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 The differential phase shifter is an interesting four-port passive microwave 

network composed of two separate lines, the main line and the reference line, 

and providing stable phase difference between the two output signals over the 

specified bandwidth of interest. The most common differential phase shifter is 

the coupled-line Schiffman phase shifter. In this paper, a novel 90 degrees 

differential microstrip phase shifter configuration employing a half 

wavelength transmission line loaded with three open stubs is presented, the 

proposed design could achieve excellent performance with low phase variation 

over a wide bandwidth compared to the standard Schiffman phase shifter. The 

simulated results accomplished with the use of CST Microwave Studio and 

advanced design system (ADS), were found to be in good agreement and have 

shown that the proposed loaded-stub phase shifter achieved less than 1.1 dB 

insertion loss, greater than 13 dB return loss and constant 90±5 degrees phase 

shift over an 89 percent bandwidth 
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1. INTRODUCTION  

Broadband phase shifters are common useful passive microwave devices, which are widely and 

extremely demanded in modern wireless communication systems, such as antenna feeding networks, 

beamforming, and electronic beam-scanning of phased arrays [1-11]. As solutions to design planar phase 

shifters with broadband characteristics, several kinds of structures have been proposed, such as Schiffman 

phase shifters, broadside coupling structures, and loaded transmission line configurations. In the well-known 

Schiffman differential phase shifter, a coupled section and a reference transmission line are used to achieve  

a 90° phase shift with a phase ripple of 10° in 80% bandwidth [12]. In order to attaint broad bandwidth with 

small phase deviation, other configurations based on the original Schiffman structure were proposed, 

employing cascaded coupled sections, double coupled sections, parallel and double parallel coupled  

sections [13]. However, in order to achieve a larger bandwidth, these designs require the use of narrow 

microstrip lines and extremely tight coupling in the coupled sections, which is not always easy to implement. 

To overcome this problem, some improved Schiffman phase shifters have been reported. By modifying  

the ground plane underneath the coupled lines, the bandwidth was improved to 70% with a phase error of  

5 degrees [14], and by using dentate microstrip and patterned ground plane, the bandwidth was increased to 

80% with a phase deviation of 5 degrees [15]. However, these designs are so intricate and still require a narrow 

gap between the coupled lines, especially at the ultra-wideband frequencies. 

https://creativecommons.org/licenses/by-sa/4.0/
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Besides Schiffman configurations, broadside coupled structures is another way to realize broadband 

phase shifters. In [16], Abbosh proposed a novel ultra-wideband phase shifter configuration exploiting 

broadside coupling between top and bottom elliptical microstrip patches via an elliptical slot located in  

the middle ground layer. Although the proposed design had a compact size and an achieved bandwidth of 109% 

with a phase ripple of ±3°, it could only give a phase shift range from 25° to 48°. In [17], Sorn succeeded in 

developing Abbosh phase shifter to 90° phase shift by terminating two output ports of the coupled section with 

a reactive load. The developed circuit provided a 90° differential phase shift with a deviation of less than ±4° 

over an 80% bandwidth. However, as a three-layer structure, it suffers from complexity, high-cost fabrication, 

and moreover, it may cause compatibility issues during circuit integration. To overcome these challenges, 

Abbosh introduced a two-layer coupling structure employing broadside-coupled microstrip-coplanar 

waveguide (CPW) [18]. Although the reported design allows achieving a 90°±3° phase shift over 114% 

bandwidth, it makes the installation more complicated because of the employed ground plane, the same as  

in [14] and [15]. 

Another main type of phase shifter with a simple design and wideband characteristics is the loaded-

stub phase shifter. It has attracted increasing attention lately, and thus several papers with different design 

methods were published. In [19], a configuration composed of a fixed 𝜆/2 main line and 𝜆/8 parallel open and 

short stubs was employed to develop a 90° phase shifter but with low bandwidth of 67% referring to a phase 

deviation of ±2°. In [20], a combination of open-circuit and short-circuit multi-section stubs was proposed to 

design a compact 45° phase shifter with 100% bandwidth for a maximum phase error of ±3.2°. However, for 

90° phase shifter, it had been found that the bandwidth decreases to 50%, referring to a phase variation of 5°. 

In [21], a structure comprising a transmission line loaded with two shorted 𝜆/4 stubs was proposed to realize 

a phase shift range from 20° to 70° over a large bandwidth, resulting in 109% bandwidth for a 45° phase shifter. 

However, in order to obtain excellent performance, high impedance stubs are required. Besides, the phase 

deviation is getting quite larger when the desired phase shift is more than 60°. Although the phase  

shifters [19-21] feature compact size and easy fabrication, they have limited achievable phase shift range and 

low bandwidth.  

