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 The derivation of motion equations of constrained spatial multibody system is 

an important problem of dynamics and control of parallel robots. The paper 
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is to derive the inverse dynamics controllers based on the radial basis function 

(RBF) neural network control law for parallel robot manipulators. Finally, 
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1. INTRODUCTION 

In the past three decades, the theory on dynamics of constrained multibody systems has been 

developed to a high degree of maturity [1-4]. The parallel robot manipulators are constrained multibody 

structures [5-7]. The equations of motion for a multibody system are obtained as the end result of a sequence 

of mathematical operators. In general, the known methods to derive the equations of motion of multibody 

systems are Lagrange’s equations, Newton–Euler equations, Kane’s equations. Among these methods,  

the approach using Lagrange’s equations with multipliers has become an attractive method to derive  

the equations of motion of constrained multibody systems. This approach provides a well analytical and orderly 

structure that is very useful for control purposes. 

The control of treelike multibody systems is of interest to a number of research communities in a very 

of applications areas. Many advanced methods for control of robot manipulators based on the Lagrange’s 

equations have been developed [8-19]. The application of modern control methods such as sliding mode control 

method, the neural network control method for controller design of the treelike robot manipulators is presented 

in the works [20-30]. In contrast to the rapid progress in control theory of treelike robot manipulators,  

the development of the control theory for parallel robots is still limited. Modern control methods have also 

been used in the control problem of plane parallel manipulators [31-34]. One has used the control methods 

such as the proportional derivative (PD) control and proportional integral derivative (PID) control for designing 

some controllers of spatial parallel robot manipulators [35-38]. However, the application of modern control 

methods such as sliding mode control method, the radial basis function (RBF) neural network control method 

for controller design of the spatial parallel robot manipulators is a new problem that has not been investigated. 

https://creativecommons.org/licenses/by-sa/4.0/
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Recently, N. H. Quang [39-41] proposed a control method using model predictive approach.  

AL-Azzawi [42] address the control problem for a class of nonlinear dynamical systems based on linear 

feedback control strategies. S. Riache [43] proposed adaptive nonsingular terminal super-twisting controller 

consists of the hybridization of a nonsingular terminal sliding mode control and an adaptive super twisting. 

Simulations with nonsingular terminal super-twisting control to prove the superiority and the effectiveness of 

the proposed approach. In [44], a new compound hierarchical sliding mode control and fuzzy logic control 

scheme has been proposed for a class of underactuated systems with mismatched uncertainties. 

In the present study, we present a control method using neural network for controller design of spatial 

parallel robot manipulators. In the section 2, the application of the new matrix form of Lagrangian equations 

with multipliers for constrained multibody systems to establish a new expression for calculation of the driving 

torques of parallel robots will be discussed. The inverse dynamics controller for the parallel robot manipulator 

is considered in the section 3. In the section 4, numerical simulation of the inverse dynamics controller for a  

3-RRR delta parallel spatial robot manipulator is presented as an illustrative example. 
 

 

2. INVERSE DYNAMICS OF CONSTRAINED MULTIBODY SYSTEMS  

Let us consider a scleronomic multibody system of 
a

f n  degree of freedom containing 𝑝  

rigid-bodies with r holonomic constraints. Let 𝑠 = [𝑠1, 𝑠2, . . . , 𝑠𝑛]𝑇 be the vector of generalized coordinates, 

the motion equations of constrained holonomic multibody systems can be written as: 
 

𝑀(𝑠)�̈� + 𝐶(𝑠, �̇�)�̇� + 𝑔(𝑠) + 𝛷𝑠
𝑇(𝑠)𝜆 + 𝑑(𝑠, �̇�) = 𝜏     (1) 

 

𝑓(𝑠) = 0         (2) 
 

where 𝑀(𝑠) is the n nmass matrix, 𝐶(𝑠, �̇�) is the n n  coriolis/centripetal matrix, 𝑓 is 1r  vector of 

constraint equations, 𝛷𝑠(𝑠) is the r n Jacobian matrix of the vector 𝑓 ,d  is the 1n  vector of friction force 

and disturbance,  is the 1n  vector of driving forces/torques,  is the 1r  vector of Lagrangian 

multipliers. The Coriolis/Centripetal matrix 𝐶(𝑠, �̇�) is determined from the mass matrix according the following 

formula [45, 46]. 
 

