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 The unbalanced mode, negative/zero sequence, variation of real power are 

caused by the nonlinear or unbalanced loads increase the power transmission 
losses in distributing power systems and also harmful to the electric devices. 

Reactive power compensation is considered as the common methods for 

overcoming asymmetry. The critical issue in reactive power compensation is 

the optimal calculation of compensation values that is extremely difficult in 

complex circuits. We proposed a novel approach to overcome these difficulties 

by providing the creation of new analytical connections of the steady-state 

mode parameters (voltages, currents) depends on the controlled parameter for 

the arbitrary circuits. The base of our approach to reactive power compensation 
is the fractional-polynomial functions. We present a new description of  

the behavior of voltages and currents depending on the controlled parameters 

of the reactive power compensation devices, and we prove its effectiveness. 
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1. INTRODUCTION 

The increase in the use of nonlinear devices and the unbalance of consumption, in general, are  

the causes of asymmetric operating modes in the power supply system. These devices cause damage to  

the system, electrical equipment, and energy losse. Consequently, overcoming asymmetry, which can be 

accomplished with many methods, always occupies an important place in the study of it. There are several 

general and popular methods such as redistribution of loads at phases, the use of reactive power generators or 

special transformers, the use of equipment static reactive power (FACTS [1-10]. One of the most important 

issues of these methods is the optimal calculation of compensating values. And in general, this calculation is 

infinitely complex. It can be lead to the limitation of describing the relationship between steady-state mode 

parameters and the regulable parameters of the compensators. In this paper, we propose a novel approach to 

overcome that difficulty for methods using static compensation devices and it could also be extended to  

https://creativecommons.org/licenses/by-sa/4.0/
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the methods by which it uses the Synchronous generators. Because, in principle, synchronous compensation 

generators can generate or absorb reactive power and within a certain limit, it can be converted to the equivalent 

of static-compensating devices [11]. 

This problem can be solve by providing a link between the parameters of the steady-state mode and 

the control parameters of the compensator. The relationship is described by the fractional-polynomial function, 

which describes the variation of voltages and currents according to regulable parameters [12-21]. In Section II, 

we will present the problem that is the answer to how to get the function, as mentioned earlier, along with  

the comparison of its precision through an example. In Section III, we will present some results that have been 

made for optimizing the electrical system of a glass factory that operates in the asymmetric mode. 

 

 

2. FRACTIONAL-POLYNOMIAL FUNCTIONS 

2.1.   Node voltages method 

We consider a three-phase circuit consisting of (n+1) nodes and m (n+1 < m) so we have the matrix 

 

  1 2  m 

 =A  

1 11a  12a  … 1ma  

2 21a  22a  … 2ma  

… … … … … 

n 1na  2na  … nma  

 

where 1;  1 ;  1 ;ija i n j m= =  =    

node; 1ija = − – enters; 0ija =  

Vector of the conductance of the branches is 

( )1 2  diag ,  , mY Y Y= Y  

Vectors current and electromotive force sources are give as 

( )1 2  ,  , .
t

mJ J J= J  

( )1 2  ,  , .
t

mE E E= E  

The node voltage equations are formulated as in [4, 5] 

 

( )0  t = − +AYA U J YE         (1) 

 

where ( )0 1 2,  ,
t

nU U U= U – vector of the node voltages. 

Here 
t =AYA B  is the matrix of the aggregate conductance, then the vector equivalent current sources 

+ =J YE C  can be rewritten as the following 

 

  1 … i … n 

B =  

1 1,1B  … 1,iB  … 1,nB  

… … … … … … 

i ,1iB  … ,i iB  … ,i nB  

… … … … … … 

 n ,1nB  … ,n iB  … ,n nB  

 

and ( )1  ,  , , ,
t

i nC C C=  C  

where ,  ,  1i j k n=   

(1) becomes 0  =BU C  

The node voltages can be formulated as 

det

det

i

iU =
B

B
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The matrix determinants of B  and iB  are defined as follows 

0 1 2 3 4 5 6 7det a a x a y a z a xy a xz a yz a xyz= + + + + + + +B
0 1 2 3 4 5 6 7det i i i i i i i i ib b x b y b z b xy b xz b yz b xyz= + + + + + + +B . 