Aiming for a higher overall performance and wide phase shift range, an efficient designing procedure 

employing a half wavelength transmission line loaded with open stub was shown in [22], which achieved  

a phase shift range from 60° to 120° and bandwidth of around 82% was obtained for 90°±6.4° phase shift using 

T-shaped open stub. Based on the same method and in an attempt to improve the circuit area and performance, 

a compact broadband 90° phase shifter with M-shaped open stub-loaded transmission line was presented  

in [23]. As the occupied area of the proposed M-shaped stub was reduced to 70% of the T-shaped stub,  

the aimed goal in terms of miniaturization was successfully attained, but at the cost of decreasing the bandwidth 

to 75%, defined by 6.2° phase variation. Two stub-loaded structure was studied as well [24], and it was shown 

to give phase shift up to 135 degrees, and an achieved bandwidth of 85% with phase error below ±4 was 

attained for 90° phase shifter loaded with two arrow-shaped stubs. In this letter, a novel design of broadband 

phase shifters exploiting three open stub-loaded transmission line is investigated, detailed theoretical analysis, 

and design equations are given. Moreover, one broadband 90° phase shifter highly suitable for applications  

in L and S bands is designed employing a combination of 0.5𝜆 transmission line with three T-shaped  

stepped-impedance open stubs 

 

 

2. THEORETICAL ANALYSIS 

The configuration layout of the proposed loaded-stub phase shifter is presented in Figure 1. It consists 

of two different circuits, a half-wavelength long transmission line loaded with three open stubs and one uniform 

transmission line, which are labeled as the main line and the reference line, respectively. The differential phase 

shift for this type of circuit is obtained by calculating the phase difference between the signals at their output 

ports. Characteristic impedances of the main line and reference line are set as 𝑍𝑚 and 𝑍0, respectively. 

Characteristic admittance of the open circuit stub is 𝑗𝑌𝑠. Electrical lengths of the main line and reference line 

at frequency 𝑓 are defined by: 

 

𝜃𝑚 = 𝜃𝑚0

𝑓

𝑓0

 , 𝜃𝑟 = 𝜃𝑟0

𝑓

𝑓0

 (1) 

 

where 𝜃𝑚0 and 𝜃𝑟0 are the electrical lengths of the main line and reference line at the center frequency 𝑓0, 

respectively. 
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Figure 1. Configuration layout of the proposed phase shifter 

 

 

By considering the main line as a cascade connection of five two-port networks, the resulting 

transmission (ABCD) matrix can be easily defined by multiplying the ABCD matrices of the five individual 

two-ports [25]: 

 

[
A 𝐵
𝐶 𝐷

] = [
1 0

𝑗𝑌𝑠 1
] [

cos 𝜃𝑚 𝑗𝑍𝑚 sin 𝜃𝑚

𝑗
1

𝑍𝑚
sin 𝜃𝑚 cos 𝜃𝑚

] [
1 0

𝑗𝑌𝑠 1
] [

cos 𝜃𝑚 𝑗𝑍𝑚 sin 𝜃𝑚

𝑗
1

𝑍𝑚
sin 𝜃𝑚 cos 𝜃𝑚

] [
1 0

𝑗𝑌𝑠 1
] 

  

thus 

 

𝐴 = 𝐷 = cos(2𝜃𝑚) −
3

2
𝑍𝑚𝑌𝑠 sin(2𝜃𝑚) + 𝑍𝑚

2 𝑌𝑠
2 sin2(𝜃𝑚) 

(2) 

 

𝐵 = 𝑗𝑍𝑚 sin(2𝜃𝑚) − 𝑗𝑍𝑚
2 𝑌𝑠 sin2(𝜃𝑚) 

 

𝐶 = (cos 𝜃𝑚 − 𝑍𝑚𝑌𝑠 sin 𝜃𝑚) (𝑗3𝑌𝑠 cos 𝜃𝑚 + 𝑗
2

𝑍𝑚

sin 𝜃𝑚 − 𝑗𝑍𝑚𝑌𝑠
2 sin 𝜃𝑚) 

 

According to the conversions between two-port network parameters given in [25], the scattering parameters of 

the main line can be expressed in terms of ABCD parameters as follows: 

 

𝑆11 = 𝑆22 =

𝐵

𝑍𝑚
−𝐶𝑍𝑚

2𝐴+
𝐵

𝑍𝑚
+𝐶𝑍𝑚

  (3) 

 

