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Abstract 
Developing hotspot prediction models using decision tree algorithms require target classes to 

which objects in a dataset are classified. In modeling hotspots occurrence, target classes are the true class 
representing hotspots occurrence and the false class indicating non hotspots occurrence. This paper 
presents the results of satellite image processing in order to determine the radius of a hotspot such that 
random points are generated outside a hotspot buffer as false alarm data. Clustering and majority filtering 
were performed on the Landsat TM image to extract burn scars in the study area i.e. Rokan Hilir, Riau 
Province Indonesia. Calculation on burn areas and FIRMS MODIS fire/hotspots in 2006 results the radius 
of a hotspot 0.90737 km. Therefore, non-hotspots were randomly generated in areas that are located 
0.90737 km away from a hotspot. Three decision tree algorithms i.e. ID3, C4.5 and extended spatial ID3 
have been applied on a dataset containing 235 objects that have the true class and 326 objects that have 
the false class. The results are decision trees for modeling hotspots occurrence which have the accuracy 
of 49.02% for the ID3 decision tree, 65.24% for the C4.5 decision tree, and 71.66% for the extended 
spatial ID3 decision tree. 
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1. Introduction 

Predictive models for hotspots occurrence are essential to develop so that damages 
caused by forest fires can be minimized.  Nowadays, the large number of forest fire data has 
been triggered the development of data mining systems to analyze influencing factors for forest 
fires and their relations [1-5]. Data mining is a growing area in computer science that is widely 
used to extract interesting and valid information from large data.  One of data mining techniques 
namely classification algorithms have been applied to model hotspots occurrence [6-8]. The 
task of classification aims to discover classification rules on a collection of objects which is 
represented in a relation (a dataset).  The rules determine label classes of any object (Y) from 
the values of its attributes (X).  Decision tree is one of famous methods in creating classification 
models. A decision tree is a model expressing classification rules which has three types of 
nodes i.e. a root node, internal, and leaf nodes. A root node or an internal node contains 
attribute test conditions to separate objects that have different characteristics. Leaf nodes hold 
the target classes (true class and false class) to which objects will be classified. In hotspots 
occurrence modeling, the classes are hotspots occurrence (True class) and non hotspots 
occurrence (False class). The attributes of objects may include some supporting factors for 
hotspots occurrence such as physical, socio-economic, as well as weather data. This study 
applied three decision tree algorithms i.e. ID3, C4.5 and extended spatial ID3 [9] on the forest 
fire dataset to develop models for classification and predicting hotspots occurrence.  

Hotspots data are provided by several institutions such as NASA/University of Maryland 
and The ASEAN Specialised Meteorological Centre (ASMC). In addition to hotspots as true 
alarm data, a classification task in modeling hotspots occurrence requires non-hotspot points as 
false alarm data. This work aims to generate non-hotspot points near hotspots to prepare the 
target classes for modeling hotspots occurrence in Rokan Hilir District in Riau Province 
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Indonesia. Burn area processing for the study area was performed to determine the radius of 
buffer for a hotspot and then outside of the buffer, we generated non-hotspot points. There are 
two main steps in burn area processing i.e. image classification and majority filtering. Image 
classification identifies classes on an image based on its spectral characteristics.  In order to 
improve the accuracy of image classification, majority filtering is applied to remove very small 
areas resulted from the image classification. 

Section 2 discusses materials and methods used in our study. The discussion includes 
the study area and the data utilized in this study.  In addition, two methods in image processing 
are outlined in Section 2 namely classification and majority filtering. In Section 3, we present the 
results of burn area processing to generate false alarm data.  The study is summarized in 
Section 4. 

 
 

2. Materials and Methods 
2.1. Study Area and Data 

The study area is Rokan Hilir district in Riau Province in Indonesia (Figure 1). Rokan 
Hilir spans an area of 8,881.59 km2 [10] or approximately 10% of Riau’s total land area.  The 
site is situated in the area between  100°16' - 101°21' East Longitude and 1°14' - 2°30' North 
Latitude [10].  Rokan Hilir is located in the western part of the north Sumatera, the southern part 
of Bengkalis district and Rokan Hulu district, the eastern of Dumai and the northern part of the 
north Sumatera and Malacca strait. According to [11], in 2002, Rokan Hilir had 454,000 
hectares (ha) of peatlands or about 11.2% of the whole peatlands in Riau Province. 