𝐶(𝑠, �̇�) =
𝜕𝑀(𝑠)

𝜕𝑠
(𝐸𝑛 ⊗ �̇�) −

1

2
[

𝜕𝑀(𝑠)

𝜕𝑠
(�̇� ⊗ 𝐸𝑛)]

𝑇

     (3) 

 

The Jacobian matrix 𝛷𝑠(𝑠) of the constrained equations is determined by the following formula; 
 

𝛷𝑠 =
𝜕𝑓

𝜕𝑠
= [

𝜕𝑓1

𝜕𝑠1
. . .

𝜕𝑓1

𝜕𝑠𝑛
. . . . . . . . .
𝜕𝑓𝑟

𝜕𝑠1
. . .

𝜕𝑓𝑟

𝜕𝑠𝑛

]        (4) 

 

Firstly, the generalized coordinates in vectors are divided into two subgroups: independent coordinates 𝑞𝑎, and 

redundant coordinates 𝑧. Then we have; 
 

𝑠 = [𝑞𝑎
𝑇 𝑧𝑇]𝑇,

11 , ......  
T

r

T

a f z zq qq z , 𝑛 = 𝑓 + 𝑟   (5) 

 

By differentiating in (2) with respect to vectors 𝑠, 𝑞𝑎 , 𝑧, respectively, we obtain the following Jacobian matrices, 
 

, , r n r r r f
s z a

a

f f f

s z q
, 𝛷𝑠 = [𝛷𝑎 𝛷𝑧]  (6) 

 

By introducing the projection matrix [47]: 
 

𝑅(𝑠) = [
𝐸

−𝛷𝑧
−1𝛷𝑎

] ∈ 𝑅𝑛×𝑓       (7) 

 

one has:  

 

𝑅𝑇(𝑠)𝛷𝑠
𝑇(𝑠) = 0,         (8) 
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where E  is the 𝑓 × 𝑓 identity matrix.  

Left multiplication of the motion in (1) with the matrix TR s  yields,  

 

𝑅𝑇[𝑀(𝑠)�̈� + 𝐶(𝑠, �̇�)�̇� + 𝑔(𝑠) + 𝛷𝑠
𝑇(𝑠)𝜆 + 𝑑(𝑠, �̇�)] = 𝑅𝑇 [

𝜏𝑎

𝜏𝑧
] 

= [𝐸 [𝛷𝑧
−1𝛷𝑎(𝑠)]𝑇] [

𝜏𝑎

𝜏𝑧
] 

= 𝜏𝑎 − [𝛷𝑧
−1𝛷𝑎(𝑠)]𝑇𝜏𝑧   

(9) 

 

where a  is the vector of the driving forces/torques in active joints and 𝜏𝑧 is the vector of the forces/torques in 

passive joints. Making use of in (8) and assuming that 𝜏𝑧 = 0, the driving torques can be deduced from (9) as,  
 

𝜏𝑎 = 𝑅𝑇[𝑀(𝑠)�̈� + 𝐶(𝑠, �̇�)�̇� + 𝑔(𝑠) + 𝑑(𝑠, �̇�)]     (10) 
 
 

3. ADAPTIVE RBF NEURAL NETWORK CONTROL BASED ON INVERSE DYNAMICS FOR 

PARALLEL ROBOTS 

3.1.   Transformation of motion equations 

To study the stability of the control algorithms, the motion equations of parallel robots are transformed into 

a suitable form. Let us consider a scleronomic constrained multibody system. From the constrained in (2) we get; 
 

( ) ( , ) ,   
a a a z

f s f q z 0 f q z 0      (11) 

 

