TELKOMNIKA Telecommunication, Computing, Electronics and Control

Vol. 18, No. 4, August 2020, pp. 2224~2234

ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, No: 21/E/KPT/2018

DOI: 10.12928/TELKOMNIKA.v18i4.15701 O 2224

Fair and trustworthy: Lock-free enhanced tendermint
blockchain algorithm

Basem Assiri, Wazir Zada Khan
Department of CS and IS, Jazan University, Jazan, Saudi Arabia

Article Info ABSTRACT
Article history: Blockchain Technology is exclusively used to make online transactions secure by
Received January 30, 2020 maintaining a distributed and decentralized ledger of records across multiple com-

puters. Tendermint is a general-purpose blockchain engine that is composed of two
parts; Tendermint Core and the blockchain application interface. The application in-
terface makes Tendermint suitable for a wide range of applications. In this paper, we
analyze and improve Practical Byzantine Fault Tolerant (PBFT), a consensus-based
Keywords: Tendermint blockchain algorithm. In order to avoid negative issues of locks, we first
propose a lock-free algorithm for blockchain in which the proposal and voting phases
are concurrent whereas the commit phase is sequential. This consideration in the al-
gorithm allows parallelism. Secondly, a new methodology is used to decide the size

Revised April 13, 2020
Accepted April 29, 2020

Blockchain protocol
Consensus protocols

Correctness of the voter set which is a subset of blockchain nodes, further investigating the block
Cryptocurrency sensitivity and trustworthiness of nodes. Thirdly, to fairly select the voter set nodes,
Fairness we employ the random walk algorithm. Fourthly, we imply the wait-freedom property
Lock-free by using a timeout due to which all blocks are eventually committed or aborted. In
Smart contracts addition, we have discussed voting conflicts and consensuses issues that are used as a

correctness property, and provide some supportive techniques.

This is an open access article under the CC BY-SA license.

@ 00

Corresponding Author:

Wazir Zada Khan,

Department of CS and IS,

Jazan University,

Main University Campus, Jazan, 45142, Saudi Arabia.
Email: wazirzadakhan @jazanu.edu.sa

1. INTRODUCTION

Blockchain technology, also called Distributed Ledger technology is capable of achieving and main-
taining data integrity in distributed systems, so the interest in this technology has been increased. The term
blockchain was started in the 90’s as variant of distributed database in which event or information was stored.
After the global financial meltdown in September 2008, the term “Bitcoin” was first introduced by Satoshi
Nakamoto [1]. Being the first application as a pure peer to peer electronic payment concept that was initially
proposed to avoid the incurred cost caused by online payments. During the period of September 2014-2015
[2], bitcoin has experienced an exponential growth with over 4 million users, which has transformed it into
one of the most powerful computing networks in existence. After the success of Bitcoin, blockchain has been
applied in many applications including smart cities [3], content delivery networks [4], access control systems
[5], smart grid powered systems, Internet of Things (IoT) and Industrial IoT (IIoT) [6, 7].

User transactions can be recorded in a decentralized fashion rather than centralized digital ledger ap-

Journal homepage: http://journal.uad.ac.id/index.php/TELKOMNIKA

TELKOMNIKA Telecommun Comput El Control 0 2225

proaches. A blockchain avoids the alteration of all subsequent blocks or collusion of all nodes in the network
by maintaining a distributed and decentralized ledger of records across multiple computers[8]. The transac-
tions and some details (such as sender, receiver, amount of money, and hash number) are grouped into datasets
referred to as ”blocks” [9]. The blockchain users are called miners” who record and share the data blocks over
the whole blockchain network. Every node has a copy of the ledger and all node are connected for communi-
cations. The nodes communicate to maintain the copies of the ledger and to synchronize processes. Through
integration of edge computing and blockchain technology, high throughput and efficiency of transaction pro-
cessing can be achieved while maintaining data security and integrity [10].

The operation and working of blockchain is as follows: A new transaction record is created when a
blockchain user performs a transaction which is then transferred to neighboring peer users in the blockchain
network. Prior to adding blocks to the public ledger, verification of transactions is done by the neighboring peer
users who used to perform mining by utilizing consensus algorithms. These distributed consensus protocols are
used to ensure that the newly added transactions are not altered or not fake. For the validation of the block, the
nodes in the peer to peer network solve a crypto-puzzle called Proof-of-work (PoW) by using computational re-
sources at their disposal [11]. Since this approach is considered to be an energy inefficient consensus approach,
in order to avoid depletion of computational resources, various consensus mechanisms are proposed including
proof-of-stake (PoS), proof of activity, proof of space, variants of Byzantine fault-tolerant algorithms (BFT).
The proof-of-stake (PoS) consensus protocol is an interestingly attractive one because it does not cost com-
puting power and provides increased protection from a malicious attack on the network. In PoS mechanism,
there is pre-distribution of stakes at the beginning of the process. The entities that have stakes in the system are
allowed to take block-inclusion decisions, irrespective of blockchain’s length or history of the public ledger.

