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 The interference issue is most vibrant on low-powered networks like wireless 

sensor network (WSN). In some cases, the heavy interference on WSN from 

different technologies and devices result in life threatening situations. In this 

paper, a machine learning (ML) based lightweight interference mitigation 

scheme for WSN is proposed. The scheme detects and identifies heterogeneous 

interference like Wifi, bluetooth and microwave oven using a lightweight 

feature extraction method and ML lightweight decision tree. It also provides 

WSN an adaptive interference mitigation solution by helping to choose packet 

scheduling, Acknowledgement (ACK)-retransmission or channel switching as 

the best countermeasure. The scheme is simulated with test data to evaluate  

the accuracy performance and the memory consumption. Evaluation of  

the proposed scheme’s memory profile shows a 14% memory saving compared 

to a fast fourier transform (FFT) based periodicity estimation technique and 3% 

less memory compared to logistic regression-based ML model, hence proving 

the scheme is lightweight. The validation test shows the scheme has a high 

accuracy at 95.24%. It shows a precision of 100% in detecting WiFi  

and microwave oven interference while a 90% precision in detecting  

bluetooth interference. 
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1. INTRODUCTION 

Wireless sensor network (WSN) is a low-powered, small and embedded network deployed in 

industrial, scientific and medical (ISM) band [1, 2]. In future, WSN will have a rapid usage expansion due to 

Internet of Things (IoT). IoT demand for low powered networks is increasing and WSN is the most suitable 

candidate to fulfil the aim of connecting large number of sensors. WSN deploying IEEE802.15.4 (2003) 

standard operates in three unlicensed ISM bands. It provides 27 channels which include 1 at 868 MHz,  

10 at 915 MHz and 16 at 2.4 GHz. The most commonly used one is 2.4 GHz band. The band is used by 

various technologies and devices including WiFi, Bluetooth and microwave oven [3-5].  

 Recent advancement in wireless communication have increased the number of devices operating in 

2.4 GHz ISM band. This leads to congestion of the unlicensed band and different communication challenges 

such as co-existence and interference. Traditional methods like spectrum fragmentation and carrier sensing to 

solve interference problem in ISM band do not work anymore as these solutions were designed for low 

spatial density and presence of only a few radio technologies [6]. So, interference and coexistence are 
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becoming major problems in the ISM band, especially for WSN. The increase in the number of various 

wireless technologies operating in ISM band leads to collision and congestion on the shared channels.  

This will cause critical repercussions in the communication of WSNs. Hence, there is a need for agile 

methods that assess the channel conditions and apply actions to maximize communication success.  

The interference from various sources changes quickly due to reasons like mobility and changes in 

configuration. Therefore, the interference mitigating methods need to be adaptive and self-aware to  

the changes in the interference. Moreover, due to WSN being a small, embedded, low-power network, 

interference mitigating methods need to be lightweight. 

 

 

2. RELATED WORKS 

The topic of interference identification and mitigation are becoming popular in recent years in  

the field of WSN due to overcrowding of ISM band and increasing use of WSN especially as a sub platform 

for IoT applications. Different interference classification and mitigation schemes are found in the literatures. 

Most of them focused only on interference classification. Few schemes are found that identify  

the interference and suggest mitigation strategy. Research works in [6-8] propose algorithms to identify type 

of interference. Studies in [7, 8] decide on features of interfering signal by evaluating RSSI values.  

Then, with a fixed set of conditions, the signal is classified as bluetooth, WiFi or microwave interference.  

In both cases, the classification accuracy is below 90%. A method to calculate the percentage of  

the interference in the wireless link and distance of the interfering source is provided in [9]. Interference 

identification methods through supervised learning and machine learning are proposed in [10-12]. Each of 

these works lack an adaptive method that can mitigate the effect of the interference. Work in [13] proposes  

a scheme that identifies mitigation strategy with the help of decision tree but does not identify the type of 

interference. Authors in [14] propose Specksense, which identifies WiFi, periodic and non-periodic traffic. 