Assuming that the Jacobian matrix 𝛷𝑧 is nonsingular, det (𝛷𝑧) 0 . From (11) one may obtain, 
 

�̇� = −𝛷𝑧
−1𝛷𝑎�̇�𝑎         (12) 

 

It is noted that,  
 

𝑞𝑎 = 𝐸𝑞𝑎          (13) 
 

Combining (12) with (13) yields the following differential equation: 
 

�̇� = 𝑅(𝑠)�̇�𝑎         (14) 
 

Differentiating in (14) with respect to time gives the acceleration relation as; 
 

�̈� = 𝑅(𝑠)�̈�𝑎 + �̇�(𝑠, �̇�)�̇�𝑎 = 𝑅(𝑠)�̈�𝑎 +
𝜕𝑅(𝑠)

𝜕𝑠
(𝐸𝑝 ⊗ �̇�)�̇�𝑎    (15) 

 

Substituting in (14) and (15) into to (9) yields; 
 

( )
( ) ( ( ) ( ) ) ( ) + ( , ),

a p a a a

T s
s s q E s q s q d s s

s

R
R M s R C s s R g s  (16) 

 

To simplify the description, we define; 
 

�̄�(𝑠) ≔ 𝑅𝑇(𝑠)𝑀(𝑠)𝑅(𝑠)�̄�(𝑠, �̇�) 

≔ 𝑅𝑇(𝑠) [𝑀(𝑠)
𝜕𝑅(𝑠)

𝜕𝑠
(𝐸𝑝 ⊗ �̇�) + 𝐶(𝑠, �̇�)𝑅(𝑠)] �̄�(𝑠): 

= 𝑅𝑇(𝑠)𝑔(𝑠) �̄�(𝑠, �̇�): = 𝑅𝑇(𝑠)𝑑(𝑠, �̇�) 

(17) 

 

In (9) and (11) now can be rewritten as follows; 
 

�̄�(𝑠)�̈�𝑎 + �̄�(𝑠, �̇�)�̇�𝑎 + �̄�(𝑠) + �̄�(𝑠, �̇�) = 𝜏𝑎      (18) 

 

𝑓(𝑠) = 0         (19) 
 

The motion equations of parallel robots (18) and (19) are called the motion equations in mixture form. 

Where s  is the vector of redundant generalized coordinates and 𝑞𝑎 is the vector of independent coordinates. 
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We will use this equation as the basis for designing the controller for parallel robots. For this purpose, we prove 

the following properties [33]: 

− �̄� is a symmetric positive definite matrix: �̄�𝑇 = �̄�,  

− �̇̄� − 2�̄� is a skew-symmetric matrix: (�̇̄� − 2�̄�)𝑇 = −(�̇̄� − 2�̄�). 

Due to the symmetry of the matrixM is symmetric, one has; 
 

�̄�𝑇(𝑠) = [𝑅𝑇(𝑠)𝑀(𝑠)𝑅(𝑠)]𝑇 = 𝑅𝑇(𝑠)𝑀(𝑠)𝑅(𝑠) = �̄�(𝑠)  
 

Since 𝑀(𝑠) is positive definite, �̄�(𝑠) is also a positive definite matrix. Using the (17), one obtains;  
 

�̇̄�(𝑠) − 2�̄�(𝑠, �̇�) = �̇�𝑇𝑀𝑅 + 𝑅𝑇�̇�𝑅 + 𝑅𝑇𝑀�̇� − 2𝑅𝑇(𝑀�̇� + 𝐶𝑅) 

= �̇�𝑇𝑀𝑅 + 𝑅𝑇�̇�𝑅 − 𝑅𝑇𝑀�̇� − 2𝑅𝑇𝐶𝑅 

= 𝑅𝑇(�̇� − 2𝐶)𝑅 − 𝑅𝑇𝑀�̇� + �̇�𝑇𝑀𝑅      (20) 
 

Since �̇� − 2𝐶 is skew-symmetric [8], from in (20) one has; 
 