Differing in the consensus mechanism, recently many variants of blockchain protocols are proposed
[12, 13]. Comparing to the other existing blockchain protocols, the Tendermint blockchain has unique charac-
teristics including cross chain transactions system along with in-chain transactions. A new set of validators is
selected dynamically for each new block. Recently many studies have analyzed the correctness and fairness of
Tendermint blockchain protocol [14]. Identifying many bugs in the code of original Tendermint protocol, this
study has proposed fixes for these errors and for achieving correctness and fairness, many enhancements are
also proposed. Another recent study [15] has also analyzed the original Tendermint protocol and highlighted
various challenges caused by adversary and system model. In this paper, we have also reviewed the contribution
in [16] and after further investigation, we propose an enhancement, discussing the design and the Tendermint
blockchain protocol in more details. We have made the following enhancements in the original Tendermint
blockchain protocol:

» The proposal and voter phases are considered concurrent while the commit phase is considered sequen-
tial.

* The voters set is a subset of blockchain nodes. A new methodology is used to decide the size of this
subset, investigating the block sensitivity and nodes trustworthiness.

* For the selection of voters set nodes, the random walk algorithm is employed.

* The wait-freedom property is maintained by using a timeout on the voting phase. Thus, all blocks are
eventually committed or aborted, which means no one stays in the execution forever and no one waits
forever to execute.

* The reasons for voting conflicts and the weakness of consensuses when it is used as a correctness property
are investigated using Round?2 of the algorithm.

* Finally, Detection of Byzantine and failure nodes in the blockchain is shown.

The remainder of this paper is organized as follows: section 2 discuss the related work. Section 3
defines the System Model. Section 4 discusses the proposed modified algorithm. Sections 5 discusses the
various concepts. Finally, section 6 concludes the paper.

2. RELATED WORK

The Tendermint is a PBFT consensus-based blockchian protocol [12—14]. Recently, few research stud-
ies have identified some issues and proposed enhancements in original Tendermint blockchian
protocol [14-16]. Y. Amoussou-Guenou et al. [14] have studied the correctness and fairness of Tendermint
blockchain protocol. They have identified issues and many bugs in original protocol. To achieve the correct-
ness and fairness, they have proposed enhancement by fixing the identified issues and bugs. In [15] the original

Fair and trustworthy: Lock-free enhanced tendermint blockchain ... (Basem Assiri)

2226) ISSN: 1693-6930

Tendermint protocol is analyzed. The authors have highlighted various challenges caused by adversary and
system model.

Our proposed enhanced Tendermint algorithm is different from the original Tendermint [12, 13] and
its enhance variants [14, 15], in the following ways; First, as compared to the existing Tendermint algorithms
that are lock based, our algorithm is lock-free. Although, the Tendermint algorithm and its variants use timeout
to maintain the correctness. However, it does not provide progressiveness such that in case of transaction
failure while holding the lock, it results in an issue with maintaining the progressiveness and the correctness
of blockchain. Secondly, we have used the wait-freedom property for eventually commit or abort without
staying in the execution forever or wait for execution for the non-deterministic time period. On the other
hand, the Tendermint algorithm and its variants use timeout to maintain the correctness. We have proposed
novel methods for the selection of the size of validator’s subsets and selection of validators in order to achieve
fairness. We have also considered the trustworthiness of nodes and sensitivity of data. We have also employed
arandom walk for the selection of validators whereas, the original Tendermint and its enhanced variants select
the validators deterministically which results in unfair reward distribution of the validators.

3. SYSTEM MODEL

This section defines the fundamentals of our blockchain system model. The blockchain [1, 17, 18]
consists of a set of nodes (processors) of size n, called P, where P = {P1, ..., P, }; and P; is any processor
belongs to P and ¢ is an integer such that 0 < ¢ < n. The blockchain contains a distributed ledger L, and
each node shares copies of memory objects and L. For example, for a bank blockchain, the memory objects
represent the bank accounts, while the operations on the bank account recorded in L.

The operations on the memory objects are either read or write. The read operation returns the data of
the memory object, while the write operation updates the data of memory object. A transaction is a sequence
of read and/or write operations that execute in isolation and at the end, the transaction commits if it is correct,
otherwise, it aborts [19]. For example, if a bank account x has an amount of money equals to 100$, and a
transaction withdraws 10$, then the new value of z is 909, this transaction is correct and commits; however if
the result of x is 509, then the transaction aborts.

A block B consists of one or more transaction and B commits when all transactions in B commits. On
the other hand, B aborts if at least one transaction aborts. Upon the creation of B, it gets the index of proposer
as an identifier, namely B;. It also gets a unique timestamp called ¢s and it keeps in mind the situation of L;
especially the order of the last committed block in L, called Lb;s. Actually, every committed B represents a
page in L. The aborted blocks do not show up in L, but for correctness purpose, we consider their ¢s. Having a
blockchain of 4 nodes, Figure 1 shows L of two committed blocks (in the form of B; ;s). The blocks are Bs ¢
and B4.o. The first block in L is proposed by nodes indexed as 2, and its ¢s is 0. The node 2 also proposes
another block with ts = 1 but it is aborted, so it is not recorded in L. The second block in L is proposed by
node 4, with ts = 2. This means L has blocks with the timestamps of 0 and 2, but it skips the block of ts = 1
(because it is aborted).

