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ABSTRACT

The target of this paper is designing a boundary controller for vibration suppression of

marine risers with coupling mechanisms under environmental loads. Based on energy

approach and the equations of axial and transverse motions of the risers are derived.

The Lyapunov direct method is employed to formulated the control placed at the riser

top-end. Stability analysis of the closed-loop system is also included.
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1. INTRODUCTION

Due to its physical structure, a riser basically is modeled as a tensioned beam [1], [2], [3], and [4]. In

[5], an active boundary control that produces a vibration-free for an Euler-Bernoulli beam system was designed.

Similar use of distributed control can be found in [6]. In [7], the authors used differential evolution optimization

to search for the best controller model structure and its parameters for beam control problem. The proposed

controller is able to suppress the beam?s vibration without knowledge of the system. However, the searching

process is conducted within a set of predefined control structures, no proof of the effectiveness of the control

was given.

With efforts to make voltage-source converter (VSC) more efficient in handling distributed parameter

systems, sliding-mode control (SMC) was given extra flexibility by adding a neural network and fuzzy control

in [8]. The author yield a control law in the form of a mass-damper-spring system at the boundary of a moving

string. However, difficulties in selecting proper fuzzy membership functions and a slow convergence speed due

to online-tuning might be troublesome when applying the aforementioned controls. After accepting that SMC

is non-analytical in the sliding surface, in the first control structure, a boundary layer was defined that enabled

fuzzy control by taking a switching function and its derivative as inputs while SMC was activated outside this

boundary to achieve fast transient responses. A series of papers with applications of SMC to flexible system

can be found in [9], [10], and [11]. A second attempt was made to design a fuzzy neural network control

(FNNC) that also employed switching variables as its inputs. The proposed FNNC conducted an online-tuning

process to regulate fuzzy reasoning to compromise system uncertainties. Both controls resulted in a variation

of axially moving string tension as the control action.

In [12], a beam model representing a tensioned riser is investigated, and a boundary controller con-

sisting of the top-end rise information is designed to achieve exponential stability. Krstic, et al. develop a sys-
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tematic approach based on backstepping control for beam-type structure in [13] and [14]. In [15], the authors

proposed a control assisted by a disturbance estimator to guarantee asymptotic stability of an Euler-Bernoulli

beam system subjected to unknown disturbances. He, et al. In [16], successfully develop a boundary control

for a flexible riser with vessel dynamics. In [17], the authors introduce control based on Lyapunov’s approach.

Through Lyapunov’s direct method, the riser’s transverse motion under time-varying distributed loads stability

is established. A control problem for a coupled nonlinear riser exhibiting longitudinal-transverse couplings is

investigated in [3]. Analogous applications to flexible systems are evidenced in [18], [2], and [19]. Since the

surface vessel is always control by a dynamic positioning system in practice [20], [21], [22], [23], [24], and

[25] the vessel’s motions normally are not considered. The paper deals with the vibration control problem for

marine risers under environmental disturbances. In addition, the longitudinal-transverse coupling in the riser

motion in taken into account. Different from [26], the control is formulated without the assumption of positive

tension. Existence, uniqueness, and convergence of the solutions of the closed-loop system is verified in the

paper.

2. MATHEMATICAL FORMULATION

The riser kinetic energy is specified by

T =
m0

2

∫ L

0

[

(∂u(z, t)

∂t

)2
+
(∂w(z, t)

∂t

)2
]

dz, (1)

where u(z, t) is transverse displacements in the X direction and w(z, t) is longitudinal displacement in the

Z direction. L denote the riser length, m0 = ρA is the riser oscillating mass per unit length, A is the riser

cross-section area, and ρ represents the mass density of the riser. Assuming that the riser is constrained by

constant tension P0. The riser potential energy is given as

P =
EI

2

∫ L

0

(∂2u(z, t)

∂z2

)2
dz +

P0

2

∫ L

0

(∂u(z, t)

∂z

)2
dz +

EA

2

∫ L

0

[∂w(z, t)

∂z
+

1

2

(∂u(z, t)