[�̇̄�(𝑠) − 2�̄�(𝑠, �̇�)]
𝑇

= [𝑅𝑇(�̇� − 2𝐶)𝑅]
𝑇

− (𝑅𝑇𝑀�̇�)𝑇 + (�̇�𝑇𝑀𝑅)𝑇  

= −𝑅𝑇(�̇� − 2𝐶)𝑅 − �̇�𝑇𝑀𝑅 + 𝑅𝑇𝑀�̇� = −[�̇̄�(𝑠) − 2�̄�(𝑠, �̇�)]   (21) 
 

Thus, �̇̄�(𝑠) − 2�̄�(𝑠, �̇�) is a skew symmetric matrix.  
 

3.2.  RBF neural network control law and stability analysis 

In practice, the perfect robot model could be difficult to obtain, and external disturbances are always 

present in practice. The uncertain motion equations of parallel robots with 
a
n f active joints (18) can be 

described in the following form; 
 

�̂�(𝑠)�̈�𝑎 + �̂�(𝑠, �̇�)�̇�𝑎 + �̂�(𝑠) + �̂�(𝑠, �̇�) = 𝜏𝑎       (22) 
 

where �̂�(𝑠) is an f f  inertia matix, �̂�(𝑠, �̇�) is an f f  matrix containing the centrifugal and Coriolis terms,

(̂ )g s is an 1f vector containing gravitational forces and torques, s  is the vector of generalized coordinates, 

a
q  is active joint coordinates, and d̂  denotes disturbances. It is supposed that, 

 

�̂�(𝑠) = �̄�(𝑠) + 𝛥�̄�(𝑠)  
 

�̂�(𝑠, �̇�) = �̄�(𝑠, �̇�) + 𝛥�̄�(𝑠, �̇�)       (23) 
 

�̂�(𝑠) = �̄�(𝑠) + 𝛥�̄�(𝑠)  
 

�̂�(𝑠, �̇�) = �̄�(𝑠, �̇�) + 𝛥�̄�(𝑠, �̇�)  
 

where ,   ,    ,M C g d  are the prior-known components and ,   ,   ,  M C g d  are modeling errors of 

ˆ ˆ ˆ,   ,   M C g and d̂ respectively. Assume that the modeling errors are bounded by some finite constants as; 

 

0 0 0 0
  ,     ,      d,m c gM C g d      (24) 

 

where 
0 0 0 0
,   ,   ,m g dc  are known constants. Substituting in (23) into to (22) yields. 

 

(�̄� + 𝛥�̄�)�̈�𝑎 + (�̄� + 𝛥�̄�)�̇�𝑎 + �̄� + 𝛥�̄� + �̄� + 𝛥�̄� = 𝜏𝑎    (25) 
 

From (25) one has; 
 

�̄�(𝑠)�̈�𝑎 + �̄�(𝑠, �̇�)�̇�𝑎 + �̄�(𝑠) + �̄�(𝑠, �̇�) + ℎ̄(𝑠, �̇�) = 𝜏𝑎     (26) 
 

where ℎ̄(𝑠, �̇�) is the sum of unknown terms of the dynamic system. 
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ℎ̄(𝑠, �̇�) = 𝛥�̄��̈�𝑎 + 𝛥�̄��̇�𝑎 + 𝛥�̄� + 𝛥�̄�      (27) 
 

Assume that‖ℎ̄(𝑠, �̇�)‖ ≤ ℎ0. The sliding mode function is selected as;  

 

𝑛(𝑡) = �̇�𝑎(𝑡) + 𝛬𝑒𝑎(𝑡)        (28) 
 

where  is the positive diagonal matrix. 
 