The scheme also helps to mitigate interference by channel black listing. However, the scheme is limited to 

the type of identified interference only.  

Majority of these works found in the literature use energy detection (ED) approach to detect  

and identify the interference type. ED approach uses received signal strength indicator (RSSI) value to 

evaluate the interference. Few use packet probing and link quality indicator (LQI). Motivated from these 

works, this paper proposes a lightweight interference mitigation scheme to reduce the effect of interference 

on WSN. The scheme is made self-aware by using a lightweight feature extraction method and a ML model 

that can extract features of interfered signal and identify the type of interference. In order to make the scheme 

adaptive, a look-up table that chooses packet scheduling, ACK-retransmission and channel switching as 

countermeasures to mitigate the detected interference is deployed.  

 

 

3. BACKGROUND AND TECHNOLOGIES IN ISM BAND 

The wireless medium is vulnerable to interference from various sources due to its broadcast nature. 

These interferences degrade the communication and sometimes even block it by making it difficult for 

receiver to decode the received signal. The interference can be from a similar technology, different 

technology operating in the same band or noise. Many research have been carried out and various 

mechanisms have been proposed to overcome the effect of interference within the same technology. All these 

mechanism lack the ability to reduce or manage interference among different technologies as they have been 

designed without considering the issue of coexistence. Moreover, it is proven to be difficult to have 

interoperable interference mitigation among various wireless technologies as they lack the feasibility  

of communication among themselves. Therefore, interference mitigation from different technologies or cross 

technology interference (CTI) mitigation is becoming one of the demanding topics in communication [14]. 

The unlicensed ISM band is the most crowded band with the largest number of different technologies 

operating in it. This make ISM band as the most vulnerable band to CTI. 
 

3.1.  ISM band technologies 

Microwave oven heats food by changing absorbed microwave at 2.4 GHz frequency to atomic 

vibration. When operating at this frequency, some amount of the waves are leaked to the surrounding.  

This results in interference to other devices that utilize this frequency band. The average output power  

of microwave oven is 800 Watt and emitted wave has a bandwidth of approximately 5 MHz. Therefore,  

if a WSN operates at a frequency close to the center frequency of 2.4 GHz, it will experience an enlarged 

packet drop due to interference from microwave leakage. However, the interference from microwave would 

last only for the heating period, which typically range from 30 minutes to 1 hour [8]. 

IEEE 802.15.4 standard uses offset quadrature phase-shift keying (O-QPSK) modulation with a half 

pulse shaping. The transmission occurs in one of the 27 non overlapping channels. 16 of them with 2 MHz 
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bandwidth and 5 MHz channel spacing are in 2.5 GHz band, while the remaining 11 channels are in sub-GHz 

band. The standard has many different MAC layer protocols defined over various version. The simplest one 

uses the carrier sense multiple access with clear channel (CSMA/CA) communication. At the beginning of 

any transmission, nodes will make sure the channel is idle by using clear channel assessment (CCA).  

If the channel is found to be busy, it defers the communication for a certain period of time [15-19].  

IEEE802.15.1, commonly known as Bluetooth, is a wireless specification for wireless personal area 

network (WPAN). It is being used by variety of devices for short range communication. Some example 

include data transferring between mobiles, laptops and tablets [20]. Bluetooth operates in 2.4 GHz frequency 

band with 76 distinct channels, each 1MHz wide. It uses frequency hopping spread spectrum (FHSS) which 

causes a change of the center frequency of the signal at a rate of 1600Hz. This helps it to avoid interference 

but forces it to occupy 76 MHz of the 2.4 GHz band over majority of the time. FHSS is later improved to an 

upgraded version known as adaptive frequency hopping (AFH) algorithm which allows bluetooth devices to 

categorize occupied channels by WSN as “bad” channels and will be ignored during channel selection. 

However, this is unlikely to happen in most of the cases as the WSN signals are low powered in nature. 