∂z

)2
]2

dz, (2)

where E is the Young’s modulus and I is the second moment of the riser’s cross section area. The hydrodynamic

forces can be given as [26]

fu(z, t) = fuD + fuL, fv(z, t) = fwD + fwL,

fuD = −Ω1Dut(z, t), fwD = −Ω2Dvt(z, t), (3)

where fuD, fwD and fuL, fwL correspond to the distributed damping and external forces. The work done by

the hydrodynamic forces acting on the system is calculated as

Wf =

∫ L

0

fu(z, t)u(z, t)dz +

∫ L

0

fw(z, t)w(z, t)dz, (4)

The work done by boundary control is

Wm = Uu(L, t)u(L, t) + Uw(L, t)w(L, t), (5)

where Uu(L, t) and Uw(L, t) are the boundary control forces. The total work done on the system is W =
Wf +Wm. The extended Hamilton principle is indicated as

∫ t2

t1

δ(T − P +W )dt = 0. (6)

For the sake of clear presentation, (z, t) is omitted whenever it is applicable. The kinetic energy variation can

be written as
∫ t2

t1

δTdz = −m0

∫ t2

t1

∫ L

0

(∂2u

∂t2
δu+

∂2w

∂t2
δw
)

dzdt, (7)

TELKOMNIKA Telecommun Comput El Control, Vol. 19, No. 1, February 2021 : 235 – 243



TELKOMNIKA Telecommun Comput El Control ❒ 237

where δu = δv = δw = 0 at t = t1, t2 have been used. For the riser under consideration, ball joints arranged

at both ends (Figure 1) implying that bending free. In addition, the lower end stationed at the well-head. The

riser dynamics is yielded

−m0utt−EIuzzzz+P0uzz+
3EA

2
u2

zuzz+EAwzzuz+EAwzuzz −Ω1Dut+fu = 0,

−m0wtt − EAwzz + EAuzuzz − Ω2Dwt + fw = 0,

− EIuzzz(L, t) + P0uz(L, t) +
EA

2
u3

z(L, t) + EAwz(L, t)uz(L, t) = Uu(L, t),

EAwz(L, t) +
EA

2
u2

z(L, t) +
EA

2
v2z(L, t) = Uw(L, t),

uzz(L, t) = vzz(L, t) = uzz(0, t) = vzz(0, t) = 0, u(0, t) = v(0, t) = w(0, t) = 0, (8)

Figure 1. Riser coordinates

3. CONTROL DESIGN

In order to minimize the riser vibration using measured state and applied forces at the top end, we

consider the following Lyapunov candidate function

V =
m0

2

∫ L

0

(u2

t + w2

t )dz +
P0

2

∫ L

0

u2

zdz +
EA

2

∫ L

0

(

wz +
u2

z

2

)2
dz +

EI

2

∫ L

0

u2

zzdz

+ ρ1

∫ L

0

uutdz+ρ2

∫ L

0

wwtdz+
(

k1+
k2ρ1

m0

)

u2(L, t)+
(

k3+
k4ρ2

m0

)

w2(L, t). (9)

Since ∀t ≥ 0 and u(0, t) = w(0, t) = 0, it can be shown that

γ1ρ1

∫ L

0

u2dz ≤ 4L2γ1ρ1

∫ L

0

u2

zdz, γ2ρ2

∫ L

0

w2dz ≤ 4L2γ2ρ2

∫ L

0

w2

zdz. (10)

where γ1 and γ2 are positive constants, it can be deduced that

−4L2γ1ρ1

∫ L

0

u2

zdz−
ρ1

γ1

∫ L

0

u2

tdz ≤ ρ1

∫ L

0

uutdz ≤ 4L2γ1ρ1

∫ L

0

u2

zdz+
ρ1

γ1

∫ L

0

u2

tdz, (11)

−4L2γ2ρ2

∫ L

0

w2

zdz−
ρ2

γ2

∫ L

0

w2

t dz ≤ ρ2

∫ L

0

wwtdz ≤ 4L2γ2ρ2

∫ L

0

w2

zdz+
ρ2

γ2

∫ L

0

w2

t dz. (12)
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The (9) can be lower and upper bounded by

V ≥

(

m0

2
−

ρ1

γ1

)

∫ L

0

u2

tdz +

(

m0

2
−

ρ2

γ2

)

∫ L

0

w2

t dz +

(

P0

2
− 4L2γ1ρ1

)

∫ L

0

u2

zdz

+

(

EA

2
− 4L2γ2ρ2

)