The blocks are chained in L using hashing, such that each block has the hash of the previous one.
Thus, L is unchangeable. The nodes communicate with each other through messages exchange over a network.
The blockchain allows broadcasting messages in parallel and a timeout is used to limit the delays. The timeout
is specified according to systems specifications. Since P might include a large number of processors, and to
reduce the cost of voting processes, we have a subset of validators (voters), called V', where V' C P. The size
of V' (or a number of validators) varies from system to another based on the level of data sensitivity and nodes
trustworthiness.

The blockchain may include some network issue, failure nodes or Byzantine ones. A Byzantine node
is the one that misleads the system or even lies intentionally [20, 21]. Network issue, failure nodes or no
show votes are considered as negative votes. The decision on block B is taken through consensus, which
finds the decision of the majority. The majority could be any percentage between 51% and 99%, and that is
decided based on the system sensitivity [22, 23]. This helps to reduce the influence of Byzantine nodes. In our
algorithm, we test node twice to investigate if it is a Byzantine or not, and to take decision such as excluding
it. In our algorithm, we use voters_set|] to represent V. The node P; broadcasts a proposal of B; with a unique
ts. The nodes in V' compute the transactions of B; and vote to commit or abort B;. Then, they broadcast the
votes in the form of 0 or 1. The received votes are stored in votes|[].

TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 4, August 2020 : 2224 — 2234

TELKOMNIKA Telecommun Comput El Control 0 2227

Ledger (L)

Aborted Block, not
recorded in (L) ‘.‘

‘ B2.0,ts=0

—
w
N
&
&
n
[y

Figure 1. The Ledger L Including the Committed Block B ¢ and By 2 Only, While the Timestamps of the
Blocks are 0 and 2. The Timestamp 1 is a Unique Timestamp for an Aborted Transaction By ;.

4. PROPOSED ALGORITHM

In the beginning, blockchain algorithm consists of three phases (as shown in Algorithm 1), which are:
(i) proposal phase; (ii) voting phase; (iii) commit phase. First, for the proposal phase, any node P; can propose
and create a block B; at any moment. Now, it sets a timeout for this proposal to complete within. Since some
blockchains have a large number of nodes, it is very costly to include all of them in the votes. However, based
on data sensitivity and system trustworthiness, P; decides the size of how many nodes should vote through
a function called size_voters_set() (that will be explained in details later). Then, P; calls voters_set() to
decides which nodes are going to vote using a random-walk algorithm (that will be explained in details later).
After that, P; finishes proposing phase by broadcasting B;, L, Lb:s and ts to all nodes in the voters_set]].
Since the proposal phase can be executed by more than one node in parallel, P; uses a unique integer number
(ts) to show the position of B; in L if B; commits; otherwise, when B; aborts we skip its ts. The selection
of a unique number ¢s can be executed in a decentralized manner through many algorithms such as Counting
Network [24, 25]. This step ends the proposing phase.

Second, at the beginning of the voting phase, every node in voters_set|] validates B; and votes using
a function called vote(). In vote(), the node records 1 if B; is valid or O if it is not. Actually, we create an
arrayvotes|| in corresponding to voters_set[|. Next, we wait for some time until all nodes in voters_set|]
vote or the timeout finishes. After that, if timeout finishes while some votes are still missing, then consider all
missing votes as votes against B; using a function called no_show_votes(). Indeed, for those missing votes,
we record 0 in votes[]. To end the vote phase, P; calls mj_vote_Ok(), checks the votes of the majority, and
broadcasts commit or abort message.

Third, the commit phase is the critical section of our algorithm, where we should maintain the ts’s
of committed blocks in L. It is clear that using timeout all blocks are eventually committed or aborted. For
aborted ones we do nothing. However, for committed ones, all nodes must connect them to L in the same order;
otherwise, nodes would have different ledgers. In the commit phase, if B; ;s comes directly after Lb;s in L,
then B; commits. For example, if the ¢s of the last block in the ledger Lb;s = 5, and B; ;s = 6, it commits.
On the other hand, if there is a gap between B; ;s and Lb,, then B; has to wait for all blocks in-between to
either commit or abort, then B; commits. For example, if the ¢s of the last block in the ledger Lb,s = 5, and
B;.4s = 8, then B; waits for commit and abort broadcasted messages that tells about the blocks of timestamps
6 and 7. Actually, if it receives an abort messages for any of them; it does nothing; while receiving a commit
message for any of them means it has to connect it to L before B;.

Fair and trustworthy: Lock-free enhanced tendermint blockchain ... (Basem Assiri)

2228) ISSN: 1693-6930

As mentioned before, the consensus decision means some nodes may vote against the majority. This
happens because of many reasons, such as (i) nodes have computation and processing issue; (ii) being a Byzan-
tine node and lay intentionally; (iii) having an issue with memory consistency [26]. For example, having
a memory block x, that equals to 50, when a proposed transaction adds 100 to x, it becomes 150. Since
blockchain is decentralized, there is a copy of x in all nodes. If there is an issue of updating = in some parts of
the system, then some nodes may have x # 50 (memory is not consistent), and by adding 100 to x, the result
would not be 150, so it votes against the transaction.

