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 Cognitive radio networks enable a more efficient use of the radioelectric 

spectrum through dynamic access. Decentralized cognitive radio networks 
have gained popularity due to their advantages over centralized networks.  
The purpose of this article is to propose the collaboration between secondary 
users for cognitive Wi-Fi networks, in the form of two multi-criteria  
decision-making algorithms known as TOPSIS and VIKOR and assess their 
performance in terms of the number of failed handoffs. The comparative 
analysis is established under four different scenarios, according to the service 
class and the traffic level, within the Wi-Fi frequency band. The results show 
the performance evaluation obtained through simulations and experimental 

measurements, where the VIKOR algorithm has a better performance in 
terms of failed handoffs under different scenarios and collaboration levels. 
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1. INTRODUCTION 

Currently, wireless communication systems exhibit certain defficiencies in voice and data services 

due to the saturation and scarcity in frequency bands within the spectrum. This can be explained by  

the considerable increase of mobile devices in the radiofrequency network [1]. According to some studies, it 

is expected that the IP traffic grows by 168 Exabytes in 2020 with the number of mobile devices equal to 

three times the worldwide population [2]. However, time-based and geographic studies carried out by  

the Federal Communications Commission of the United States [3] show that most of the radiofrequency 

spectrum is used inefficiently. 

This has prompted the use of strategies seeking to mitigate the issue [4]. Cognitive Radio (CR) rises 

as a technology conceived to overcome this problem, through the dynamic access of the spectrum, and 

characterized to perceive, learn and plan (decision-making) according to the current conditions of  

the network [5–9]. This technology increases the bandwidth capacity and dynamic access to the spectrum 
guaranteeing that there are no interferences between licensed primary users [8, 10]. 

Centralized networks are architectures with an infrastructure that operates under the command of  

a central coordinator. The information from each SU feeds the central base, so that it can make decisions to 

maximize communication parameters. However, this is not the best option for large scale systems and 

applications in public security networks. The increase in measuring costs, system complexity and potential 

unbalance and chaos in case of failure (vulnerability) turns it into a non-feasible architecture for CRN [11]. 

The previous scenario can be solved if the responsibility of the information is split among different control 

points, serving as a baseline criterion for descentralized cognitive radio networks (DCRN). 

https://creativecommons.org/licenses/by-sa/4.0/
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The problem of the present research consists on carrying out the decision-making process for  

a DCRN, giving the nodes the capacity to learn from the environment and proposing strategies that allow  

the SU to exchange information collaboratively. The proposed solution is based on cooperative DCRN as this 

work proposes the collaboration between secondary users through the exchange of information between  

them [10, 12, 13]. 

This article presents a comparative assessment of the multi-criteria decision-making algorithms 

TOPSIS and VIKOR for a Wi-Fi DCRN. Both algorithms are assessed and compared in terms of the average 
number of failed handoffs over a 9-minute transmission for the same information size. The comparative 

analysis is carried out in four different scenarios based on the service class (real time and better effort) and 

the traffic level (high and low): real time (RT) with high traffic (HT), better effort (BE) with low traffic (LT), 

RT with LT and BE with HT. The main contribution of the proposed solution is to show the performance 

assessment obtained through simulations and experimental measurements, considering different collaboration 

levels within the analysis (10%, 20%, 50%, 80% and 100%) between secondary users, which share  

space-time information on spectral occupancy feeding the database of the decision-making algorithms. 

 

 

2. RESEARCH METHOD  

To determine the performance of each algorithm, a simulation tool was developed by the authors, in 

which the simulation environment progressively recreates the behavior of spectral occupancy based on real 
data captured in a metering campaign in the Wi-Fi frequency band. The spectral occupancy behavior 

corresponds to a metering campaign that lasted several weeks in the city of Bogotá, Colombia [14].  

The energy detection technique was used to determine the availability matrix for each channel in the Wi-Fi 

frequency band. The decision threshold for the power variable was 5 dBm above noise floor. 

One of the main contributions of this research is derived from handling experimental data of spectral 

occupancy which is the result of studying the collaborative activity between SU to determine the best spectral 

opportunities. The present research implemented and adapted a collaboration system combining TOPSIS and 

VIKOR algorithms, through a module for information exchange between secondary users. Initially, each 

secondary user stores the last k data in the radioelectric environment retrieved from information shared 

between SU. It is assumed that there are 100 SU with heterogeneous information of the spectrum for a given 

node of the descentralized network, and a percentage of that amount is used to gather the information used by  
the TOPSIS and VIKOR algorithms to sort out the spectral opportunities. The purpose of this process is to 

assess the influence of the cooperation between secondary users for a DCRN scenario. 