In IEEE802.11 standard, the carrier sense multiple access (CSMA) and CSMA/CA algorithm are 

used to tacle coexistence interference [20]. However, a study by Huang et al. [21] shows that the due to  

the bursty nature of the WiFi, CSMA scheme is not able to completely use the WiFi white spaces (unused 

spaces between Wi Fi frames). Moreover, WiFi transmitters are unable to identify the WSN signals as the 

clear channel assessment (CCA) in CSMA only senses the carrier of IEEE802.11 signals. Hence, it depends 

on the CCA mode being used [22, 23].  

 

 

4. SYSTEM DESIGN  

The scheme proposed in this paper is based on four main modules, namely, interference estimation, 

feature extraction, ML classification and look-up table. Figure 1 presents the overall architecture of  

the scheme with these modules. The scheme takes sampled RSSI traces from PHY layer and stores them for 

processing. The first process involved is interference estimation carried out by the interference estimation 

module. If this module detects presence of any interference, feature extraction is executed on the trace using 

lightweight feature extraction module. If no interference is detected, the message is passed to the look-up 

table directly. The extracted feature vector of the RSSI trace is the input to the ML classification model [24] 

which classifies the interfering signal into one of the classes, Bluetooth, WiFi or microwave oven.  

The classification output which is the type of interference, is passed to the look-up table in order to carry out 

decision on the countermeasure to be used for detected interference [25]. The mitigation countermeasure 

information is passed to MAC layer to take the action. The proceeding sections describe in detail  

the designing process by explaining the design of each module in depth. 

 

 

 
 

Figure 1. Overall architecture of the scheme 
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4.1.  Signal sampling 

The developed scheme uses ED approach to extract features and identify the type of interference.  

The ED value is commonly known as RSSI value and roughly represents the power of received signal at  

the receiver radio. In developing the proposed scheme, RSSI values from experiments carried out in [13] are 

used. These readings are already sampled RSSI values for different interfering technologies in ISM band 

namely, WiFi, Bluetooth and microwave oven obtained every 16 μs in a controlled experiment. Figure 2 depicts 

the controlled experimental setup used in [13] to measure the RSSI for different interfering technologies. 

 

 

 
 

Figure 2. Controlled experimental setup used in [13] 

 

 

4.2.  Interference estimation 

Interference estimation module is concerned with detection of any interference in the sampled RSSI 

trace received from PHY layer. The interference estimation module reads serially the ‘1s’ of the RSSI trace 

and performs interference estimation using a threshold. First, the RSSI values are converted to dBm by 

adding an offset of -45 to each serially read RSSI value. Next step involves finding the interference 

threshold. This is done by finding the power level of the received signal without interference. When  

the signal is exposed to interference, the power level increases as the interference is additive. Analysis  

of RSSI trace for different interference source shows that the power level of the received signal without 

interference is the most repeated RSSI value. Therefore, this value is taken to be the threshold.  

The trace plots also show there are some values with variation of less than 1 dBm from threshold. 

These values are not subject to interference from the interfering source but the variation is due to  

the environmental conditions like multipath propagation. With this information, the series are converted to  

a binary trace in the following step. Any value having a variation less than 1dBm from the threshold or any 

value below the threshold is converted to 0. The rest are converted to 1. Therefore, in the resulting binary 

trace, 1 represents samples subject to interference while 0 represents samples without interference. In the last 

stage of the module, active ratio of the binary trace is calculated using (1). If the active ratio is greater than 0, 

the module estimates that the received signal is exposed to interference. If the active ratio is equal to 0,  

it decides that the signal is not subject to any interference. 
 

𝑎𝑐𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑖𝑜 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑑 𝑎𝑠 1 

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
     (1) 

 

4.3.  Feature extraction 

This module aims at finding the temporal features of the generated binary signal from interference 

estimation module. The features extracted in this project are listed in the following. 