Algorithm 1: Blockchain Algorithm

M/ Initialization:
L: /fThe current ledger
I3; //The current block
Lby, < 0; //The tiimestamp of last block in L
ts = 0; //It is a unique number shows position of B;
in L if it is committed
tirneout; //Wailing timeout for voles
size; //How many nodes voting on B;
size2; //How many nodes voting in Rournd2
voterset[]; /Who votes on 13; (validators)
votersget2[]; /IWho votes on B; in Round2
votes; //Count the number of votes on B;
votes2; //Count the number of votes in Round2
votes(]; //Shows the votes Algorithm 2: Round2
votes2(]; //Shows the votes in Round2

//For those nodes that voles against the majority

P .voters_set2[]; /f Decide the voling against set
Propose phase: /1% selects one of those that voted with the majority
//For any processor /7 that proposes new block 13; (%) and let I; sends copies of B; access_sct to
B; = Pi.create_new_block(); those which voted against
P; selects Py

Roundl:

1" = currenitime + timeout;
iz =By dize okers._et(): P; broadcasts B.(access_set) => voters_set2|]:
Piwoters_set(size); //Decide the voters Aclivate receive_votes(voters2[)):
P.broadcast B, (L, Lb.ts, ts) => voters_set|); HIf P; in voters_set2[]. it updates its memory,
validates /3; and votes
Voling phase: if (7 in voters_set2[]) then
H P also validates B3; and voles Update B;.access_set based on P};
il (1’;.valid(3;)) then if (p;.valid(3;)) then
P;.vote(1); L Pvote(l);
else else
‘ P .vole(0); L P;.vote(0);

//Wail some time for the voters
Activate receive_votes(votes(]):

while ((current_tirme < 1) && (voles < size)) do
| wait();

T = current_time + timneout2;
while ((current_time < 1) & & (votes2 < size2))
do
| wait();
for all p in voters[]) do
//consider all no show votes as failed nodes

il ((votes < size)) then
//Consider all no show votes as zeros
no_show_uvotes();

//Checks the majority of voltes to commit or abort 13; if (p.vote = NULL) th‘.’“)
if (rmj_vote_Ok(votes[])) then L no_show_votes_failed():
P .broadcast (abort(3;)) ; else
abort(3;); L il povote | = mj_wote
else P.byzantine();

//Continue with commit phase

\; 12 .broadcast (commit(£3;))

Commit phase:
/I B; waits until all blocks ordered between Lb,, and
B; ;. either commit or abort
while (3, ,, — Lby, =1) && (all blocks between
Lb,, and B; . are not finished) do
L wailt();

commit();

In some cases, some nodes do not vote. This happens because of many reasons, such as nodes are
being in failure; or having communication and network issues. Our algorithm introduces Round2 (as shown
in Algorithm 2), to investigate these issues. This helps the system to be aware of each node in the blockchain,
find network issue, improve the consensus ratio, and improve the system trustworthiness. In the beginning,
the proposer node P; creates a new voters set voters_set2[] includes all nodes that voted against in Roundl.
P; selects one node P; from those nodes that voted with the majority in Roundl (P; could be F;). Then, P;
broadcasts copies of memory blocks that are accessed by B; (called B;. access_set) to voters_set2[]. After that,

TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 4, August 2020 : 2224 — 2234

TELKOMNIKA Telecommun Comput El Control 0 2229

nodes in voters_set2[], updates their memory, re-validates B; and votes again; If P; belongs to voters_set2]],
it does the same thing. It waits for some time to get the votes. When the timeout finishes, there are three
possibilities: (i) some nodes vote (with a majority of Roundl) correctly, which means they had a memory
consistency issue and by updating their memories they get the same results of the majority; (ii) some nodes do
not vote, which means they have a failure or communication and network issue (no_show_votes_failed());
(iii) If nodes still voting against the majority of Roundl, then they are Byzantine.

4.1. Correctness proof

Our algorithm is a lock-free algorithm where nodes are able to propose and vote in parallel. However,
block committing has to modify the ledger, so it should be serialized and ordered according to timestamps. In
the correctness analysis, we show that our algorithm satisfies the Linearizability which is a correctness property
that validates concurrent execution. In linearizability, all blocks are ordered in a way that matches a correct
sequential execution [27, 28]. Let H be a parallel execution history of all blocks. Now let .S be a sequential
history, which shows a serialization of the blocks in H based on their timestamps. Indeed, for any two blocks
B; and By, if ¢ < j, then B; <, B;. Note that the timestamp for every block is unique.

Lemma 4..1. S preserves the real time order of H.

Proof. According to Algorithm 1, for a block B; the timestamp ¢ is a unique one, since it is obtained through
the Counting Networks. If B; <y Bj; then, ¢ < j. Since S orders blocks in the timestamp order, then we also
have that B; <g B;, as needed. O

Lemma 4..2. Our algorithm is wait-free.