 

 
Figure 1. Study area 

 
 

The data used in burn area processing are spread and coordinates of FIRMS MODIS 
fire/hotspots in 2006, as well as the Landsat TM image for extracting burn areas (Figure 2) 
(courtesy of the U.S. Geological Survey). The acquisition date of the image is 24 July 2006, the 
resolution of the image is 30×30 m2 and the band combination used is 7, 4, 2. This combination 
is used in the fire management applications for post-fire analysis of burned and non burned 
forested areas. In Figure 2, the areas covered by white lines represent burn areas. 

 
 

     
 

Figure 2. Landsat TM satellite imagery, Band combination 7, 4, 2 
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2.2. Tools for Data Processing 
This work utilized ILWIS for processing the satellite image and Quantum GIS for spatial 

data processing and data visualization. The Integrated Land and Water Information System 
(ILWIS) is open source software for remote sensing and geographical information systems 
developed by the Faculty of Geo-Information Science and Earth Observation, of the University 
of Twente (http://www.ilwis.org/).  Quantum GIS (QGIS) is a free and open source Geographic 
Information System.  Several main features provided by QGIS include visualization, managing, 
editing, analysing spatial data, and composing printable maps (http://www.qgis.org). 

 
2.3. Digital Image Processing 
 Digital image processing refers to a process that is conducted to improve an image.  
The purpose of this process is to assist the extraction of information about objects in a satellite 
image. Images in digital image processing are data acquired by remote sensors on satellite, 
aerial, or ground platforms. The images are available in the digital format with specific spatial, 
radiometric, and spectral characteristics.   

A digital image is represented by a matrix in which each element in the matrix is 
denoted as a pixel (picture element).  A pixel is associated with a Digital Number (DN), as well 
as rows and columns which determine the coordinate of the image.  Reference [12] states that 
Digital Numbers (DNs) represent a discrete measure of the radiance (L) detected by the 
sensors and measured in Watts per square metre per steradian (W·m–2· sr–1).  Actual physical 
measures of the radiation are continuously acquired and then the analogical/digital converters 
will alter these measures into discrete level [12].  In addition to DN values and the coordinate of 
the image, the spectral resolution is another essential characteristic of a satellite image. 
According to [12], the spectral resolution is the wavelength interval (λ) to which the radiance 
represented by its Digital Number refers.  Several images can be available for the same scene 
to compose a multispectral image.  Each image refers the radiance recorded in definite spectral 
ranges [12]. 
 
2.4. Image Classification 

Image classification is a process to recognize classes on an image based on its spectral 
characteristics [12]. Classification tasks can be divided into two groups: unsupervised and 
supervised. In unsupervised classification, pixels in a dataset are clustered based on statistics 
only and the concept of distance (for example, Euclidean), without any user-defined training 
classes. This approach does not require external information for assigning the pixels to the 
different classes. K-Means clustering is the commonly used algorithm in unsupervised 
classification. In supervised classification, a priori knowledge about the classes for a sufficient 
number of pixels (training sets) is needed [12]. The training sets are prepared by an analyst 
based on his/her personal experience, previous knowledge about thematic maps, and in-field 
survey. Pixels in the supervised classification method are divided into two sets namely the 
training set and the test set. The training set is used to determine a classification model. The 
model is then utilized to classify objects in the test set. The successful supervised classification 
depends on the definition of classes to which the pixels should be assigned. Some techniques 
applied in the supervised classification include Neural Network and Support Vector Machines. 
 