 

2.1. Spectral allocation algorithms 

The chosen alternatives for multi-criteria decision-making algorithms (MCDM) are the technique 

for order preference by similiarity to Ideal solution (TOPSIS) and the multi-criteria optimization and 

compromise solution (VIKOR). 

 

2.1.1. TOPSIS  

This algorithm has two sections: the unacceptable solution in any scenario and the ideal solution  

of the system. Initially, the decision matrix X is built and then normalized using the square root method (1) 
[15–19]. 
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where ωi is the weight assigned to criterion i and the sum of weights must be equal to 1. 

Afterwards, the ideal solution is determined as well as the worst solution, as described in (2) and (3).  
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where i = 1...M. X+ and X- are the set of benefits and costs, respectively.  
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Afterwards, the Euclidian distance D is calculated for each alternative as seen in (4) and (5). 

 

( )
M

2

i ij j

j 1

D         i 1, , N + +

=

= − = 
 

(4) 

 

( )
M

2

i ij j

j 1

D         i 1, , N − −

=

= − = 
 

(5) 

 

Finally, the alternatives are organized in descending order, according to the preference index given 

by (6). 
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2.1.2. VIKOR  

The VIKOR method assumes that each alternative is assessed based on each criterion function, and 

the classification can be established by comparing the measurements and choosing which are closest to  

the ideal alternative [20–22]. In [16, 23–25], the procedure of the VIKOR algorithm is described. For each 

parameter j = 1, 2, 3, …, N, the best and worst values are determined as shown in (7) and (8). 
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where the benefit and cost parameters respectively named Nb and Nc belong to N.  

Afterwards, the values of iS
 and iR

for i= 1, 2, 3,…, M, are computed as described in (9)  

and (10). 
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where jW
 is the importance of the weight of parameter j. 

Then, the values of iQ
 are computed for i= 1, 2, 3,…, M, as shown in (11). 
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Given the values of Q for all i belonging to M, the SO candidates are classifed from best to worst. 

Finally, the selected SO is given by the optimal value of Q, as seen in (12). 
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3. RESULTS AND DISCUSSION 

In terms of performance assessment, two types of applications were considered: real time (RT) and 

better effort (BE) as well as two traffic levels: high traffic (HT) and low traffic (LT), leading to four different 
scenarios: GSM RT HT, GSM RT LT, GSM BE HT and GSM BE LT. The accumulative average failed 

handoffs (AAFH) is the metric used for assessment both for the TOPSIS as shown in Figure 1 and  

the VIKOR algorithms as shown in Figure 2. Ten simulations were performed for each experiment and then 

the average of each experiment was plotted. 

Figure 1 shows that the number of failed handoffs is 24% lower for low traffic compared to high 

traffic since there are less spectral opportunities. Another interesting finding is that the number of failed 

handoffs is very similar between the BE and RT scenarios for the same level of traffic, which makes  

this variable less relevant within a spectrum allocation model and leading to reconsider the operation of  

the chosen algorithm. Finally, the collaboration percentage between secondary users is not significant  

for real time applications while better effort applications exhibit an improvement in performance by 11% as  

the collaboration percentage grows higher. 
Figure 2 shows that the number of failed handoffs is 25% lower for low traffic compared to high 

traffic. As seen for the TOPSIS algorithm, the VIKOR algorithm reveals a similar number of failed handoffs 

between BE and RT, for the same traffic level. Finally, in terms of the collaboration percentage between 

secondary users, only the BE-LT scenario shows a significant improvement by 7%. 

Table 1 shows the percentage-based relative values of the comparative performance assessment for 

each scenario among different levels of collaboration. It can be concluded that, although there is evidence of 

an improvement in performance for each algorithm when the level of collaboration rises, said improvement 

does not exceed 10% in most cases. Therefore, it could prove interesting to assess each algorithm 

comparatively in all scenarios, taking into account the highest and lowest collaboration levels of 10% and 

100% respectively, as shown in Table 2. The scenario-based analysis does not reveal that an algorithm 

dominates over the other one in all scenarios or with common conditions. 
The significance of the results, regarding the collaboration module, shows that the level of 

collaboration between SU is directly proportional to the performance of the algorithm. However,  

the improvement rate is not significantly high. According to the results, an increase in the level of 

collaboration between SU by 1000% (from 10% to 100%) only improves the performance of the algorithm 

by approximately 10%. 