 Maximum channel usage duration 

 Maximum channel clear duration 

 Channel usage ratio 

 Periodicity which describes a unique transmission pattern of a wireless signal 

Two models are created to extract these features and the one with a lesser memory consumption is 

selected to be used in the final scheme. In both models, the same methods are used to find the first three 

features but different methods are used to find the last feature, periodicity. Model 1 uses Fast Fourier 

Transform (FFT) to estimate the periodicity of the binary signal while the proposed lightweight method is 

used to estimate the periodicity in model 2. The methods for the feature extraction are further described  

in the following: 

 Maximum channel usage duration: This represents the maximum duration for which the signal is exposed to 

external interference. It is found by calculating the maximum duration for which the binary signal continues 

with the value 1. 

 Maximum channel clear duration: This represents the maximum duration for which the signal is not exposed 

to external interference. It is found by calculating the maximum duration for which the binary signal 

continues with the value 0. 
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 Channel usage ratio: This is the same as the active ratio calculated in interference estimation module.  

So, the value for active ratio is used instead of calculating it again in order to save the computation  

and memory. 

 Proposed lightweight method to estimate periodicity: This method estimates the periodicity by determining 

the number of repeated duty cycles in the binary signal. The binary plots for microwave oven interference 

shows that the duty cycle consists of regular time interval of busy channel and idle channel. Analysis of  

the binary traces for WiFi shows that it has regularly transmitted beacons. Even if there is a data traffic,  

the transmitted data is usually around the beacons. So, during and around a beacon transmission, the channel 

is subject to interference, while the duration between beacons, the channel is clear of the interference. 

Bluetooth traces show regularly transmitted spikes. During and around these spikes, the channel is subjected 

to interference. Other than that, it is free of interference. Therefore, the duty cycle for each interfering 

technology consists of channel clear duration and channel busy duration. Hence, (2) is used to calculate  

the number of repeated duty cycles or periodicity in binary signal.  

 

𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑐𝑖𝑡𝑦 =  
𝑡𝑜𝑡𝑎𝑙 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑖𝑛𝑎𝑟𝑦 𝑠𝑖𝑔𝑛𝑎𝑙

𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑏𝑢𝑠𝑦 𝑡𝑖𝑚𝑒+𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑖𝑑𝑒𝑎𝑙 𝑡𝑖𝑚𝑒
    (2) 

 

The default beacon interval for WiFi is 102.4ms [7]. The sum of maximum channel clear duration 

and maximum channel busy duration (duty cycle duration) for WiFi should not exceed this value.  

The Bluetooth and microwave oven traces show their duty cycle durations are always less than this value. 

Under heavy data traffic, the duty cycle for WiFi exceeds this value. Therefore, in order to keep the duty 

cycle always within this limit, the following condition is used while calculating the periodicity. If the sum of 

maximum channel busy time and maximum channel clear time > 102.4ms, periodicity is given by (3):  

 

𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑐𝑖𝑡𝑦 =  
𝑡𝑜𝑡𝑎𝑙 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑖𝑛𝑎𝑟𝑦 𝑠𝑖𝑔𝑛𝑎𝑙

102.4 𝑚𝑠
     (3) 

 

From computation, the proposed lightweight method is found to be more accurate in estimating 

periodicity. Moreover, the memory profile of the method shows it consumes less memory compared to FFT. 

Hence, the proposed method is proven to be lightweight. 

 

4.4.  Machine learning model-decision tree 

The scheme proposed in this paper needs to classify the type of interfering signal for an extracted 

feature set. Therefore, a supervised learning model is needed. The first requirement to develop a supervised 

machine learning model is to have an appropriate dataset. In order to generate the required dataset,  

feature extraction is carried out using the developed feature extraction method on 70 different traces.  

Once the dataset is generated, the ML model development procedure is carried out. Firstly, the dataset is 

randomly split into train data and test data. 70% of the dataset is split as train data and 30% into test data.  

The train data is used for developing and training the model while test data is used for validating  

the developed model. Two models, namely, decision tree model and logistic regression model are developed 

separately. For the final scheme, the model with the least memory consumption and high accuracy is used.  