Take these two equations divided by 0a  and denoted by
0/ ; 1 7p pa a p= =  and 

,  0 , / ; 0 7q i q ib a c q= =  , 

we got: 

 

0 1 2 3 4 5 6 7

1 2 3 4 5 6 7

det

det 1

i i i i i i i i i

i

c c x c y c z c xy c xz c yz c xyz
U

x y z xy xz yz xyz      

+ + + + + + +
= ==

+ + + + + + +

B

B
   (2) 

 

where, coefficients 0 7c c  và 1 7   are complex numbers; x, y, and z are real numbers; 1i n=  . 

The current flow in that branch from k to j is equal to: 

 

( ) .i k j i iI U U E Y= − +         (3) 

 

the currents in the general for all branches are as follows: 

 

0 1 2 3 4 5 6 7

1 2 3 4 5 6 71

i i i i i i i i

i

d d x d y d z d xy d xz d yz d xyz
I

x y z xy xz yz xyz      

+ + + + + + +
=

+ + + + + + +
    (4) 

 

it can be seen that in (3), the component in parentheses is in the form of (2), which is the voltage on  

the consumption load of the i-th branch. We label 
, k j i br iU U E U− + = . 

In the calculation of all the currents in the branches of the circuit in (3)we obtained the properties that 

will be used later for finding the coefficients of the functions (2) and (4), as follows: If x (Ohm) is connected 

in parallel with i-th branch, and we label ( )1/ 1 /i i iY Y jx jY x jx= + = + , where 2 1j = − ; iY  – complex 

conductance of i-th branch. then, 
, br iU  as follows: 

 

( )0 1 2 3

, 

1 2 3 4 5 6 7

 
1

,
1

i i i i

i

br i

jx
e e y e z e yz

jY x
U

x y z xy xz yz xyz      

+ + +
+

=
+ + + + + + +

 

 

and therefore: 

 

( )0 1 2 3

 

1 2 3 4 5 6 7

 

1

i i i i

i

e e x e z e xz
I

x y z xy xz yz xyz      

+ + +
=

+ + + + + + +
     (5) 

 

similarly, if y (or z) (Ohm) is connected in parallel with i-th branch. 

 

( )0 1 2 3

 

1 2 3 4 5 6 7

 

1

i i i i

i

e e x e y e xy
I

x y z xy xz yz xyz      

+ + +
=

+ + + + + + +
     (6) 

  

or 

( )0 1 2 3

 

1 2 3 4 5 6 7

 

1

i i i i

i

e e y e z e yz
I

x y z xy xz yz xyz      

+ + +
=

+ + + + + + +
     (7) 

 

If x (y or z) (Ohm) is connected in serial with i-th branch, and we label ( )1/ 1 /  i i iY Y jx jx Y= + = + , 

then, , br iU  as follows:  

 

( )0 2 3 6

, 

1 2 3 4 5 6 7

 
1

,
1

i i i i

br i

jx
f f y f z f yz

jx
U

x y z xy xz yz xyz      

+ + +
+

=
+ + + + + + +
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and 

 

( )0 2 3 6

 

1 2 3 4 5 6 7

 

1

i i i i

i

f f y f z f yz
I

x y z xy xz yz xyz      

+ + +
=

+ + + + + + +
     (8) 

 

( )0 2 3 6

 

1 2 3 4 5 6 7

 

1

i i i i

i

f f x f z f xz
I

x y z xy xz yz xyz      

+ + +
=

+ + + + + + +
     (9) 

 

( )0 2 3 6

 

1 2 3 4 5 6 7

 

1

i i i i

i

f f x f y f xy
I

x y z xy xz yz xyz      

+ + +
=

+ + + + + + +
     (10) 

 

to find all the coefficients of functions (2) and (4), first, we need to solve a linear algebraic system of 15 

equations and then solve the equation systems of 8 equations. However, by analyzing the current flow in  

the branch with the compensating devices, the number of equations of the systems decreasing, respectively,  

is 11 and 8. 