2.5. Majority Filtering 

Majority filtering is a post-classification method to improve the accuracy of image 
classification. This method can reduce the “salt-and-paper” resulted from per-pixel classifiers. 
According to [13], the majority filter is determined by identifying a neighborhood structure and a 
threshold value. This method applies a moving window in which the majority class of pixels 
within the window is assigned to the central pixel [14]. The majority class of pixels is the most 
frequently occurring value of a pixel and its neighbors in the window.  A standard majority filter 
which works in a 3×3 environment which considers 9 pixels in the input map (ILWIS (3.5) help 
2008). The predominant value, i.e. mostly frequently occurring value, or class name is assigned 
to the center pixel in the output map.  For example, 9 pixel values encountered in the input map 
is shown in Table 1 [15]. 
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Table 1. Nine pixel values in the input map 
9 3 9 

11 5 7 
7 7 13 

 
 

The predominant value is 7. Therefore, the value for the output pixel is 7. The value or 
class name that is encountered first will be assigned to the center pixel as output if there is no 
predominant value can be found in the 9 pixel values. 

 
2.6. Decision Tree Algorithms 

Decision tree is one of widely used classification methods in data mining. A decision 
tree algorithm generates a tree model to classify objects to their classes based on the 
characteristics of the objects. A decision tree has three types of nodes: 1) a root node, 2) 
internal nodes, and 3) leaves or terminal nodes. The root node and internal nodes hold attribute 
test conditions to partition records that have different characteristics.  Leaves nodes (terminals) 
store class labels of objects. Traversing a decision tree from the root node to the leaves nodes 
results a set of classification rules. The rules are utilized to describe characteristics of objects 
and to predict unknown class labels of objects. 

The ID3 decision tree algorithm was developed by J. Ross Quinlan during the late 
1970s and early 1980s. The algorithm has the principle, where it builds the tree in greedy 
manner starting from the root, and selecting most informative features at each step [16].  In 
order to select the best feature for splitting the set of objects, the algorithm calculates 
information gain. A feature with the highest information gain is selected as a splitting feature. 

The C4.5 decision tree algorithm is a successor of ID3. The C4.5 algorithm uses also 
Information Gain to select optimal splitting attributes. This algorithm uses a different method 
called rule post-pruning.  There are three main tasks in C4.5: 1) generate the tree using the ID3 
algorithm, 2) convert the tree to a set of if-then rules, and 3) prune each rule by removing 
preconditions if the accuracy of the rule increases without it [16]. 

Both ID3 and C4.5 use information gain as a measure for attribute selection. The 
formula of information gain is calculated as follows.  Let pi be the probability that an arbitrary 
tuple in D belongs to class Ci, estimated by |Ci, D|/|D| [17]. The entropy is a measure of expected 
information for classifying a tuple in D. The formula of entropy is as follows [17]: 
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Where pi is the probability that an arbitrary tuple in D belongs to class Ci and is estimated by 
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Information gain is defined as the difference between the original information 

requirement (i.e. based on just the proportion of classes) and the new requirement (i.e., 
obtained after partitioning on A) [17].   
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The extended ID3 algorithm is an improvement of the ID3 algorithm such that the 

algorithm can be directly applied on a spatial dataset containing a set of layers [9]. The 
algorithm uses spatial information gain to select the best layer for splitting the spatial dataset.  
The formula of spatial information gain is defined as follows [9]. Let a target attribute C in a 
target layer S has l distinct classes (i.e. c1, c2, …, cl), entropy for S represents the expected 
information needed to determine the class of tuples in the dataset and defined as: 
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SpatMes(S) represents spatial measure of layer S that can be area of intersection polygons or 
distance between two spatial features. 

Let an explanatory attribute V in an explanatory (non-target) layer L has q distinct 
values (i.e. v1, v2, …, vq).  We partition the objects in target layer S according to the layer L then 
we have a set of layers L(vi, S) for each possible value vi in L. In our work, we assume that the 
layer L covers all areas in the layer S.  The expected entropy value for splitting is given by: 
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The spatial information gain for layer L is given by: 
 

Gain(L) = H(S)  H(S|L)        (6) 
 
Gain(L) denotes how much information would be gained by branching on the layer L.  

The layer L with the highest information gain, (Gain(L)), is chosen as the splitting layer at a node 
N in a spatial decision tree. 