Proof. 1t is trivial to prove that our algorithm is wait-free, as according to the propose phase in Algorithm 1,
every block B; has a timeout. Clearly when the time equals to 7', B; must finish.

After that, the voting phase continues until all votes arrive, or the timeout finishes (means the time
reaches T'). In such case, the missing votes are considered as negative votes. Then, we check the majority of
votes to commit or abort. Therefore, every block eventually finishes within a specific timeout; and the next
block eventually executes. O

Lemma 4..3. The blocks in H are ordered based on their timestamps.

Proof. Let a block B; has a timestamp ts = ¢, and the timestamp of the last block in the ledger Lb;; = =x.
where ¢ > z.
i. If B; passes proposing and voting phases successfully, and it is about to commit. If # — 2 = 1 (which
means ¢ is ordered directly after =), then B; commits and connected to the ledger next to B,.
ii. If B; passes proposing and voting phases successfully, and it is about to commit. If i — z # 1, which
means there is at least one block with a timestamp between x and i, such that {B,1, ..., B;_1} (where
we could have B, = B;_1) . For simplicity let say there is only one block B; between B, and B;,
where v < j < ¢. Then B; waits until either B; aborts (receiving abort messages); or B; commits and
becomes the last block in the ledger (Lb;s = j). Thus, B; commits since i — j = 1.
Seeking a contradiction, assume that B; commits before B; finishes (commits/abort). Then based on the
commit phase in Algorithml; either ¢ — x = 1, which is impossible since x < j < ¢; or B; receives abort
messages of B;, which is also impossible since the B; abortion massage means that B; already finishes,
contradiction.
In general case, B; waits until either some/all of blocks {B;+1, ..., B;—1} abort or commit. Actually,
B; knows aborted blocks by receiving abort messages; and knows committed blocks by following the
changes of Lb;,. Therefore the ledger preserves the timestamp order.

iii. If B; fails in proposing or voting phases, Then either the majority vote to abort it, and the abortion
massages get sent; otherwise the timeout finishes and the missing votes are considered as negative ones,
so it also seems like the majority vote to abort it. Actually, in both cases the aborted block B; can be
ordered easily in the right position in H, since it does not modify the ledger or any local memory.

Therefore, in all cases H preserves the order of S, considering all blocks in H, and from Lemmas
4..1,4..2 and 4..3, we obtain the following theorem. O

Theorem 4..4. Any execution history H using our algorithm is linearizable (correct) as it respects the times-
tamps order that appears in S.

Fair and trustworthy: Lock-free enhanced tendermint blockchain ... (Basem Assiri)

2230 a ISSN: 1693-6930

4.2. Selection of the validator’s group size (variable set of validators)

The selection of validators (voters/ miners) in the consensus process is a very important part. After the
51% miner’s validation, the new blocks can be added to the chain. Normally in the block verification process,
all miners participate in the consensus process. Selecting all miners is a costly process in terms of processing
and energy. But sometimes depending upon the sensitivity of data and trustworthiness of miners, it is possible to
select a subset of miners out of all the set of miners. We have proposed a new mechanism for the selection of val-
idators. The subset of validators is selected based on the sensitivity of data and the trustworthiness of validators.
If the data is highly sensitive and trustworthiness level of the system is low then we need high numbers of val-
idators. On the other hand, if the data sensitivity requirements are low and the trustworthiness high then we need
a relatively small number of validators. The following matrix explains (Table 1) the relationship between the
three actors (Data sensitivity (di), trustworthiness (ti) and validators (vi)) for the maximum size of the subset of
validators.

Table 1. Relationship between data sensitivity, trustworthiness and the size of the subset of validators

Data sensitivity (di) Trustworthiness (ti) Validators (vi)
High High 50%
High Low 75%
Low High 25%
Low Low 50%

4.3. Selection of validators

In the blockchain, a new block is appended to the chain after the agreement of validators. After we
discuss the size of validators set, now we focus one the validator selection. The selection of validators varies
according to types of blockchains. For example, in Tendermint blockchain protocol, the subset of validators is
selected deterministically using the current history of blockchain. The subset of validators only changes when
new blocks are added to the chain. In this paper, we have proposed a novel validator selection mechanism.
In the proposed mechanism, we have employed a random walk for the selection of validators. When a new
block B is proposed by a proposer, it will select a subset of validators through a random walk. The proposed
selection mechanism has few unique features, i.e., the subset of validators are selected non-deterministically
and randomly. For every new proposed block, a new subset of validators will be selected. The length of the
random walk will be equal to the size of the subset of the validator (explained in the previous section). The
proposer node will select a validator randomly from a set of validator and forward the newly created block to the
selected validator. The selected validator will select another validator from the list and forward the new block
received from the proposer node. The validator selection process will continue until the required numbers of
validators have not being selected (selected_validators = = vi). Due to the pure nature of the random walk, we
can restrict the random walk to not the selected the already passed validators (i.e., we will exclude them from
the group of validators once selected). Figure 2 shows the selection mechanism of validators using random
walk.