∫ L

0

w2

zdz +
EA

8

∫ L

0

u4

zdz+
EA

4

∫ L

0

wzu
2

zdz+
EI

2

∫ L

0

u2

zzdz

+
1

2

(

k1+
k2ρ1

m0

)

u2(L, t)+
(

k3+
k4ρ2

m0

)

w2(L, t), (13)

and

V ≤

(

m0

2
+

ρ1

γ1

)

∫ L

0

u2

tdz +

(

m0

2
+

ρ2

γ2

)

∫ L

0

w2

t dz +

(

P0

2
+ 4L2γ1ρ1

)

∫ L

0

u2

zdz

+

(

EA

2
+ 4L2γ2ρ2

)

∫ L

0

w2

zdz +
EA

8

∫ L

0

u4

zdz+
EA

4

∫ L

0

wzu
2

zdz+
EI

2

∫ L

0

u2

zzdz

+
1

2

(

k1+
k2ρ1

m0

)

u2(L, t)+
(

k3 +
k4ρ2

m0

)

w2(L, t). (14)

If we select ρ1, ρ2, γ1, and γ2 such that:

m0

2
−

ρ1

γ1
= c1,

m0

2
−

ρ2

γ2
= c2,

P0

2
− 4L2γ1ρ1 = c3,

P0

2
− 4L2γ2ρ2 = c4, (15)

where ci, for i = 1 . . . 4, are strictly positive constants. Differentiating (9) and taking (8) into account yields

V̇ =
(

ut(L, t) +
ρ1

m0

u(L, t)
)(

− EIuzzz(L, t) + P0uz(L, t) +
EA

2
u3

z(L, t)

+ EAwz(L, t)uz(L, t)
)

+
(

wt(L, t)+
ρ2

m0

w(L, t)
)(

EAwz(L, t)+
EA

2
u2

z(L, t)
)

−
(

Ω1D−ρ1
)

∫ L

0

u2

tdz −
(

Ω2D − ρ2
)

∫ L

0

w2

t dz −
ρ1EI

m0

∫ L

0

u2

zzdz −
ρ1P0

m0

∫ L

0

u2

zdz

−
ρ1EA

2m0

∫ L

0

u4

zdz −
EA

m0

(

ρ1 +
ρ2

2

)

∫ L

0

u2

zwzdz −
ρ1Ω1D

m0

∫ L

0

uutdz

+
ρ1

m0

∫ L

0

ufudz −
ρ2EA

m0

∫ L

0

w2

zdz −
ρ2Ω2D

m0

∫ L

0

wwtdz +

∫ L

0

utfudz

+

∫ L

0

wtfwdz +
ρ2

m0

∫ L

0

wfwdz +
(

k1 +
k2ρ1

m0

)

u(L, t)ut(L, t)

+
(

k3 +
k4ρ2

m0

)

w(L, t)wt(L, t). (16)

Since

−
Ω1Dρ1

m0

∫ L

0

uutdz ≤
4L2Ω1Dρ1γ3

m0

∫ L

0

u2

zdz +
Ω1Dρ1

γ3m0

∫ L

0

u2

tdz, (17)

−
Ω2Dρ2

m0

∫ L

0

wwtdz ≤
4L2Ω2Dρ2γ4

m0

∫ L

0

w2

zdz +
Ω2Dρ3

γ4m0

∫ L

0

w2

t dz, (18)

and noted that −EIuzzz(L, t)+P0uz(L, t)+
EA
2
u3

z(L, t)+EAwz(L, t)uz(L, t) = Uu(L, t) and EAwz(L, t)+
EA
2
u2

z(L, t) = Uw(L, t), the boundary controls are designed as follows,

Uu = −k1u(L, t)− k2ut(L, t), Uw = −k3w(L, t)− k4wt(L, t), (19)
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where coefficients ki, for i = 1 . . . 4, are strictly positive constants. Substituting the controls (19) into (16)

gives

V̇ ≤−
k1ρ1

m0

u2(L, t)−k2u
2

t (L, t)−
k3ρ2

m0

w2(L, t)−k4w
2

t (L, t)−
(

Ω1D−ρ1−
Ω1Dρ1

γ3m0

)

∫ L

0

u2

tdz

−
(

Ω2D − ρ2 −
Ω2Dρ2

γ4m0

)