 

2.2.  Mesh current method 

When we analyzed a similar circuit by the mesh currents method [11-15]: 

 

( ) t

l l s = +A ZA I ZJ E  

or 

 l s l=B I C  

 

where, lA  – matrix of mesh currents method, its size ( ( )1 )m n m− + ; Z  – diagonal matrix of the resistors of 

the branches;   s = +I I J  – vector total electric currents of the branches; t

l l l=A ZA B ; l+ =ZJ E C . 

The current of the i-th mesh ( )( )1 1i m n=  − +  is as follows: 

 

0 1 2 3 4 5 6 7

1 2 3 4 5 6 7

det  

det 1

l i i i i i i i i i

si

l

g g x g y g z g xy g xz g yz g xyz
I

x y z xy xz yz xyz      

+ + + + + + +
= =

+ + + + + + +

B

B
   (11) 

 

where coefficients 7g g  are complex numbers. 1 7   in this case, has the same value as the coefficients 

1 7  , it means: 0 1 2 3 4 5 6 7

1 2 3 4 5 6 71

i i i i i i i i

si

d d x d y d z d xy d xz d yz d xyz
I

x y z xy xz yz xyz      

+ + + + + + +
==

+ + + + + + +
. The current flows in j-th 

branch ( )  1j m=   can be found by some simple calculations and transformations from vector sI :  

 

0 1 2 3 4 5 6 7

1 2 3 4 5 6 71

j j j j j j j i

j

e e x e y e z e xy e xz e yz e xyz
I

x y z xy xz yz xyz      

+ + + + + + +
=

+ + + + + + +
    (12) 

 

by analyzing similar in the previous section, we also get the same results as (5-10). 

 

2.3.  Other circuit analysis methods 

Similar results were also obtained using the method of loop currents, equivalent transformations of 

the circuit [11-15]. 

 

2.4.  Other cases of fractional-polynomial functions 

By analyzing the circuit as in section, A, when only one and two compensation devices were used,  

we got: 
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0 1

1

0 1

1

1

1

i i

i

i i

i

a a x
U

x

b b x
I

x






+ =

 +

 +

=
+

 

(13) 

 

and  

 

0 1 2 3

1 2 3

0 1 2 3

1 2 3

1

1

i i i i

i

i i i i

i

a a x a y a xy
U

x y xy

b b x b y b xy
I

x y xy

  

  


+ + + =

 + + +

 + + +

=
+ + +

 

(14) 

 

coefficients 0 3a a ; 1 3   are complex numbers. 

These results can also be derived from (2) and (4). Assuming that, we disconnect the compensator  

(z-Ohm) out of the circuit, which was in parallel, it means z → ∞, then, 

 

( )

( )

0 1 2 3 4 5 6 7

1 2 3 4 5 6 7

0 1 2 4
3 5 6 7

1 2 4
3 5 6 7

1

   
1

i i i i i i i i

i

i i i i
i i i i

c c x c y c z c xy c xz c yz c xyz

jz
U

x y z xy xz yz xyz

jz

c c x c y c xy
j c c x c y c xy

jz

x y xy
j x y xy

jz

      

  
   

+ + + + + + +

=
+ + + + + + +

+ + +
− + + +

=
+ + +

− + + +

 

 

3 5 6 7

3 5 6 7

i i i i

i

c c x c y c xy
U

x y xy   

+ + +
=

+ + +
 

 

because 

 