5. DISCUSSION
5.1. Transaction’s validation

Clearly, in blockchain there are two levels of validation and correctness check, which are the val-
idation of transactions and the validation of blocks (of transactions). This section focuses on transactions
validation. In fact, when any node creates a new transaction, nodes (miners) picked it up to check the cor-
rectness of the transaction, validity, legality and its output [27, 28]. For example, a bank account z belongs
to userl, and x contains 100$. Now wuserl withdraws 10$ form z, so the value of = becomes 90$. This is
a valid and legal transaction. After that, let userl withdraws 100$, then this is invalid transaction since x
does not have sufficient fund to execute the transaction. Also, if = contains 90$ and userl withdraws 208,
but for some reasons x becomes 508, then it is invalid transaction. This way, nodes check the validity of
transactions. If the transaction is valid (correct), it is stored in the node’s block, otherwise it is ignored. The
node continues the transactions’ validation process and place them in its own block until it reaches the block

TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 4, August 2020 : 2224 — 2234

TELKOMNIKA Telecommun Comput El Control 0 2231

capacity , then it proposes the block to the validators for another validation process. Moreover, it is impor-
tant to notes that all nodes work in isolation, so each one build its own block regardless the others. This
allows different nodes to validate the same transaction, so one transaction may appear in more than one block.

) [®]
@] @ ® @ @ @ ®
o ® o o o * 2
N 2 [s
o © €& N o —®
e - ‘*
® o o o IR T
» ° o\
o o o © 5
e ® @
- O
¢ o ® @ o
o ¢ 8)
. Proposal Node . Validator Node

Figure 2. Selection mechanism of validators using random walk

5.2. Block’s validation

This section focuses on the block validation process. Upon the creation of a new block of transactions,
the block should hash it own content (transactions) and produce a fixed size hash number, with specific criteria.
This guarantees that no one would change the content of the block, as any change to the block will change
the hash number. Blockchain uses PoW to produce the hash number, where the proposer node should solve a
mathematical crypto-puzzle [11] (it can use different techniques such as PoS). The hash of the last block in the
ledger must be attached as well. The proposer node also includes its digital signature to confirm that the new
block is proposed by an authentic and authorized node.

When node proposes a block to the validators, the validators check the block and vote to add it to the
ledger (using consensus). Actually the validators validate four items as follows:

 Validators validate the signature of the proposer node to verify that the block is created by a legitimate
node.

* Validators validate the PoW to verify that it matches the system criteria and it matches the content of the
block (which means the content of the block has not been changed).

 Validators validate the hash of the previous block to fix the order of the block in the ledger.

* Validators validate the content of the block to prevent the conflicts and illegal transactions.

Now, blockchain uses consensus to validate the content of the block to prevent the conflicts and illegal
transactions. The consensus decision influences the order of the blocks that are added to the ledger. Figure
3 (a) shows the status of memories for four bank accounts before the block validation and execution. Figure
3 (b) shows three blocks where every block has two transactions. In Blockl, T'z; withdraws 10$ from accl,
so it becomes 90$. Then, T'xzo withdraws 100$ from acc2, so acc2 = 100$. In Block2, T'x3 withdraws 509
from acce3, so acc3 = 4508. Then, Tx4 deposits 1008 to accd, so accd = 110$. Block3, also has Tz
and T'zs where it deposits 30$ to accd, so accd = 408. Thus, Block3 conflicts with Blockl and Block?2.
Indeed Blockl and Block3 both include 7'x;, which means if we allows to both of them to commit, then
Tz, will execute twice and double the withdraw operations on accl, which is not acceptable. Moreover,
Block3 conflicts with Block2 since T'x4 and T'x5 both of them executes operations on acc4, and both of them
are not aware of each other. If both of them commit, then the amount of acc4d will be either 110$ or 40$
(according to the committing order), where the right value is the accumulative of both which is 140$. Thus,
if by consensus, Blockl and Block2 commit first (they can commit in any order as there is no dependency
between them), Block3 must be aborted. On the other hand, if by consensus, Block3 commits first, then

Fair and trustworthy: Lock-free enhanced tendermint blockchain ... (Basem Assiri)

2232) ISSN: 1693-6930

Blockl and Block2 must be aborted. The following section focuses on how to order blocks in the ledger.

accl acc2 acc3 accd
100$ | 200$ | 500% | 10$

(a)

Blockl Tx_1 withdraws 10$ from accl
Tx_2 withdraws 100$ from acc2

Block2 Tx_3 withdraws 50S from acc3
Tx_4 deposits 100S to accd

Block3 Tx_1 withdraws 10$ from accl
Tx_5 deposits 305 to acc4,

(b)

Figure 3. (a) Shows the status of four bank accounts;
(b) Shows three blocks where every block includes two transactions

