vector 𝑖. In [22], Cosine Similarity is also used to measure the sentence similarity 

with the Malayalam language. 

 

2.3.    Proposed method 

2.3.1. Design 

The design of Cleveree takes into consideration several Jacob specifications. Jacob uses English as 

the language and Wit.ai platform to get the intent and entities from the conversation. Jacob’s knowledge base 

is stored using the MySQL database and there is no implementation of any artificial intelligence features  

in Jacob except for the Wit.ai platform. Jacob is a web-based application built using PHP programming 

language and Laravel Framework. Jacob could only respond to questions that have answers in the database, 

furthermore, one question has only one answer. The Wit.ai platform sometimes could give different context 

or does not recognize the context for similar questions. Therefore, two artificial intelligence features are 

proposed to be added to Jacob. The purpose is to make Jacob more intelligent by replying to the same or 

similar questions with a variation of answers. In addition to that is to update the knowledge base into  

the Wit.ai platform. 

The Cleveree is designed as a web service with Python programming language and Flask framework 

to allow the application to be platform and technology independent. The web service designed with four 

accessible URLs is shown in Figure 4. The URLs are for paraphrase generation, questions summarization, 

add training data, and training the model. When the data is sent to the web service, the web service is 

designed to receive the data using POST method request. Thus, this web service could be accessed by any 

web application not only Jacob. Additional changes are made in Jacob’s knowledge base, it is to add three 

tables to store the results of paraphrase generation and summarization. 

 

 

 
 

Figure 4. Cleveree web service model 

 

 

Cleveree uses a pre-trained model Stacked Residual LSTM for paraphrase generation. In Figure 4, 

new training data could be added via URL “/addingdata”. This action could only be done using an admin 

role. The admin could choose to train the model with the new dataset to increase the knowledge and  

the variation of sentences. This process runs in the background so admin can do other activities. 

When Jacob calls the URL “/training” and the training process is running, we create a new 

vocabulary based on the new dataset. After that, the weights in neural networks are always re-initialized.  

All of the characters are in lowercase and punctuation is not taken into account for the input and output in  
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the model. If the word is not found in the vocabulary database, the word is set to <UNK> to represent  

an unknown word as in [9]. This aims to learn new words and new sentences. The training process runs in  

the background so admin can do other activities. 

Jacob receives the sentence or question from the user, and sends a request to URL “/paraphrase”. 

Then, starting with lowercase all of the words in the sentence. Next, load the paraphrase model that has been 

trained before. The model gives the prediction as a result of paraphrase based on the sentence as shown in 

Figure 5. The prediction is a list of numbers. The number represents the id of word so every word has  

a different number representation. Then, the number is converted to word and concatenate all of the words. 

Last, the paraphrased sentence is stored in Jacob’s database so the admin can validate and delete the result in 

the Jacob admin system. If there are errors and admin still understand the context, admin can correct  

the sentence then validates it so the sentence can be used as an answer. The errors of sentences can be 

grammatical errors, syntactical errors, and semantic errors. 

 

 

 
 

Figure 5. Flowchart of paraphrase generation 

 

 

There are several steps to do question summarization when Jacob calls the URL “/summary” and it 

describes in Figure 6. First, get the conversation log files that haven’t been summarized. This conversation 

log files are stored when there is a user interacts with Jacob. Second, do the summary preprocessing.  

In summary preprocessing, we remove all the punctuations and numbers, tokenize the sentences into words, 

change all of the words to lowercase, remove stopwords, and load the pre-trained word vectors.  

Then, calculate the sentence vectors by averaging the total of word vectors for each sentence. Third, create 

the similarity matrix with size n x n, where n is the total of sentences. The value for each row and column is 

calculated using the Cosine Similarity method that represents the similarity of each two-sentence vectors. 

The row in the matrix represents the first sentence and the column represents the second sentence that wants 

to compare. Fourth, do summary extraction using the TextRank algorithm. The weights in every edge of  

the graph use the value from the similarity matrix. Then, calculate the scores for every edge using (1) until it 

reaches the convergence [13]. The last, choose 25% sentences which have the highest score from  

the entire questions or requests that ask by user [10, 11]. Same as the result of paraphrase, the results of 

question summarization are stored in the database and admin can validate or delete the result of  

question summarization. 
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Figure 6. Flowchart of summarization 

 

 

We use the Whitebox testing approach to measure the implementation of the Cosine Similarity 

method. It is because this testing is suitable to test the algorithm. Unlike the other research about Artificial 

Intelligence generally, in this paper, we use the Technology Acceptance Model (TAM) as an evaluation 

method. TAM is used to predict the acceptance of technology in an organization. The results of TAM are 

determined based on two perceived variables which are Perceived Usefulness and Perceived Ease of  

Use [23]. We use the initial scale items for Perceived Usefulness and Perceived Ease of Use [24, 25]. 