0 1 2 4 1 2 41
0;  0i i i ic c x c y c xy x y xy

jz jz

  + + + + + +
= =  

 

if we continue to disconnect the compensator out of the circuit (y-Ohm), which connected in parallel, it means 

y → ∞, then, 

 

( )

( )

3 5 6 7 3 5
6 7

6 7

3 5 6 7 3 5 6 7
6 7

i i i i i i
i i

i i

i

c c x c y c xy c c x
j c c x

c c xjy jy
U

x y xy x x
j x

jy jy

       
 

+ + + +
− +

+
= = =

+ + + + +
− +

 

 

the same for the currents and in the case of compensators are connected in series. Thus, in this section, we 

show how we got the fractional-polynomial functions [22-27]. 

 

 

3. NUMERICAL RESULTS AND DISCUSSION 

3.1.  Testing 

Next, we compare the difference between the results of the calculation of the current and voltage by 

the proposed function and by the usual solution. For the circuit described in Figure 1 (in the case of two 

compensation devices are connected in series). Note that Values x 1 and x 2 can be negative (capacitive) or 

positive (inductive). Load 1 and load 2 in the general case can be in a triangular connection or star (with/without 
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neutral wire). To find all the coefficients of functions (14), first, we need to solve a linear algebraic system  

of 7 equations and then solve the equation systems of 4 equations. However, if the argument is the same as to 

get the (5-10), the number of equations of the systems decreasing, respectively, is 5 and 4. From there we get 

the functions that describe the dependencies of voltages and currents on the regulable parameters, we labeled 

( ),  1 2,i proposeU x x  and ( ),  1 2,i proposeI x x . To find the current and voltage of the i-th branch at the ( )1 2,x x , just put 

1x  and 2x  in the functions ( ),  1 2,i proposeU x x  and ( ),  1 2,i proposeI x x . 

The correct currents and voltages can be found solving the circuit when given ( )1 2,x x , we labeled 

( ),  1 2,i correctU x x  and ( ),  1 2,i correctI x x . The difference between the two results that were mentioned above as 

shown in Figures 2 and 3. The difference between the two results of the case of one compensation device is 

connected in the serial was shown in Figure 4. In the cases of three compensators are connected in serial or of 

one/two/three or more compensation device(s) is (are) connected in parallel are also tested and generally,  

the difference is tiny, approximately 10-7%. 

 

 

 
 

Figure 1. Modeling of electrical systems 

 

 

  
 

Figure 2. The difference between the currents 

 

Figure 3. The difference between the voltages 

 

 

3.2.  Application 

The proposed fractional-polynomial function has been applied to optimizing the electrical system of 

the glass factory operating in asymmetric mode, which was mentioned in the previous article [15]. In Figure 5 

is one of the results using the proposed function for optimal calculation, in which case we use only two 

compensators. It can be seen that the currents and voltages have been significantly improved compared to 

System

Load 1

Load 2A1 B1 C1

A2

B2

C2

D2

D1

jx2=jωL2 

jx1=jωL1 
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Figure 6. Together with the result shown in Figure 7 and the results mentioned in the previous articles, all use 

the proposed function in the optimization has proved its effectiveness. 

 

 

  
 

Figure 4. The difference between the currents 

 

Figure 5. The difference between the voltages 

 

 

  

 

Figure 6. Before compensation 

 

Figure 7. After compensation 

 

 

4. CONCLUSION 

The main issue of this paper that we would like to emphasize is the finding of  

the fractional-polynomial function that describes the variation of voltage and current according to  

the regulable parameters of the compensators. This proposal can be applied to the optimal computation of 

reactive power compensation systems that use static VAR compensators and the ability of extension for a few 

other exceptional cases. The introduction of a function describing the fundamental quantities of the electrical 

systems (voltage and current) in the dependencies on the value of the compensator in the general case is of 

considerable significance, which makes the calculation more convenient and quicker. 
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