5.3. Correctness

In this paper, we focus on the correctness of blocks rather than arguing about the correctness of trans-
actions themselves. The correctness of transactions is checked by miners before they propose the blocks. To
validate the transactions, nodes may use any approved correctness prosperity such as opacity or Linearizability
[27, 28]. Indeed, many researchers restrict the parallelism of blockchain to guarantee correctness [13, 14].
Some algorithms use locks to serialize blocks execution or pipelining them. This increases the execution time
and may result in some lock’s issues such as deadlock and starvation. However, our algorithm is a lock-free
algorithm where nodes are able to propose and vote in parallel. In fact, proposing and voting run in temporary
memory and do not require maintaining the ledger. On the other hand, the critical section of our algorithm is
when nodes modify the ledger, which is the moment of commit. We propose a timestamped based algorithm
where every block has a unique timestamp ts [29]. This ts tells wither the block should commit or wait. Ac-
tually, blocks can be aborted directly (based on consensus), since the aborted blocks do not update the ledger.
Committed blocks must maintain the ledger with respect to their ¢s, so every block has to wait for all blocks of
timestamps smaller than its own.

5.4. Consensus

The validation of blocks is conducted via consensus. Actually, the consensus is considered as a weak
correctness prosperity, it is indeed a fault tolerance property [20, 21, 30]. This means consensus is able to
work with some faulty results (votes). For example, the block can commit even with about %49 negative votes.
To the best of our knowledge, blockchain algorithms do not consider the weakness of consensus itself. For
example, with some financial operations, the decision has to be black or white from all validators, while the
consensus allows for some gray area. In our algorithm, we introduce some techniques to support the consensus
decision. First, we select the number of validators based on the sensitivity of the data. Second, we decide
the consensus percentage based on both data sensitivity and trustworthiness. For example, with our criteria,
for some critical matters, the consensus may reach 99%, or abort. Third, we evaluate the trustworthiness of
the nodes based on their history of votes. Round?2 in our algorithm investigates the reasons for having voting
conflicts. We investigate the data consistency and we give another chance for the faulty validators to adjust
themselves. This improves the data consistency in the blockchain and increases the ratio of consensus as some
nodes may be able to vote correctly (with the majority) in the second round. However, for those nodes that do

TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 4, August 2020 : 2224 — 2234

TELKOMNIKA Telecommun Comput El Control 0 2233

not vote because of failure or network issue. It is important to take some decisions to fix the issues or mark them
to be avoided later on. Moreover, they should be treated negatively in the rewards distributions. For Byzantine
nodes that insist to mislead the consensus, it is important to classify them under the class of low trustworthy
nodes; which decreases their chance to be selected in the voters set and consequently decreases their rewards.
Otherwise, blockchain supposes to exclude them. All mention steps are supportive techniques to enhance the
consensus decision as a correctness property.

5.5. Wait-freedom

Let us start with a proposed scenario, when one block Bs with ¢ts = 3, about to commit but waits for
another block Bs with ts = 2. However, Bs passes the proposal phase and waits for validators to decide to
weather it commits or not. If at least one validator has an issue and does not respond, then By, Bs, and all
the following blocks would wait for non-deterministic time to commit. To solve such a problem our algorithm
maintains the wait-freedom property. Wait-freed means that all blocks are able to complete within a finite
number of steps (time) [31]. Indeed, we implement the wait-freedom property using timeout; it starts directly
after block creation and finishes within a deterministic time. If it finishes before the block completes, it ignores
the pending votes and considers them as negatives. Then takes the decision of the majority to commit or abort.
This way blocks can still commit even after the timeout decision. For example, when the voters set contains 10
nodes, 8 of them vote to commit the block, 1 node votes to abort and 1 node delays the vote; then we consider
the vote of the one with delay as a negative vote, which makes the ratio 8 to 2; so it commits. Thus, all blocks
are eventually committed or aborted, which means no one stays in the execution forever and no one wait for
non-deterministic time to execute.

6. CONCLUSION

Blockchain technology has the potential to transform the digitization of industries for more efficien-
cies. In this paper we analyzed the Tendermint blockchain protocol and proposed various enhancements to
improve correctness, fairness, parallelism, performance, progressiveness and trustworthiness.

REFERENCES

[1] S. Nakamoto and A. Bitcoin, “A peer-to-peer electronic cash system,” Bitcoin.—URL: https://bitcoin.
org/bitcoin. pdf, 2008.

[2] R. Cohen, “Global bitcoin computing power now 256 times faster than top 500 supercomputers, com-
bined,” Forbes, November, 2013.

[31 S.Hakak, W.Z. Khan, G. A. Gilkar, M. Imran, and N. Guizani, “Securing smart cities through blockchain
technology: Architecture, requirements, and challenges,” IEEE Network, vol. 34, no. 1, pp. 8-14, 2020.

[4] N. Herbaut and N. Negru, “A model for collaborative blockchain-based video delivery relying on ad-
vanced network services chains,” IEEE Communications Magazine, vol. 55, no. 9, pp. 70-76, 2017.

[5] Q. Lyu, Y. Qi, X. Zhang, H. Liu, Q. Wang, and N. Zheng, “Sbac: A secure blockchain-based access
control framework for information-centric networking,” Journal of Network and Computer Applications,
vol. 149, p. 102444, 2020.