 
 

3. Results and Discussion 
3.1. Clustering and Majority Filtering 

The main purpose of burn area processing is to define the radius of a buffer for a 
hotspot such that random points as non-hotspots will be generated outside the buffer. There are 
two main steps in image processing: clustering, or unsupervised classification, to group pixels 
and majority filtering to remove very small areas.  These two tasks were conducted using the 
tool Ilwis 3.7. To perform clustering and majority filtering, we determined the map subset for 
each band (band 7, 4, 2).  The coordinates used to create a subset of the map are (631478.23, 
166290.54) and (747008.03, 87449.25).  Clustering was applied on the subset of image with the 
number of cluster is 15. Figure 3 shows the result of clustering on the subset of image. 
 
 

 
 

Figure 3. Clustering on the subset of image, number of cluster is 15 
 
 

Furthermore, majority filter to remove very small areas was applied four times in the 
clustered image.  The results are provided in Figure 4. The images resulted from the 1st and the 
2nd majority filtering contain small areas as shown in the rectangular region. The small areas 
were reduced after we applied the 3rd and the 4th majority filtering. The images before and after 
applying majority filter are given in Figure 5. The use of majority filtering four times results the 
smoother image compared to those before applying majority filtering as shown in Figure 5. 
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(a) 1st majority filtering 

 
(b) 2nd majority filtering 

 

 
(c) 3rd majority filtering 

 
(d) 4th majority filtering 

 
Figure 4. Applying majority filtering on the image

 
 

 
(a) Before majority filtering 

 
 
 

(b) After majority filtering 
 

Figure 5. Image before (a) and after (b) applying majority filtering 
 

 
False alarms were generated outside buffers of hotspots as true alarm data using the 

tool Quantum GIS 1.7.2. The buffer operation that is available in Quantum GIS 1.7.2 is applied 
to point features (vector format). Therefore, the image in the raster format (tiff file) resulted from 
majority filtering was converted to the vector format (polygon).  Figure 6 shows polygons only for 
bared lands (cluster 8), burn areas (cluster 13), and new burn areas (cluster 15). 
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Figure 6. Burn areas and bared lands 
 
 

In order to generate non hotspot points, this work involved only new burn areas (cluster 
15). These burn scars were overlaid with hotspots that occurred in two weeks before the 
acquisition date for image (24 July 2006) (Figure 7). There were 298 hotspots in non-peatlands 
and one hotspot in peatlands found in the period 10 – 24 July 2006 in which 243 hotspots 
occurred in the burn scars. 

 

 
Figure 7. New burn areas and hotspots for the period 10 – 24 July 2006  

 
 

To avoid single pixels labeling from the image, we consider only the burn scars with the 
area at least 1 ha that is equivalent to around 3×3 Landsat TM pixels. Therefore, burn scars 
with the area less than 1 ha were removed. This approach is also adopted in the work of [18].  
Table 2 provides the summary of hotspots for the period 10-24 July 2006 in new burn areas at 
least 1 ha where the count of hotspots (associated with burn scars) is 243. 
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Table 2. Density of hotspots and area for one hotspot 

 
Area in km2 

Density (number of hotspot 
per km2) 

Area for one hotspot (Area in km2/count of 
hotspot), in km2 

Max 44.75715 51.54616 11.18929 
Average 9.78013 4.14282 2.58657 
Min 0.01940 0.08937 0.01940 
Sum 557.46733 

 
 
For simplicity, it is assumed that the area for a hotspot is a circle because a buffer of a hotspot 

is represented in a circle.  The radius of the circle is given by /km in hotspot one for area 2  

where  = 3.14159.  As shown in Table 2, the area for one hotspot in average is 2.58657 km2, 
therefore the radius of the circle is 0.90737 km. This value is considered as the radius of a 
buffer for a hotspot.  Outside the buffers, random points are generated as false alarm data. 
 