In both models, the four numeric attributes of the dataset (periodicity, busy time, channel utilization  

and idle time) will be used as inputs to the models. The decision tree is built using CART algorithm with 

attribute selection measures (ASM) as gini index. Figure 3 presents the generated trained decision tree.  

From simulation, it is found that the decision tree is more accurate and lightweight compared to logistic 

regression model. Hence, the decision tree is considered to be the ML model in the final scheme. 

 

4.5.  Lookup table 

The look-up table takes ML classification model output as its input and chooses the most appropriate 

countermeasure for the type of input interference. The table is created from observations stated in [7, 8]  

on different countermeasures for interference in WSN. These observations state that each interfering technology 

shapes the interfered channel in a particular way. So different countermeasures will work for different types of 

interference. For instance, microwave oven utilizes the channel heavily with a slow but steady and timely 

transmission. The transmission has regular on-off periods. So, the transmission or interference periods can be 

avoided by sending the packets in a regularly scheduled manner [7] or in other words, by using packet schedule 

transmission. Hence, if the input to the look-up table is microwave oven interference, it will choose packet 

scheduling as the countermeasure.  

On the other hand, WiFi utilizes the channel very deeply for a long period of time with heavy data 

traffic. Unlike microwave oven transmission, it does not have a regular on-off transmission pattern. So, the best 



TELKOMNIKA Telecommun Comput El Control   

 

Machine learning based lightweight interference mitigation scheme... (Ali Suzain) 

1767 

method to avoid WiFi interference would be to change the current transmitting channel [8]. Therefore,  

the look-up table decides channel switching as the most appropriate countermeasure when the type of input 

interference is WiFi. Unlike WiFi and microwave oven, bluetooth has the least interference effect on WSN 

signal. In addition, bluetooth interference occurs randomly as it uses adaptive frequency hopping mechanism to 

transmit data on channels. So, the best way to avoid bluetooth interference would be to remain in the channel 

and retransmit if a packet collision occurs [7]. The packet collision can be detected by using ACKs. Hence,  

if the detected interference is Bluetooth, the look-up table will choose retransmission with ACK as  

the countermeasure. Table 1 illustrates the look-up table used in the developed scheme. 

 

 

 
 

Figure 3. Trained decision tree 

 

 

Table 1. Look-up table 
Interference type Mitigation strategy 

WiFi Channel switching 

Microwave oven Packet scheduling 
Bluetooth ACK - retransmission 

 

 

5. SCHEME EVALUATION  

In addition to the proposed scheme, two more schemes were constructed. One of them was 

developed with FFT feature extraction method and decision tree classification model. The other one uses 

proposed lightweight feature extraction method, but logistic regression as the ML model. In order to prove 

the proposed scheme is lightweight, an analysis of memory consumption is considered. The analysis is done 

first by profiling the running memory for the developed scheme and other constructed schemes. In addition to 

this memory profiling, different feature extraction methods used are also compared to search for the most 

lightweight one.  

 Figure 4 shows memory profiles for feature extraction methods used to develop the scheme.  

The red line plot in the graph shows memory profile for feature extraction method using FFT. The green line 

shows the profile for the proposed light weight method to extract features. From the figure, it can be observed 

that the FFT method has a running memory of 68MiB while the proposed lightweight method consumes  

37 MiB of memory. The 31 MiB reduction of memory consumption shows that the proposed method is more 

lightweight than the FFT method. The complexity of FFT makes it more memory intensive and slow 

compared to the proposed lightweight method. 