∫ L

0

w2

t dz−
ρ1EI

m0

∫ L

0

u2

zzdz−
(ρ1P0

m0

−
4L2Ω1Dρ1γ3

m0

)

∫ L

0

u2

zdz

−
(ρ3EA

m0

−
4L2Ω2Dρ2γ4

m0

)

∫ L

0

w2

zdz −
ρ1EA

2m0

∫ L

0

u4

zdz −
EA

m0

(

ρ1 +
ρ2

2

)

∫ L

0

u2

zwzdz

−
ρ1Ω1D

m0

∫ L

0

uutdz+
ρ1

m0

∫ L

0

ufudz −
ρ2Ω2D

m0

∫ L

0

wwtdz +

∫ L

0

utfudz +

∫ L

0

wtfwdz

+
ρ2

m0

∫ L

0

wfwdz. (20)

Remark: It is noted that the authors of [26] use the assumption the riser is alsway stretched in order to conclude

that
∫ L

0
u2

zwzdt is positive. This is not the case in practice since the riser can be bulked or stretched according

to external disturbance. Considering the following term

∆ = −∆1

∫ L

0

w2

zdt−∆1

∫ L

0

u4

zdt−∆3

∫ L

0

u2

zwzdt (21)

where

∆1 =
(ρ3EA

m0

−
4L2Ω2Dρ2γ4

m0

)

, ∆2 =
ρ1EA

2m0

, ∆3 =
EA

m0

(

ρ1 +
ρ2

2

)

(22)

∆ con be written as

∆ = ∆1

∫ L

0

w2dt−
(

∆2 −
1

4
∆3

)

∫ L

0

u4

z −∆3

∫ L

0

(

wz +
1

4
u2

z

)

dz (23)

To remove the requirement of positive tension, we use the following property [27] that

w2u2

z +
1

4
≥ 0 (24)

From (20), the designed parameters are selected such that

Ω1D − ρ1 −
Ω1Dρ1

γ3m0

= c5, Ω2D − ρ2 −
Ω2Dρ2

γ4m0

= c6,

ρ1P0

m0

−
4L2Ω1Dρ1γ3

m0

= c7,
ρ3P0

m0

−
4L2Ω2Dρ3γ4

m0

= c8, ∆2 −
1

4
∆3 = c9 (25)

where c1, for i = 5 . . . 9, are strictly positive constants. Applying the upper bound of V in (14), (20) can be

written as

V̇ ≤−
k1ρ1

m0

u2(L, t)− k2u
2

t (L, t)−
k3ρ2

m0

w2(L, t)− k4w
2

t (L, t)− cV +
ρ1

m0

∫ L

0

ufudz

+

∫ L

0

utfudz +

∫ L

0

wtfwdz +
ρ3

m0

∫ L

0

wfwdz, (26)

where

c =
min

{

c5, c6, c7, c8,
ρ1EI
m0

, ρ1EA
2m0

, β1

}

max
{

m0

2
+ ρ1

γ1

, m0

2
+ ρ2

γ2

, P0

2
+ 4L2γ1ρ1,

EA
2

+ 4L2γ2ρ2,
EA
8
, EI

2
, β2

} , (27)
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where

β1 =
{EA

m0

(

ρ1 +
ρ2

2

)

, k1
ρ1

m0

, k3
ρ2

m0

}

, β2 =
{1

2

(

k1 +
k2ρ1

m0

)

,
1

2

(

k3 +
k4ρ2

m0

)}

. (28)

Remark: Different from [16], the control design process is carried out in this chapter without any assumptions

on boundedness of time and spatial derivatives of the riser system.

Equation (26) can be written as

V̇ ≤ −k1
ρ1

m0

u2(L, t)− k2u
2

t (L, t)−
k3ρ2

m0

w2(L, t)− k4w
2

t (L, t)− cV +∆c, (29)

where

∆c =
ρ1

m0

∫ L

0

ufudz +
ρ2

m0

∫ L

0

wfwdz +

∫ L

0

utfudzdz +

∫ L

0

wtfwdz. (30)