𝑆12 = 𝑆21 =
2

2𝐴+
𝐵

𝑍𝑚
+𝐶𝑍𝑚

  (4) 

 

So, the phase difference of the proposed configuration can be calculated as follows: 

 

∆𝜙 = 𝑝ℎ𝑎𝑠𝑒 (𝑆43) − 𝑝ℎ𝑎𝑠𝑒 (𝑆21) = 𝜃𝑟 − tan−1 [

𝐵

𝑍𝑚
+𝐶𝑍𝑚

2𝐴
]  (5) 

 

In order to achieve the optimal performance of this phase shifter at the center frequency 𝑓0, which corresponds 

to 𝑆11 = 0 and 𝑆21 = 1, then 𝜃𝑚0 = 𝜋/2 can be obtained from (2), (3) and (4), and thus the electrical length 

of the reference line 𝜃𝑟0 can be easily determined by the desired phase shift : 
 

𝜃𝑟0 = ∆𝜙 + 2𝜃𝑚0 = ∆𝜙 + 𝜋  (6) 

 

For 𝑍𝑚 = 50 Ω, the phase shift ∆𝜙 can be expressed in terms of the unknown admittance 𝑌𝑠 as follows: 
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∆𝜙 = 𝜃𝑟 − tan−1 [

2 sin(2𝜃𝑚)+3𝑍𝑚𝑌𝑠 cos(2𝜃𝑚)

−2𝑍𝑚
2 𝑌𝑠

2 sin(2𝜃𝑚)+𝑍𝑚
3 𝑌𝑠

3 sin2(𝜃𝑚)

2 cos(2𝜃𝑚)−3𝑍𝑚𝑌𝑠 sin(2𝜃𝑚)+2𝑍𝑚
2 𝑌𝑠

2 sin2(𝜃𝑚)
]  (7) 

 

The optimal admittance 𝑌𝑠 to obtain flat differential phase response within the frequency band ranging from 

0.5 𝑓0 to 1.5 𝑓0, can be calculated using (7), Figure 2 (a) shows the calculated admittance for differential phase 

shifts of 45°, 60°, 75°, 90°, 105°, and 120°. Since the admittance 𝑌𝑠 is obtained from (7) as shown in  

Figure 2 (a), then the return loss of the main line expressed in (3) can be simplified to: 

 

𝑆11 =
𝑗𝑍𝑚𝑌𝑠[1+2 cos(2𝜃𝑚)+2𝑍𝑚𝑌𝑠 sin(2𝜃𝑚)−𝑍𝑚

2 𝑌𝑠
2 sin2(𝜃𝑚)]

2cos(2𝜃𝑚)−3𝑍𝑚𝑌𝑠 sin(2𝜃𝑚)+2𝑍𝑚
2 𝑌𝑠

2 sin2(𝜃𝑚)

+𝑗[2 sin(2𝜃𝑚)+3𝑍𝑚𝑌𝑠 cos(2𝜃𝑚)−2𝑍𝑚
2 𝑌𝑠

2 sin(2𝜃𝑚)+𝑍𝑚
3 𝑌𝑠

3 sin2(𝜃𝑚)]

  (8) 

 

The calculated return loss using the above (8) is shown in Figure 2 (b). The plotted results show wide 

bandwidth characteristics, especially for small phase shift values. The investigated three stub loaded structure 

also shows uninterrupted and better return loss over more than 60% bandwidth when the differential phase 

shift is greater than 120 degrees. According to the analysis mentioned above, the design process is both clear 

and concise. The proposed configuration is highly practical for the implementation of a broadband phase shifter 

with low cost, easy manufacturing, and good return loss performance. 
 

 

  
(a) (b) 

 

Figure 2. Three stub calculated results; (a) optimal admittance,  

(b) Return loss determined with optimal admittance 
 

 

3. DESIGN AND SIMULATION RESULTS 

To validate the proposed design method, a broadband 90° phase shifter loaded with three open stubs 

is designed and simulated. The design operating frequency is chosen at 2.5 GHz, and the selected microstrip 

technology is a low-cost FR 4 epoxy substrate with a relative dielectric constant of 4.4, a loss tangent of 0.025 

and a thickness of 1.6 mm. In order to approach the calculated ideal admittance of the half wavelength open 

stub, a T-shaped step-impedance open stub is proposed to realize compact occupied area along with broader 

bandwidth. The schematic layout of the proposed 90° phase shifter circuit with defined dimension parameters 

is shown in Figure 3 (a), and methods to control the admittance value of the adopted open stub are shown in 

