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 Photovoltaic (PV) is a renewable electric energy generator that utilizes solar 
energy. PV is very suitable to be developed in Surabaya, Indonesia. Because 
Indonesia is located around the equator which has 2 seasons, namely  
the rainy season and the dry season. The dry season in Indonesia occurs in 

April to September. The power generated by PV is highly dependent on 
temperature and solar radiation. Therefore, accurate forecasting of short-term 
PV power is important for system reliability and large-scale PV development 
to overcome the power generated by intermittent PV. This paper proposes  
the Jordan recurrent neural network (JRNN) to predict short-term PV power 
based on temperature and solar radiation. JRNN is the development of 
artificial neural networks (ANN) that have feedback at each output of each 
layer. The samples of temperature and solar radiation were obtained from 

April until September in Surabaya. From the results of the training 
simulation, the mean square error (MSE) and mean absolute percentage error 
(MAPE) values were obtained at 1.3311 and 34.8820, respectively.  
The results of testing simulation, MSE and MAPE values were obtained at 
0.9858 and 1.3311, with a time of 4.591204. The forecasting has minimized 
significant errors and short processing times.  
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1. INTRODUCTION 

In renewable energy, PV gets a lot of attention to replace fossil-fueled plants [1, 2]. Because PV 

uses solar energy to generate electrical energy. PV systems have environmental benefits, and have low 

maintenance costs [3] moreover PV can increase the reliability of the electric power system [4]. However,  

the investment costs of PV are expensive and the value of PV power efficiency is low. PV power efficiency 
values are affected by solar radiation, temperature, and conditions of the PV panel [5, 6]. Solar radiation and 

temperature cannot be determined with certainty. Therefore, PV power forecasting is very necessary for 

predicting the power generated by PV so that the load can be supplied to the maximum. 

There are several methods for predicting short-term power such as using Artificial Neural Networks 

(ANN) [7, 8], Support Vector Machine (SVM) [9] with solar radiation parameters, temperature, and other 

environmental parameters [10, 11]. However, ANN does not have feedback so that the output of ANN can be 

https://creativecommons.org/licenses/by-sa/4.0/
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corrected and get optimal results. As for SVM, kernel function and loss functions are difficult to get optimal 

results [12]. Therefore, accurate and fast PV power forecasting methods are needed so that intermittent PV 

power can be overcome. 

In this paper, short-term PV power forecasting is carried out using the JRNN method. JRNN method 

is the development of the ANN method. JRNN has 2 steps, namely training and testing steps. The training 

step consists of forward and backward operations. The difference between JRNN and ANN are the feedback 

output from each ANN layer to the context layer [13]. The backward operation will correct the output of each 
layer so that the error value from the JRNN prediction result is smaller. The parameters used in this  

short-term PV power forecasting are temperature and solar radiation from April until September in Surabaya 

Indonesia. In general, the temperature and solar radiation datas used are data in the dry season that occurs for 

six months. 

 

 

2. RESEARCH METHOD 

2.1.  PV model 

In this case, the PV module used has characteristics such as Figure 1 and Figure 2. Mathematically, 

the current and voltage characteristics generated from a solar cell with ideal conditions (temperature 25oC 

and irradiance 1000W/m2) are like (1) [14]. Thus, for a PV panel that practically consists of various 

components [15], the current and voltage characteristics generated mathematically are like (2): 
 

𝐼 =  𝐼𝐿 − 𝐼0 [𝑒𝑥𝑝 {
𝑞(𝑉 + 𝐼. 𝑅𝑆)

𝑛. 𝐾. 𝑇
} − 1] −

𝑉 + 𝐼. 𝑅𝑆

𝑅𝑆𝐻
 (1) 

 

𝐼 =  𝑁𝑃 . 𝐼𝐿 − 𝑁𝑃 . 𝐼0 [𝑒𝑥𝑝 {
𝑞(

𝑉
𝑁𝑆

+ 𝐼.
𝑅𝑆

𝑁𝑃
)

𝑎. 𝑛. 𝐾. 𝑇
}] −

𝑉.
𝑁𝑃

𝑁𝑆
+ 𝐼. 𝑅𝑆

𝑅𝑆𝐻
 (2) 

 

where, 

I  = output current (ampere) 

IL  = the current produced by photovoltaics (ampere) 

I0  = reverse saturation current (ampere) 

q  = element load, 1.6 * 10-23 C 

V  = voltage between output terminals (volt) 

RS  = series resistance (ohm) 

n  = ideal diode factor (range 1-1.75) 
K  = Boltzmann constant, 1.38 * 10-19 J/K 

T  = absolute temperature 

RSH  = resistance shunt (ohm) 

NP  = the number of photovoltaics connected in parallel 

NS  = the number of photovoltaics connected in series 

 

 

 
 

Figure 1. I-V PV characteristics [16] 
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Figure 2. P-V PV characteristics [16] 

 

 