 

 

Table 1. Benchmarking by level of collaboration for AAFH 
AAFH Wi-Fi BE LT Wi-Fi RT LT Wi-Fi BE HT Wi-Fi RT HT 

TOPSIS SU10 26.83 72 42.22 71.31 
VIKOR SU10 72.53 86.75 93.14 64.44 
TOPSIS SU20 70.97 79.12 68084 84.47 
VIKOR SU20 76.74 94,74 95 79.82 
TOPSIS SU50 71.74 79.12 91.35 86.14 
VIKOR SU50 78.57 98.63 95.96 83.65 
TOPSIS SU80 74.16 80.9 94.06 87 
VIKOR SU80 78.57 98.63 95.96 87.88 

TOPSIS SU100 76.74 80.9 100 89.69 
VIKOR SU100 81.48 100 97.94 87.88 

 

 
Table 2. Benchmarking by scenario with 10% and 100% collaboration for AAFH 

AAFH TOPSIS SU10 VIKOR SU10 TOPSIS SU100 VIKOR SU100 

Wi-Fi BE LT 26.83 72.53 76.74 81.48 

Wi-Fi RT LT 72 86.75 80.9 100 

Wi-Fi BE HT 42.22 93.14 100 97.94 

Wi-Fi RT HT 71.31 64.44 89.69 87.88 

Wi-Fi LT 49.415 79.64 78.82 90.74 

Wi-Fi HT 56.765 78.79 94.845 92.91 

Wi-Fi BE 34.525 82.835 88.37 89.71 

Wi-Fi RT 71.655 75.595 85.295 93.94 
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Figure 1. Failed Handoffs for TOPSIS algorithm in collaborative Wi-Fi networks 



                ISSN: 1693-6930 

TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 2, April 2020:  669 - 675 

674 

  
 

 
 

 
 

 
 

Figure 2. Failed handoffs for VIKOR algorithm in collaborative Wi-Fi networks 
 

 

4. CONCLUSION 

According to the results obtained, the level of collaboration between SU is directly proportional to 

the performance of the algorithm. However, the improvement rate is not significantly high. An increase in  

the collaboration level between SU by 1000% (going from 10% to 100%) only achieves an improvement in 

throughput between 5 and 7% approximately. The previous statement implies that a collaboration level of 

10% is sufficient to deliver convenient results in terms of throughput. 



TELKOMNIKA Telecommun Comput El Control   

 

Failed handoffs in collaborative Wi-Fi networks (Cesar Hernandez) 

675 

ACKNOWLEDGEMENTS 

The authors wish to thank Universidad Distrital Francisco José de Caldas for funding and supporting 

this research work. 
 

 

REFERENCES  
[1] D. A. López, N. Y. García, and J. F. Herrera, “Desarrollo de un Modelo Predictivo para la Estimación del 

Comportamiento de Variables en una Infraestructura de Red,” Inf. tecnológica, vol. 26, no. 5, pp. 143–154, 2015. 
[2] CISCO, “Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update,” CISCO, 2017. 

[3] F. C. Commission, “Notice of Proposed Rulemaking and Order,” Mex. DF Rep. Docket no. 03, vol. 332,  
pp. 1-53, 2003. 

[4] N. Abbas, Y. Nasser, and K. El Ahmad, “Recent advances on artificial intelligence and learning techniques in 
cognitive radio networks,” EURASIP J. Wirel. Commun. Netw., vol. 174, no. 2015, pp. 1–20, 2015. 

[5] I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, “A survey on spectrum management in cognitive radio 
networks,” IEEE Commun. Mag., vol. 46, no. 4, pp. 40–48, 2008. 

[6] I. F. Akyildiz, L. Won-Yeol, M. C. Vuran, and S. Mohanty, “NeXt generation/dynamic spectrum access/cognitive 
radio wireless networks: A survey,” Comput. Networks, vol. 50, no. 13, pp. 2127–2159, 2006. 

[7] E. Ahmed, A. Gani, S. Abolfazli, L. J. Yao, and S. U. Khan, “Channel Assignment Algorithms in Cognitive  
Radio Networks: Taxonomy, Open Issues, and Challenges,” IEEE Commun. Surv. Tutorials, vol. 18, no. 1,  
pp. 795–823, 2016. 