Figures 3 (b-e). Note that all the port impedances are set to 50 Ω. 
The design and optimization are performed using CST Microwave Studio. The circuit parameters of 

the width (𝑊1, 𝑊2, 𝑊3, 𝑊4 and 𝑊5) and length (𝐿𝑎, 𝐿𝑏  and 𝐿𝑐) are set for proper input impedance matching and 

minimum phase variance within the target bandwidth. After several series of optimization, the optimum 

performance of the proposed phase shifter is achieved, and the final dimensions are as follows: 𝑊0 = 3.05 

mm, 𝑊1 = 0.75 mm, 𝑊2 = 0.45 mm, 𝑊3 = 0.835 mm, 𝑊4 = 5.0 mm, 𝑊5 = 4.4 mm, 𝐿0 = 11.0 mm,  

𝐿1 = 4.0 mm, 𝐿2 = 2.0 mm, 𝐿𝑎 = 18.0 mm, 𝐿3 = 0.5 mm, 𝐿4 = 2.5 mm, 𝐿𝑏 = 3.0 mm,  

𝐿𝑐 = 13.0 mm, 𝐿5 = 32.55 mm, 𝐿6 = 40.0 mm, 𝐿7 = 8.39 mm. 
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(a) 

 

  
(b) 

 

(c) 

  
(d) (e) 

 

Figure 3. Configuration of the proposed phase shifter using three T-shaped stepped-impedance open stubs 

and means to control their admittance value; (a) Schematic layout, (b), (c), (d) and (e) means to control  

the admittance of the T-shaped stepped-impedance open stubs 
 

 

To discuss and evaluate the performance of the proposed configuration, the previously designed phase 

shifter is simulated by using two electromagnetic simulators, the 3D planar EM solver CST Microwave Studio  

(CST MWS) and momentum the 2.5D EM simulator integrated into advanced design system (ADS) software. 

Comparison between the simulated S-parameters amplitude and phase difference response between output ports of 

the proposed 90° loaded-stub phase shifter (phase (𝑆43) – phase (𝑆21)), are displayed in Figures 4 (a-b), respectively. 

As can be seen, the simulated results using ADS and CST MWS are in good agreement and thereby 

validate the presented new phase shifter design which is shown to exhibit, referring to the simulated results in 

Figures 4 (a) and 4 (b), better than 13 dB return loss and less than 1.1 dB insertion loss along with a differential 

phase shift of 90°±5° from 1.4 to 3.65 GHz covering around 89% relative bandwidth, which indicates  

a broadband characteristic. Besides the good achieved performances, the proposed phase shifter is relatively 

compact size with overall dimensions of 56×52 mm, including the reference line. A comparison between  

the proposed phase shifter circuit and other published loaded-stub phase shifters is presented in Table 1.  

As can be seen, the introduced phase shifter features good properties in terms of circuit area, phase deviation, 

and achieved bandwidth in comparison to its operating frequencies. 
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(a) (b) 

 

Figure 4. Comparison of CST and ADS simulated results of the designed 90º loaded-stub phase shifter;  

(a) amplitude response, (b) phase shift response 

 

 

Table 1. Comparison of the designed phase shifter to other configurations 
Configuration 

/Ref 
Phase differential Design Freq. (GHz) 

Frequency 

Band (GHz) 
FBW The effective area (mm2) 

[22] 90° ± 6.4° 4  [2.3 – 5.5] 82% (22<) × 16.4 (excluding reference line) 

[23] 90° ± 6.2° 4  [2.7 – 6] 75% 23 × 19.3 (excluding reference line) 

[24] 90° ± 4° 4  [2.5 – 6] 85% 56 × 30 (excluding reference line) 

This work 90° ± 5° 2.5  [1.4 – 3.65] 89% 56 × 52 (including reference line) 

 

 

4. CONCLUSION  

A new differential phase shifter structure, capable of providing a constant phase difference of up to 

120 degrees with broadband characteristics, has been presented in this paper. The proposed single layer circuit 

employs a three open stub-loaded transmission line, which enables an easy design and fabrication. Theoretical 

analysis and design equations were given, and thus the design process to achieve a full variety of differential 

phase output was simplified. Based on design equations, a 90° phase shifter with three open T-shaped  

step-impedance stubs has been conceived and simulated. Based on the obtained results, the designed phase 

shifter has a simple design, compact size, and wide bandwidth. Considering these excellent performances along 

with the wide operating frequency band ranging from 1.4 to 3.65 GHz, the proposed 90° phase shifter is highly 

recommended for applications in advanced wireless communication systems, such as in circular polarized 

antenna feeder networks, beam-forming, and beam-scanning of phased array systems. 
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