Figure 5 shows memory profiles for different schemes created. It can be observed that the developed 

scheme has a memory of 75.9 MiB, the scheme with logistic regression has a memory of 78.3 MiB  

and the scheme with FFT has 88.2 MiB memory. So, the developed scheme (in red colour) has 14% memory 

improvement compared to the scheme with FFT as feature extraction method. This improvement is due to  

the lesser memory consumption of the proposed lightweight method used for feature extraction in  

the developed scheme. As mentioned in the previous section, FFT uses intensive calculations and is more 

complex compared to the proposed lightweight method.  
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From Figure 5, the comparison of memory used between the scheme with logistic regression as ML 

model and the proposed scheme illustrates that the proposed scheme consumes 3% less memory. This shows 

that decision tree model used in the proposed scheme is more lightweight than the logistic regression model. 

Logistic regression model involves finding logits, probability and cross-entropy function for each input 

attribute which makes it computationally intensive. Hence, it consumes more memory than the simple 

decision tree. The decision tree has 1 root node and 3 internal nodes, so, it is fairly simple and uses less 

memory to make classification. 

 

 

 
 

Figure 4. Memory profiles for feature extraction methods 

 

 

 
 

Figure 5. Memory profile for different schemes created 

 

 

In order to evaluate the performance of the proposed scheme, its validation and precision accuracy is 

compared with schemes in [7, 8] and [13]. Table 2 depicts this comparison. In [8] and [13], the scheme 

precision accuracy for different classes were not given so the precision is only compared with scheme in [7]. 

As can be seen, the proposed scheme has a precision of 100% in detecting WiFi and Microwave oven 

interference while a 90% precision in detecting Bluetooth interference. The scheme in [2] has a precision of 

99.05% in detecting WiFi, 100% in detecting Microwave oven interference and a 90% precision in detecting 

Bluetooth interference. This shows that the precisions are almost similar for both schemes except for 

Bluetooth. In both schemes, Bluetooth has less precision compared to other classes. Bluetooth uses adaptive 

frequency hopping (AFH) and changes to unused or less used channels when many collisions are detected on 

a channel. Therefore, a detection of Bluetooth is more challenging compared to microwave oven which emits 

radiation in a regular on-off pattern while WiFi periodicity is always less than around 16μs. So, they are 

easier to identify. 
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Table 2. Performance comparison of the developed scheme 
Scheme Bluetooth Precision WiFi Precision Microwave oven Precision Validation accuracy 

Proposed scheme 90% 100% 100% 95.24% 

[7] 97.41% 99.05% 100% 96.46% 

[13] - - - 92.9% 
[8] - - - 70% 

 

 

The scheme in [8] has a low validation accuracy of 70% while scheme in [13] has 92.9% accuracy. 

Scheme in [8] is only an interference classification scheme. It is not accompanied with any mitigation 

strategy. The scheme in [13] is a mitigation scheme which chooses different countermeasures for detected 

interference. As can be seen from the table, the developed scheme has 95.24% accuracy which is high 

compared to other two schemes. Scheme in [7] has a validation accuracy of 96.46%, which is higher than  

the proposed scheme. However, the scheme in [7] uses fixed set of rules to build decision tree for 

classification. The proposed scheme uses a trained decision tree from a dataset to make the classification. 

This means the developed scheme can be trained for different datasets. It can be made adaptive to changes  

in the wireless environment. This cannot be possible with scheme in [7] as it uses fixed decision tree.  

So, the scheme proposed is more adaptive than the one in [7]. This guarantees the proposed scheme to deliver 

a good performance accuracy irrespective of the wireless environment. 

 

 

6. CONCLUSION 

In this paper, a ML based lightweight interference migration scheme for WSN is presented.  

The scheme uses a lightweight method to estimate the interfering signal features and a lightweight decision 

tree to identify the type of interference. This information is fed to a look-up table to decide the best 

mitigation strategy for the detected interference. Evaluation of the proposed scheme’s memory profile shows 

a 14% memory saving compared to a scheme with FFT as periodicity estimation technique and 3% less 

memory when compared to logistic regression as ML model. This proves the developed scheme  

is lightweight. The validation test using test data shows the proposed scheme is very accurate with  

an accuracy of 95.24%. Due to the use of trained decision tree, the proposed scheme is able to deliver a good 

performance accuracy irrespective of the wireless environment. 
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