2.2.  Jordan recurrent neural network (JRNN) 

JRNN is the development of ANN [17]. In this paper, JRNN is used to predict PV power with input 

parameters such as temperature and solar radiation in Surabaya. Temperature and solar radiation data were 

obtained from April to September. JRNN has the training and testing step [18]. In the training step, there are 
two operations namely forward operation and backward operation. Forward operation is used to enter 

temperature and solar radiation data and calculate PV power through the hidden layer to produce the output 

layer. Then backward operation, the output layer results are put back into the delay block, and context layerto 

get the final output [19-21]. Figure 3 is a diagram of JRNN and the input, output, context layer, number of 

hidden layer, and delay block are 𝑢(𝑘 − 1), 𝑦(𝑘), 𝑦(𝑘 − 1), 𝐾, and 𝑞−1, successively. The model from JRNN 

based on Figure 3 has equations like (3) and (4). Let 𝑤𝑖,0
(1)

 and 𝑤0
(2)

 are weights of the first and second layer, 

respectively. Then, 𝜑 is nonlinear transfer function. 

 

𝑦(𝑘 − 1) = 𝑤0
(2)

+ ∑ 𝑤𝑖
(2)

𝜑(𝑧𝑖(𝑘))

𝐾

𝑖=0

 (3) 

 

𝑧𝑖(𝑘) = 𝑤𝑖,0
(1)

+ 𝑤𝑖,1
(1)

𝑢(𝑘 − 1) + 𝑤𝑖,2
(1)

𝑦(𝑘 − 1) (4) 

 

 

 
 

Figure 3. Block diagram of JRNN 

 

 

JRNN has 3 hidden layers implemented, the number of the first to the third hidden layers are  

12, 5, 1, respectively [22]. In the input layer, the number of neuron units are 2 and 2 neurons are entered solar 

radiation and temperature data. Then, another neuron was an offset neuron which always produces a value  

of 1 [23]. The number of output layers is 1. The output layer produces PV power forecasting every month in  
the next month. The epoch is used as the number of iterations, which is 1000. And allowed error reward was 

set to 10-4. After all neural networks are trained, the next step is testing step. Testing step is done to test PV 

power forecasting capabilities. Then, the results of the testing step are compared with the actual PV power in 

July. The main differences between JRNN and ANN are shown in Figure 4 and Figure 5, severally. 
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Figure 4. Design of JRNN 

 

 

 
 

Figure 5. Design of ANN 

 

 

In JRNN and ANN, PV Power forecasting results are evaluated with the Mean Square Error (MSE) 

and Mean Absolute Percentage Error (MAPE). The MSE and MAPE are references for measuring errors 

from trained models. If the MSE and MAPE values are lower, the resulting model is better and more 

accurate. The equation (5) and (6) are equation of Sum of Square Error (SSE) and MSE, successively [24]. 

Where, 𝑛 is the number of the data processed and observed. Then, 𝑌′ and 𝑌 are the predicted and actual 

value, severally. 

 

𝑆𝑆𝐸 = ∑(𝑌′
𝑡−𝑘 − 𝑌𝑡−𝑘)2

𝑛

1

 (5) 

 

𝑀𝑆𝐸 =
𝑆𝑆𝐸

𝑛
 (6) 

 

2.3.  Data preparation 

This study used solar radiation and temperature data in the Surabaya area. Data retrieval was carried 

out from April to September. The data recording was carried out every 30 minutes for 24 hours [25]. Figure 6 

and Figure 7 are samples of data from solar radiation and temperature for 24 hours, respectively. 

 

 

 

 

 
 

Figure 6. Sample of data from solar radiation 
  

Figure 7. Sample of data from temperature 
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3. RESULTS AND ANALYSIS 

Figures 8 and 9 are the prediction of PV power with the JRNN and ANN method. The pictures are 

arranged side by side with the actual data. From the prediction results, the JRNN method has succeeded in 

producing the expected PV power predictions. In fact, the results of JRNN and ANN are almost the same. 

The resulting prediction approaches the actual data from the PV power produced. However, there are some 

disadvantages that are generated by ANN. This can be seen in Table 1. Table 1 shows that JRNN has smaller 

MSE and MAPE values than ANN. This shows that the predictions produced by the JRNN are closer to  

the actual data. So that the JRNN can be said to be more accurate because JRNN has a low error rate. Besides 

that, the time needed for the JRNN to produce these predictions is longer than ANN. 
 

 

 
 

Figure 8. The prediction of PV power with the JRNN 

 

 

 
 

Figure 9. The prediction of PV power with the ANN 

 

 

Table 1. MSE, MAPE and time of the test result 
JRNN ANN 

Training Testing Time Training Testing 
Time 

MSE MAPE MSE MAPE MSE MAPE MSE MAPE 

2.1180 34.8820 0.9858 1.3311 4.591204 3.1077 40.0600 4.2425 2.0838 4.361669 
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4. CONCLUSION 

PV power predictions have been successfully carried out with the JRNN method, which gives low 

MSE and MAPE values. because the lower the MSE and MAPE, the predictions generated can be close to  

the actual data. The MSE and MAPE generated in the training step are 2.1180 and 34.8820, respectively. then 

the MSE and MAPE generated in the testing steps are 0.9858 and 1.3311, respectively. and the time needed 

is 4.591204. Predicted results from JRNN are more accurate than ANN. However, the time taken is longer. 
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