Training data for the Stacked Residual LSTM model is stored in Text Documents, consisting of train 

source and train target. There is no test dataset for this model, but for the evaluation, we use an interview 

with Jacob admins to know the paraphrase results are feasible or not. Other than paraphrase results, we do  

an interview to support the evaluation results using TAM and to know the summarization results are feasible 

or not. Evaluations use TAM and interview, we do these two evaluations with three admins. 

 

2.3.2. Implementation 

This part explains the integration of Cleveree module into Jacob application, the result of  

the implementation of Stacked Residual LSTM, Cosine Similarity, and TextRank. Cleveree module is built 

like the description in the research method which is built as a web service and the result is shown in Figure 7. 
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Figure 7. Screenshot of command prompt that shows the Cleveree server is on 
 

 

2.3.3. Integration in jacob admin system 

The integration in this part means the time when Cleveree is called by Jacob. Jacob calls the URL 

“/paraphrase” when the admin wants to create a new answer and when Jacob gives the answer to the user that 

is shown in Figure 8. Then, Jacob calls the URL “/summary” when admin opens the login page which is 

shown in Figure 9. Jacob calls the URL “/addingdata” when admin creates a new answer so the sentences are 

added to train source and train target data. Based on the answer that created by admin, Cleveree would create 

the paraphrased sentence. Then, admins can accept or revise the sentence. Last, Jacob calls the URL 

“/training” when an admin wants to update the knowledge and variation of answers based on a new dataset. 
 

 

 
 

Figure 8. A case when URL “/paraphrase” is called 
 

 

 
 

Figure 9. The case when URL “/summary” is called  
 

 

2.3.4. Implementation of pre-trained model of stacked residual LSTM 

The implementation of this pre-trained model is using Tensorflow package in Python programming 

language. The input and output dimensions are the same, the dimension size is 256. The dimension of word 

embedding is the same as the input and output dimensions. In training, the model uses 0.001 with a fixed 

value as the learning rate and Adam optimizer. The batch size is set to 32 and the number of iterations is set 

to 1,500. Every two LSTM layer is added with the residue as in [9]. The total training data is 516 sentences 

and the total vocabulary is 901 words, but it can increase if admin adds the new sentences of the answer.  

The training data contains sentences about the Dual Degree program of Informatics in Universitas 

Multimedia Nusantara and its get from interview with the Marketing Division of Universitas Multimedia 

Nusantara. Before process the sentence into the model, we need to do preprocessing. In the preprocessing,  

we use nltk package to remove punctuation and tokenize the sentence to words. Figure 10 represents  

the indicator when the training process is running. In the training process, we show the source, target, and 

predict sentence. This process is running in the background for the administrator to carry out other activities. 
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Figure 10. Training process of stacked residual LSTM 
 

 

2.3.5. Implementation of cosine similarity and TextRank 

The implementation of the Cosine Similarity method uses numpy package for preprocessing and 

calculation vectors of each sentence pairs. TextRank algorithm is implemented using networkx package.  

In preprocessing data of summarization feature is used nltk package to remove stopwords and tokenize 

sentence to list of words. 
 

 

3.   RESULTS AND ANALYSIS 

3.1.    Testing 

3.1.1. Testing for implementation of cosine similarity 

Based on the scenario in Table 1, we have two vectors. If we manually calculate using Formula 2, 

we can get the value of Cosine Similarity is 1 because both vectors exactly have the same direction.  

In Table 2, we have two different values of vectors and we get the Cosine Similarity score is 0.7774 using 

Formula 2. Figure 11 and Figure 12 are the results that are given by our module, Cleveree. Thus, we can 

conclude that the implementation of the Cosine Similarity method in Cleveree is success. 
 