1 2 na i
diag , , ,  ,     0 ;    1,2, ,

a
i n     (29) 

 

In (28) we define, 
 

 d

a a a
t t te q q         (30) 

 

where 𝑞𝑎
𝑑(𝑡) is the vector of desired trajectory and 𝑞𝑎(𝑡) is the vector of real trajectory. The function ℎ̄(𝑠, �̇�) 

can be rewritten as:  
 

ℎ̄(𝑛): = ℎ̄(𝑠, �̇�)          (31) 
 

The function ℎ̄(𝑛) is the main reason for the degradation of the control quality. If this effect is compensated, 

the control accuracy can then be improved. According to Stone-Weierstrass theorem [23-24] one can choose 

an appropriate artifical neural network (ANN) with a limited number of neurals that can approximate an 

unknown nonlinear function with a given accuracy. For approximating function ℎ̄(𝑛)we choose the following 

simple structure ANN:   
 

ℎ̄(𝑛) = 𝑊𝑠 + 𝑒 = ℎ̂(𝑛) + 𝑒        (32) 
 

where 𝑊 is the 𝑛𝑎 × 𝑛𝑎 matrix, ℎ̂(𝑛) = [ℎ̂1, ℎ̂2, . . ,  ℎ̂𝑛𝑎]
𝑇

= 𝑊𝑠 is the approximation of ℎ̄(𝑛), 𝑒 is  

the approximation error. If ‖ℎ̄(𝑛)‖ ≤ ℎ0, we have ‖𝑒‖ ≤ 𝜀0. Assuming that the matrix 𝑊 has 𝑛𝑎 column 

vectors 𝑤𝑖 , we have; 
 

ℎ̂ = [ℎ̂1, ℎ̂2, . . ,  ℎ̂𝑛𝑎]
𝑇

= 𝑊𝜎 = ∑𝑛𝑎
𝑖=1 𝜎𝑖𝑤𝑖      (33) 

 

In this paper, the radial basis function (RBF) neural network was used as shown in Figure 1. This structure has 

been proved to satisfy the Stone-Weierstrass theorem [23]. If we choose the Gaussian activation function 𝜎𝑖 

according to the formula, 
 

𝜎𝑖 = 𝑒𝑥𝑝 [−
‖𝒗−𝒄𝑖‖2

𝜒𝑖
2 ]          (34) 

 

where the vector 𝑐𝑖 represents the coordinate value of the center  point of the Gaussian function of neural net 𝑖, 

and 𝜒𝑖  is derivation parameter which is freely choosen, the function approximation ĥ  has the following form; 
 

1

 ˆ  ,   1..,
a

j

n

i j a
j

i
h i nw        (35) 

 

where 𝑤𝑗𝑖  are  the weights to be updated of the approximating neural network. 
 
 

 
 

Figure 1. RBF neural network structure 

 
1
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The control problem is now to find the control torque u and learning algorithm of 𝑤𝑗𝑖  of the neural 

network so that 𝑛 → 0 and position errors 𝑒 → 0,  granting 𝑞𝑎(𝑡) → 𝑞𝑎
𝑑(𝑡).  

Theorem: The trajectory 𝑞𝑎(𝑡) of dynamic system defined by (3.34) with RFB neural network 

according to (3.60), (3.62), and the sliding surface (3.40) will track the desired trajectory 𝑞𝑎
𝑑(𝑡) with error 

𝑒(𝑡) = 𝑞𝑎(𝑡) − 𝑞𝑎
𝑑(𝑡) → 0 if the control law u  the learning algorithm 

i
w  are chosen as follows; 

 

𝑢 = �̄�(𝑠)�̈�𝑎
𝑑 + �̄�(𝑠, �̇�)�̇�𝑎

𝑑 + �̄� + �̄� − �̄�(𝑠)𝛬�̇�𝑎 − �̄�(𝑠, �̇�)𝛬𝑒𝑎 − 𝐾𝑛 − 𝛾
𝑛

‖𝑛‖
+ (1 + 𝜂)𝑊𝑠  (36) 

 

�̇�𝑖 = −𝜂𝜎𝑖𝑛         (37) 

 

where 𝐾 is a 𝑛𝑎 × 𝑛𝑎 symmetric positive matrix, and 𝜂 > 0, 𝛾 > 0. Noting that the states 𝑞𝑎 , �̇�𝑎 in the control 

law (36) are measured.  