[6] Z.Zheng, S. Xie, H.-N. Dai, W. Chen, X. Chen, J. Weng, and M. Imran, “An overview on smart contracts:
Challenges, advances and platforms,” Future Generation Computer Systems, vol. 105, pp. 475-491, 2020.

[7] W.Khan, M. Rehman, H. Zangoti, M. Afzal, N. Armi, and K. Salah, “Industrial internet of things: Recent
advances, enabling technologies and open challenges,” Computers & Electrical Engineering, vol. 81, p.
106522, 2020.

[81 S. Gao, G. Piao, J. Zhu, X. Ma, and J. Ma, “Trustaccess: A trustworthy secure ciphertext-policy and
attribute hiding access control scheme based on blockchain,” IEEE Transactions on Vehicular Technology,
2020.

[9] S. Moin, A. Karim, Z. Safdar, K. Safdar, E. Ahmed, and M. Imran, “Securing iots in distributed
blockchain: Analysis, requirements and open issues,” Future Generation Computer Systems, vol. 100,
pp- 325-343, 2019.

[10] W. Z. Khan, E. Ahmed, S. Hakak, I. Yaqoob, and A. Ahmed, “Edge computing: A survey,” Future
Generation Computer Systems, vol. 97, pp. 219-235, 2019.

Fair and trustworthy: Lock-free enhanced tendermint blockchain ... (Basem Assiri)

2234) ISSN: 1693-6930

[11] L-C. Lin and T.-C. Liao, “A survey of blockchain security issues and challenges.” IJ Network Security,
vol. 19, no. 5, pp. 653-659, 2017.

[12] E. Buchman, J. Kwon, and Z. Milosevic, “The latest gossip on bft consensus,” arXiv preprint
arXiv:1807.04938, 2018.

[13] J. Kwon and E. Buchman, “Tendermint,” 2018.

[14] Y. Amoussou-Guenou, A. Del Pozzo, M. Potop-Butucaru, and S. Tucci-Piergiovanni, “Correctness and
fairness of tendermint-core blockchains,” arXiv preprint arXiv:1805.08429, 2018.

[15] ——, “Dissecting tendermint,” in International Conference on Networked Systems. Springer, 2019, pp.
166—-182.

[16] B. Assiri and W. Z. Khan, “Enhanced and lock-free tendermint blockchain protocol,” in 2019 IEEE Inter-
national Conference on Smart Internet of Things (SmartloT). 1EEE, 2019, pp. 220-226.

[17] T.-T. Kuo, H.-E. Kim, and L. Ohno-Machado, “Blockchain distributed ledger technologies for biomedical
and health care applications,” Journal of the American Medical Informatics Association, vol. 24, no. 6,
pp. 1211-1220, 2017.

[18] M. Pilkington, “Blockchain technology: principles and applications,” in Research handbook on digital
transformations. Edward Elgar Publishing, 2016.

[19] N. Shavit and D. Touitou, “Software transactional memory,” Distributed Computing, vol. 10, no. 2, pp.
99-116, 1997.

[20] A. S. Tanenbaum and M. Van Steen, Distributed systems: principles and paradigms. Prentice-Hall,
2007.

[21] H. Attiya and J. Welch, Distributed computing: fundamentals, simulations, and advanced topics. John
Wiley & Sons, 2004, vol. 19.

[22] B. Assiri and C. Busch, “Approximately opaque multi-version permissive transactional memory,” in 2016
45th International Conference on Parallel Processing Workshops (ICPPW). 1EEE, 2016, pp. 393-402.

[23] ——, “Approximate count and queue objects in transactional memory,” in 2017 IEEE International Par-
allel and Distributed Processing Symposium Workshops (IPDPSW). 1EEE, 2017, pp. 894-903.

[24] J. Aspnes, M. Herlihy, and N. Shavit, “Counting networks and multi-processor coordination,” in Proceed-
ings of the twenty-third annual ACM symposium on Theory of computing, 1991, pp. 348-358.

[25] ——, “Counting networks,” Journal of the ACM (JACM), vol. 41, no. 5, pp. 1020-1048, 1994.

[26] T. Coppieters, W. De Meuter, and S. Burckhardt, “Serializable eventual consistency: consistency through
object method replay,” in Proceedings of the 2nd Workshop on the Principles and Practice of Consistency
for Distributed Data, 2016, pp. 1-3.

[27] R. Guerraoui and M. Kapalka, “On the correctness of transactional memory,” in Proceedings of the 13th
ACM SIGPLAN Symposium on Principles and practice of parallel programming, 2008, pp. 175-184.

[28] M. Herlihy and N. Shavit, The art of multiprocessor programming. Morgan Kaufmann, 2011.

[29] F. Cristian and F. Jahanian, “A timestamp-based checkpointing protocol for long-lived distributed com-
putations,” in [1991] Proceedings Tenth Symposium on Reliable Distributed Systems. 1EEE, 1991, pp.
12-20.

[30] G. Tel, Introduction to distributed algorithms. Cambridge university press, 2000.

[31] M. Herlihy, “Wait-free synchronization,” ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 13, no. 1, pp. 124-149, 1991.

TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 4, August 2020 : 2224 — 2234