[8] G. Tsiropoulos, O. Dobre, M. Ahmed, and K. Baddour, “Radio Resource Allocation Techniques for Efficient 
Spectrum Access in Cognitive Radio Networks,” IEEE Commun. Surv. Tutorials, vol. 18, no. 1, pp. 824–847, 2016. 

[9] M. Ozger and O. B. Akan, “On the utilization of spectrum opportunity in cognitive radio networks,” IEEE 
Commun. Lett., vol. 20, no. 1, pp. 157–160, 2016. 

[10] I. F. Akyildiz, W.-Y. Lee, and K. R. Chowdhury, “CRAHNs: Cognitive radio ad hoc networks,” Ad Hoc Networks, 

vol. 7, no. 5, pp. 810–836, 2009. 
[11] D. A. Pankratev, A. A. Samsonov, and A. D. Stotckaia, “Wireless Data Transfer Technologies in a Decentralized 

System,” in 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering 
(EIConRus), pp. 620–623, 2019. 

[12] W. Ejaz, N. Ul Hasan, and H. S. Kim, “Distributed cooperative spectrum sensing in cognitive radio for ad hoc 
networks,” Comput. Commun., vol. 36, no. 12, pp. 1341–1349, 2013. 

[13] A. Bujari, C. T. Calafate, J.-C. Cano, P. Manzoni, C. E. Palazzi, and D. Ronzani, “Flying ad-hoc network 
application scenarios and mobility models,” Int. J. Distrib. Sens. Networks, vol. 13, no. 10, 2018. 
https://doi.org/10.1177%2F1550147717738192. 

[14] L. F. Pedraza, C. Hernández, K. Galeano, E. Rodríguez-Colina, and I. P. Páez, "Ocupación espectral y modelo de 
radio cognitiva para Bogotá", Primera. Bogotá: Editorial UD, 2016. 

[15] T. Kaya and C. Kahraman, “Multicriteria renewable energy planning using an integrated fuzzy VIKOR & AHP 
methodology: The case of Istanbul,” Energy, vol. 35, no. 6, pp. 2517–2527, 2010. 

[16] C. Ramírez Pérez and V. M. Ramos Ramos, “Handover vertical: un problema de toma de decisión múltiple,” in 
Congreso Internacional sobre Innovación y Desarrollo Tecnológico, 2010. 

[17] C. Ramirez-Perez and V. Ramos-R, “On the Effectiveness of Multi-criteria Decision Mechanisms for  
Vertical Handoff,” in International Conference on Advanced Information Networking and Applications,  

pp. 1157–1164, 2013. 
[18] M. Lahby, L. Cherkaoui, and A. Adib, “Hybrid network selection strategy by using M-AHP/E-TOPSIS  

for heterogeneous networks,” in International Conference on Intelligent Systems: Theories and Applications,  
pp. 1–6, 2013. 

[19] G. Büyüközkan and G. Çifçi, “A combined fuzzy AHP and fuzzy TOPSIS based strategic analysis of electronic 
service quality in healthcare industry,” Expert Syst. Appl., vol. 39, no. 3, pp. 2341–2354, 2012. 

[20] C. Hernández, I. Páez, and D. Giral, “Modelo AHP-VIKOR para handoff espectral en redes de radio cognitiva,” 
Tecnura, vol. 19, no. 45, pp. 29–39, 2015. 

[21] C. Hernández, L. F. Pedraza, I. Páez, and E. Rodriguez-Colina, “Análisis de la Movilidad Espectral en Redes de 
Radio Cognitiva,” Inf. tecnológica, vol. 26, no. 6, pp. 169–186, 2015. 

[22] T. Tanino, T. Tanaka, and M. Inuiguchi, "Multi-objective programming and goal programming: theory and 
applications," Springer Science & Business Media, 2003. 

[23] E. Stevens-Navarro, J. D. Martinez-Morales, and U. Pineda-Rico, “Evaluation of vertical handoff decision 
algorightms based on MADM methods for heterogeneous wireless networks,” J. Appl. Res. Technol., vol. 10, no. 4, 
pp. 534–548, 2012. 

[24] E. Stevens-Navarro, R. Gallardo-Medina, U. Pineda-Rico, and J. Acosta-Elias, “Application of MADM method 

VIKOR for vertical handoff in heterogeneous wireless networks,” IEICE Trans. Commun., vol. 95, no. 2,  
pp. 599–602, 2012, doi: 10.1587/transcom.E95.B.599. 

[25] C. Bernal and C. Hernández, "Modelo de decisión espectral para redes de radio cognitiva," Primera Ed.  
Bogotá, 2019. 

 
 