 

Table 1. First scenario to test the implementation of cosine similarity method 
Variable Condition 

Vector dimension Five 

Vector 1 [0,18  0,3  -0,18  0,49  -0,18] 

Vector 2 [0,18  0,3  -0,18  0,49  -0,18] 

Expected output The result of the manual calculation for vector magnitude, dot product, and cosine similarity is the same as 

the result shown in Figure 11. 

 

 

 
 

Figure 11. The similarity result using cosine similarity method for the first scenario 
 

 

Table 2. Second scenario to test the implementation of cosine similarity method 
Variable Condition 

Vector dimension Ten 

Vector 1 [0,29  0,19  -0,81  0,59  -0,44 0,29  0,19  -0,81  0,59  -0,44] 

Vector 2 [0,81  0,35   -0,98  0,18  0,03  0,81  0,35  -0,98  0,18  0,03] 

Expected output The result of the manual calculation for vector magnitude, dot product, and cosine similarity is the same as 

the result shown in Figure 12. 
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Figure 12. The similarity result using cosine similarity method for the second scenario 

 

 

3.2.  Evaluation 

The evaluations are carried out using the TAM evaluation method and interview with three  

Jacob administrators. The TAM evaluation is done using questionnaires to measure the Perceived Usefulness 

and Perceived Ease of Use. Figure 13 presents the percentage for each question in Perceived Usefulness 

variables where question number one (Job Difficult Without), three (Job Performance), and fourteen  

(Usefull for Summary Feature) have the highest score. It is because Cleveree’s features can help and increase  

the performance of the Jacob admin job, especially in the Question Summarization feature. The smallest 

score is achieved on question number twelve about Makes Job Easier. It is due to the few usage instructions 

in Jacob administrator pages so sometimes admin feels confused using the admin system. Overall, the total 

percentage for Perceived Usefulness is 79.17% (strongly agree) that these two features of the Cleveree 

module are useful. 

Figure 14 represents the percentage for each question in Perceived Ease of Use variables where 

question numbers fourteen (ease to use for summary feature) and fifteen (ease to use for paraphrase feature) 

have the highest score. It is because both features make the way to update Jacob's knowledge easier.  

The smallest score is obtained on question number nine about Unexpected Behavior. It is due to  

the paraphrasing results that do not match with the actual context, thus making the system unpredictable. 

Other than unexpected behavior, question numbers three (frustrating), four (dependence on manual), and five 

(mental effort) also have the smallest score because it has a negative meaning. Paraphrasing results 

sometimes give semantical, syntactical, or grammatical errors so admins must understand the meaning of  

the sentence first before verifying the results so it causes the frustrating and mental effort to admins. 

Dependence on Manual also gets the smallest score because as a whole of a system it needs a manual book so 

admin can learn how to use both features. Overall, the total percentage for Perceived Ease of Use is 72.57% 

(strongly agree). 

Based on the interview results conducted to evaluate the Cleveree in a qualitative way, it is known 

that the paraphrase generation gives good results. However, some of the paraphrased sentences still require 

improvement. There is an incomprehensible sentence from the results of paraphrase because a word appears 

not in the right place (syntactical error). Thus, it is impacting the context and meaning of the whole sentence. 

This result does not match with the actual context (semantic error). The cause of this problem is where 

sentences and words are not available in the training dataset. Hence, the model has never learned  

the sentences and words before. Another result of the question summarization feature successfully gives  

the desired question by Jacob’s administrators and shows the important questions asked by users.  

 

 

 
 

Figure 13. The bar chart for the results of perceived usefulness variables 
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Figure 14. The bar chart for the results of perceived ease of use variables 

 

 

4. CONCLUSION 

We proposed and developed the Cleveree artificial intelligence module for the Jacob voice chatbot 

application. Cleveree delivers two features: paraphrase of answers and questions summarization. These two 

features are useful for updating Jacob’s knowledge base manually with the help of an administrator.  

The development of the Cleveree module as a web service eases the integration of the module into Jacob. 

The pre-trained model of Stacked Residual LSTM is also proven to be successful in generating paraphrase of 

answers. It is also displayed in this study that the model could be used to generate paraphrase based on  

the given training dataset. The questions summarization feature powered by the Cosine Similarity method 

with pre-trained Word2Vec and TextRank algorithm produces satisfactory results as verified by Jacob’s 

administrators. The TAM evaluation method shows that 79.17% of respondents strongly agree that the two 

features are useful and 72.57% of respondents strongly agree that the two features are easy to use. 
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