An upper bound of ∆c can be written as

∆c ≤
1

γ5

∫ L

0

u2

tdz + γ5

∫ L

0

f2

udz +
4L2ρ1

m0γ6

∫ L

0

u2

zdz +
γ6ρ1

m0

∫ L

0

f2

udz

2 +
1

γ7

∫ L

0

w2

t dz + γ7

∫ L

0

f2

wdz +
4L2ρ2

m0γ8

∫ L

0

w2

zdz +
γ8ρ2

m0

∫ L

0

f2

wdz. (31)

There exists a strictly positive constant ξ such that the following inequality holds

∆c ≤ξ

(

∫ L

0

u2

zdz +

∫ L

0

u2

tdz +

∫ L

0

w2

zdz +

∫ L

0

w2

t dz

)

+
1

ξ

(

γ5 +
γ6ρ1

m0

)

∫ L

0

f2

udz +
1

ξ

(

γ7 +
γ8ρ2

m0

)

∫ L

0

f2

wdz. (32)

From the lower bound of V , it is shown that

ξ

(

∫ L

0

u2

zdz +

∫ L

0

u2

tdz +

∫ L

0

w2

zdz +

∫ L

0

w2

t dz

)

≤ ξ
V

ζ
, (33)

where

ζ = min
{

c1, c2, c3, c4,
EA

8
,
EI

2
,
1

2

(

k1 +
k2ρ1

m0

)

,
1

2

(

k3 +
k4ρ2

m0

)

}

. (34)

Substituting (32)and (33) into (29) gives

V̇ ≤−k1
ρ1

m0

u2(L, t)−k2u
2

t (L, t)−
k3ρ2

m0

w2(L, t)−k4w
2

t (L, t)−
(

c−
ξ

ζ

)

V +
1

ξ
Q, (35)

where

Q =
(

γ5 +
γ6ρ1

m0

)

Q1 +
(

γ7 +
γ8ρ3

m0

)

Q2, (36)

and

Q1 = max
t≥0

∫ L

0

f2

udz, Q2 = max
t≥0

∫ L

0

f2

wdz. (37)

If ξ is picked such that c̄ = c− ξ
ζ

is strictly positive, then:

V̇ ≤ −c̄V +
1

ξ
Q. (38)

Inequality (38) implies that V (t) exponentially converges to nonnegative constant 1

ξ
Q. Using Inequality A.2

[26], it can be conclude that all terms |u(z, t)| and |w(z, t)| are bounded and exponentially converge to a

non-negative constant defined be the value of external disturbances.
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4. NUMERICAL SIMULATIONS

At this stage, we illustrate the advantages of the proposed control through a set of simulations.

The marine riser system parameters are given as in Table 1 The linear current velocity vector in a form of

V = [ 1
L
s, 0.5

L
s, 0]T is employed in numerical simulations. The hydrodynamic forces can be given as [26].

Simulations are carried out without the proposed control and with the control by set k1 = k2 = 500. The riser

displacements in the X and Z directions for uncontrolled and controlled cases are plotted in Figure 2 and Figure

3, respectively. It can be observed that when the control is activated, displacement magnitudes in all directions

(X and Z) are reduced. The reduction in displacement magnitudes illustrates the effectiveness of the proposed

control in driving the riser to the vicinity of its equilibrium position. It also can be observed in Figure 4 that

the control forces required to drive the risers are reasonable for the riser under consideration.

Table 1. The marine riser parameters
Nomenclature Description Value

L Length 1000m

D0 Diameter 0.61m

Di Diameter 0.575m

DH Diameter 0.87m

ρw Density 1025kg/m3

ρm Density 1205kg/m3

E Young’s modulus 2× 10
10kg/m2

P0 Tension 2.15× 10
6N

(a) (b)

Figure 2. The riser’s motions without control: (a) u(z, t) and (b) w(z, t)

(a) (b)

Figure 3. The riser’s motions with control: (a) u(z, t) and (b) w(z, t)

Vibration attenuation control of ocean marine risers with axial-transverse couplings (Tung Lam Nguyen)
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(a) (b)

Figure 4. Control input: (a) Uu(L, t), and (b) Uw(L, t)

5. CONCLUSIONS

The paper copes with minimizing vibration of the marine riser. After deriving the set of equations

specifying the riser dynamics, the boundary controller applied at the riser top end is designed thank to Lya-

punov’s direct method without the assumption of positive tension applied to the riser. The ability in stabilizing

the riser at its equilibrium position of the boundary control is validated analytically and illustrated numerically.
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