Proof: This theorem can be proved using the Lyapunov direct method. We choose the Lyapunov 

function as;  

 

𝑉(𝑡) =
1

2
[𝑛𝑇�̄�𝑛 + ∑𝑛𝑎

𝑖=1 𝑤𝑖
𝑇𝑤𝑖]        (38) 

 

Since �̄�(𝑠) is symmetric and positive definite 𝑉(𝑡) > 0 for  𝑛 ≠ 0, 𝑤𝑖 ≠ 0 and  𝑉(𝑡) = 0 if and only if 

𝑛 = 0, 𝑤𝑖 = 0. 

The derivative of the function 𝑉(𝑡) is, 

 

�̇�(𝑡) = 𝑛𝑇�̄��̇� +
1

2
𝑛𝑇�̇̄�𝑛 + ∑𝑛𝑎

𝑖=1 𝑤𝑖
𝑇�̇�𝑖       (39) 

 

Using the skew-symmetry of the matrix �̄�(𝑠) − 2�̄�(𝑠, �̇�), we have 

 

𝑛𝑇 (�̇̄� − 2�̄�) 𝑛 = 0 → 𝑛𝑇�̇̄�𝑛 = 2𝑛𝑇�̄�𝑛       (40) 

 

Substituting (40) into (39) gives:  

 

�̇�(𝑡) = 𝑛𝑇(�̄��̇� + �̄�𝑛) + ∑𝑛𝑎
𝑖=1 𝑤𝑖

𝑇�̇�𝑖       (41) 

 

If we choose 
a

u , from (38) and (26) one has, 

 

�̄��̇� + �̄�𝑛 = − [𝐾𝑛 + 𝛾
𝑛

‖𝑛‖
− (1 + 𝜂)𝑊𝑠 + ℎ̄(𝑛)]     (42) 

 

Substituting in (42) into to (41) yields,  

 

�̇�(𝑡) = 𝑛𝑇 [−𝐾𝑛 − 𝛾
𝑛

||𝑛||
+ 𝜂𝑊𝜎 − 𝑒] + ∑𝑛𝑎

𝑖=1 𝑤𝑖
𝑇�̇�𝑖     (43) 

 

Using the learning algorithm (37), the last term in (43) has the following form,  
 

∑𝑛𝑎
𝑖=1 𝑤𝑖

𝑇�̇�𝑖 = −𝜂 ∑𝑛𝑎
𝑖=1 𝑤𝑖

𝑇𝑛𝜎𝑖 = −𝜂𝑛𝑇𝑤𝑠      (44) 
 

Substituting (44) into to (43) yields,  
 

�̇�(𝑡) = −𝑛𝑇𝐾𝑛 − 𝛾
𝑛𝑇𝑛

‖𝑛‖
− 𝑛𝑇𝑒       (45) 

 

If we select
0
, and 0 , one obtains: �̇�(𝑡) = −𝑛𝑇𝐾𝑛 − 𝛿‖𝑛‖ − (𝜀0‖𝑛‖ + 𝑛𝑇𝑒) (46) 

 

Since ‖𝑒‖ < 𝜀0, �̇�(𝑡) < 0 for all 𝑛 ≠ 0, and �̇�(𝑡) = 0 if and only if 𝑛 = 0. It follows from Lyapunov’s theory 

that the system is asymptotically stable, or 𝑛 → 0 as 𝑡 → ∞, therefore, 
 

t d

a a a
t te q q 0        (47) 
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4. SIMULATION EXAMPLE 

From the RBF neural network control law presented in the above section, the resulting block scheme 

is illustrated in the Figure 2. For the use of the control lawu based on (36) and (37), actual signals 𝑞𝑎 , �̇�𝑎 , �̈�𝑎 

are assumed to be known. Therefore, one can obtain actual values of generalized coordinates, velocities and 

accelerations 𝑠, �̇�, �̈�. The numerical simulation may be a possible way to suggest an alternative choice for actual 

values of generalized coordinates, velocities and accelerations. Considering the dynamic equations of parallel 

robot manipulator as; 
 