3.2. Generating Target Objects for Hotspot Prediction Models 
 As many 517 hotspots were found in Rokan Hilir in 2008. These hotspots were acquired 
by the MODIS satellite sensor. Buffers with the radius of 0.90737 km were created for each 
hotspot using Quantum GIS 1.7.2. Furthermore, as many 513 non hotspot points were randomly 
generated outside buffers. Therefore a non hotspot point is located at least 0.907374 km away 
from a hotspot (Figure 8). We consider these points as false alarm data which are combined to 
obtain target objects for the classification task. 

 
 

 
 

Figure 8. True and false alarm data as target objects 
 
 

3.3. Predictive Models for Hotspots Occurrence 
The decision tree algorithms namely ID3 and C4.5 have been applied on the forest fire 

dataset.  Further discussion regarding these algorithms can be found in [19] and [16].  These 
algorithms are available in the data mining toolkit Weka 3.6.6. In addition, we created a model 
for predicting hotspots occurrence using our proposed method namely the extended spatial ID3 
algorithm [9]. The algorithm is an improvement of the existing spatial ID3 algorithm introduced 
by [20]. Instead of running on the non-spatial dataset, our proposed algorithm works on the 
spatial dataset which contains several explanatory layers and one target layer. In a spatial 
database, layers stores spatial objects that can be represented either in point, line, or polygon.  
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Explanatory layers include layers of supporting factors for forest fires whereas the target layer 
consists of hotspots as true alarm data and non-hotspot points as false alarm data.     

The spatial dataset for modeling hotspots occurrence has 1030 objects, one target layer 
and ten explanatory layers (distance to nearest city center (dist_city), distance to nearest river 
(dist_river), distance to nearest road (dist_road), income source, land cover, peatland type, 
peatland depth, precipitation in mm/day, screen temperature in K, 10m wind speed in m/s.  In 
order to apply the ID3 and C4.5 algorithm, we conducted several steps to prepare a dataset 
from a spatial dataset on forest fires.  These steps are as follows:  

1. Calculating distance from target objects to nearest city center, river, and road 
2. Relating layers that contain explanatory attributes and the target layer that consists 

of target classes. 
3. Integrating all layers in by matching identifiers of objects to create a dataset for the 

classification task.  
4. Remove duplicate objects in the dataset 
Applying these steps on the spatial dataset on forest fires results 561 objects (235 true 

classes and 326 false classes). The experimental results show that the accuracy of ID3 decision 
tree is 49.02% and the accuracy of C4.5 decision tree is 65.24%. Furthermore, in term number 
of rules generated from the trees, the C4.5 algorithm outperforms the ID3 algorithm. The ID3 
algorithm has 270 leaves with peatland type as the first test attribute whereas the C4.5 
algorithm produces only 35 rules and the first test attribute of the tree is peatland type. The C4.5 
decision tree has several test attributes to classify the objects to the target classes, i.e. peatland 
type, distance to nearest road, distance to nearest city center, screen temperature, distance to 
nearest river, and income source. For comparison, our proposed algorithm (Sitanggang et al. 
2011) generated a spatial decision tree with 134 leaves and the first test layer of the tree is 
income source. The spatial decision tree has higher accuracy than the ID3 and C4.5 decision 
trees i.e. 71.12%.  After pruning, the spatial decision tree becomes smaller with 122 leaves and 
its accuracy is 71.66%. 

 
 

4. Summary 
This work processed burn areas in the study area to generate non hotspot points as 

false alarm data in modeling hotspot occurrence models. Processing on the Landsat TM image 
and FIRMS MODIS fire/hotspots in 2006 shows that the area for one hotspot in average is 
2.586562389 km2. Therefore with the assumption that the area for a hotspot is a circle, the 
radius of a buffer is 0.907374 km. Experiments on the forest fires dataset result three decision 
tree models for hotspots occurrence prediction. The dataset contains influencing factors for 
forest fires, hotspots as true alarm data and non-hotspots as false alarm data. The three models 
are the ID3 decision tree with the accuracy of 49.02%, the C4.5 decision tree with the accuracy 
of 65.24% and the spatial decision tree with the accuracy of 71.66%. 
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