𝑀(𝑠)�̈� + 𝐶(𝑠, �̇�)�̇� + 𝑔(𝑠) + 𝛷𝑠
𝑇(𝑠)𝜆 + 𝑑(𝑠, �̇�) = 𝜏     (48) 

 

𝑓(𝑠) = 0         (49) 
 

where, 
 

𝜏 = 𝜏(𝑡, 𝑠, �̇�, 𝑠𝑑 , �̇�𝑑) = [𝑢𝑇 , 0𝑇]𝑇       (50) 
 

Differentiating in (49) with respect to time gives, 
 

𝑓̇(𝑠) =
𝜕𝑓

𝜕𝑠
�̇� = 𝛷𝑠 �̇� = 0        (51) 

 

𝑓̈(𝑠, �̇�) = 𝛷𝑠 �̈� + �̇�𝑠�̇� = 0        (52) 
 

where [45, 46]:  
 

�̇�𝑠(𝑠) =
𝜕𝛷

𝜕𝑠
(𝐸𝑛 ⊗ �̇�)        (53) 

 

Define,  
 

𝑝1(𝑠, �̇�, 𝑠𝑑 , �̇�𝑑 , 𝑡) = 𝜏 − 𝐶(𝑠, �̇�)�̇� − 𝑔(𝑠) − 𝑑(𝑠, �̇�)     (54) 
 

𝑝2(𝑠, �̇�, 𝑡) = −�̇�𝑠(𝑠)�̇� = − [
𝜕𝛷𝑠

𝜕𝑠
(𝐸𝑛 ⊗ �̇�)] �̇�      (55) 

 

In (48) and (52) now can be written in the following form,  
 

𝑀(𝑠)�̈� + 𝛷𝑠
𝑇(𝑠)𝜆 = 𝑝1(𝑠, �̇�, 𝑠𝑑 , �̇�𝑑 , 𝑡)      (56) 

 

𝛷𝑠(𝑠)�̈� = 𝑝2(𝑠, �̇�, 𝑡)        (57) 
 

Left multiplication of (56) with the matrix 𝑅𝑇yields,  
 

𝑅𝑇(𝑠)𝑀(𝑠)�̈� + 𝑅𝑇(𝑠)𝛷𝑠
𝑇(𝑠)𝜆 = 𝑅𝑇(𝑠)𝑝1(𝑠, �̇�, 𝑡)     (58) 

 

According to (8), (58) becomes:  
 

𝑅𝑇(𝑠)𝑀(𝑠)�̈� = 𝑅𝑇(𝑠)𝑝1(𝑠, �̇�, 𝑠𝑑 , �̇�𝑑 , 𝑡)      (59) 
 

In (59) is a system of f  second-order differential equations. Combining in (59) with (57) yields,  

 

[
𝑅𝑇(𝑠)𝑀(𝑠)

𝛷𝑠(𝑠)
] �̈� = [

𝑅𝑇(𝑠)𝑝1

𝑝2
]       (60) 

 

If the matrix,  
 

𝐴(𝑠) = [
𝑅𝑇(𝑠)𝑀(𝑠)

𝛷𝑠(𝑠)
]        (61) 

 

is nonsigular, from (60) one obtains the following diferential equation system,  
 

�̈� = �̈�(𝑠, �̇�, 𝑠𝑑 , �̇�𝑑 , 𝑡)         (62) 
 

Then, solving the (62) we find 𝑠, �̇� [48]. Therefore we can calculate control law according to (36).  
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Figure 2. Block scheme of joint space control 
 

 

A 3-RRR spatial parallel robot manipulator shown in Figure 3 is utilized in this study to verify  

the effectiveness of the proposed control scheme. The mechanical model for the 3-RRR delta robot manipulator 

is a system of rigid bodies connected by joints as Figure 4. The parallelogram mechanisms that connect the 

driving links to the mobile platform are modeled as homogeneous rods with universal and spherical joints at 

two ends. From Figures 4 and 5 it is followed that the configuration of the 3-RRR delta spatial parallel robot 

manipulator is represented by a vector of generalized coordinates as: 
 

1 2 3 1 2 3
     ,   

T

P P P
x y zs  

 

The differential-algebraic equations of the system are given in the Appendix. The kinematic and dynamic 

parameters of the robot manipulator are given in the Table 1. In the simulation, the center of the moving 

platform will be controlled to track the given trajectory defined by,  
 

0.3cos 2 ;  0.3sin 2 ;  0.7 ( )
P P P
x t y t z m  

 

The parameters of the neural network control law are chosen as follows,  
 

1 2 3 1 2 3

80,80,80 ;  (80,80,80);  1.1;  200;

1; 2; 3;  0.01; 0.02; 0.03;

diag diag

c c c

K L
 

 
 

 
 

Figure 3. Delta robot with three parallelogram mechanisms 
 

 

  

 

Figure 4. Model of 3-RRR Delta robot 

 

Figure 5. Position of the 
i i
BD  rod in the space 

 

Inverse 
kinematics 

Control law Parallel 
robot 

( ), (t)d dts s  ( ), (t)ts s  ( )tu  ( )d tx  
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Table 1. The parameters of the Delta robot in Figure 3 

𝐿1 𝐿2 𝑅 𝑟 r  𝛼1 1
 𝛼2 𝛼3 𝑚1 1

m  𝑚2 2
m  𝑚𝑃  

0.3 (𝑚) 0.8 (𝑚) 0.266 (𝑚) 0.04 (𝑚) 0 (𝑟𝑎𝑑) 
2𝜋

3
(𝑟𝑎𝑑) 

4𝜋

3
(𝑟𝑎𝑑) 0.42 (𝑘𝑔) 2 ⋅ 0.2 (𝑘𝑔) 0.75 (𝑘𝑔) 

 

 

In this paper the modeling errors are chosen to be 20% of the prior-known values of the nominal 

model as, 
 

𝛥𝑀(𝑠) = 20%𝑀(𝑠); 𝛥𝐶(𝑠, �̇�) = 20%𝐶(𝑠, �̇�); 𝛥𝑔(𝑠) = 20%𝑔(𝑠)  
 

The disturbance vector is chosen as 
1 1 6 6
sin20   cos20 ...  sin20   cos20

T

t t t td . Some simulation 

results are given in the Figures from 6 to 9. The position errors of the moving platform are shown in  

Figures 6 and 7. The control torques are shown in Figures 8 and 9. The stationary errors in position of  

the platform are kept about 10-4 mm. 
 

 

 
 

Figure 6. Position errors of the moving platform without the modeling errors and disturbance 
 
 

 
 

Figure 7.  Position errors of the moving platform with the modeling errors and disturbance 
 

 

 
 

Figure 8. Control torques without the modeling errors and disturbance 
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Figure 9. Control torques with the modeling errors and disturbance 
 

 

5. CONCLUSIONS 

Many modern methods for control of robot manipulators based on the Lagrangian multipliers have been 

developed. In contrast to the rapid progress in control theory of treelike robot manipulators, the development of  

the modern control theory for parallel robot manipulators is still limited.  This paper presented the application of  

the RBF neural network control law to compensate uncertainties in the parallel robot manipulators. The new matrix 

form of Lagrangian equations with multipliers for constrained multibody systems was used to derive dynamic 

equations of spatial parallel robot manipulators based on computer software packages. Using adaptive RBF neural 

network control method, the controller for spatial robot manipulators based on inverse dynamics was developed.  

The stability of the control law using adaptive RBF neural network method for the control problem of spatial robot 

manipulators based on inverse dynamics was proven. Using Simulink program, the numerical simulation of  

the adaptive RBF neural network controller for a 3-PRR spatial parallel robot manipulator is studied. The application 

of modern methods for motion control of the constrained spatial multibody systems and spatial parallel robot 

manipulators will be presented in other works. 
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