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 The detection of genetic mutations has attracted global attention. several 

methods have proposed to detect diseases such as cancers and tumours. One 

of them is microarrays, which is a type of representation for gene expression 

that is helpful in diagnosis. To unleash the full potential of microarrays, 

machine-learning algorithms and gene selection methods can be 

implemented to facilitate processing on microarrays and to overcome other 

potential challenges. One of these challenges involves high dimensional data 

that are redundant, irrelevant, and noisy. To alleviate this problem, this 

representation should be simplified. For example, the feature selection 

process can be implemented by reducing the number of features adopted in 

clustering and classification. A subset of genes can be selected from a pool of 

gene expression data recorded on DNA micro-arrays. This paper reviews 

existing classification techniques and gene selection methods. The 

effectiveness of emerging techniques, such as the swarm intelligence 

technique in feature selection and classification in microarrays, are reported 

as well. These emerging techniques can be used in detecting cancer. The 

swarm intelligence technique can be combined with other statistical methods 

for attaining better results. 
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1. INTRODUCTION 

Bioinformatics involves the use of computers in managing biological information [1]. In general, 

Bioinformatics involves microarrays classification, organization, and interpretation. This technology can be 

employed to solve various problems related to the biological field. For example, the prediction process can be 

used to control and prevent many diseases such as Cancer. The process can also be used to discover new 

disease markers. Detection of mutations in gene expression patterns would essentially lead to the 

development of an efficient therapy method [2]. The gene controls cell development, and malfunction of 

genes leads to tumour formation or cancer. Deoxyribonucleic acid (DNA) microarray approach is a powerful 

approach that helps explore the genetic defects in the human body [3]. For example, microarray technology 

has led to successful cancer diagnosis [4, 5]. Gene expression studies that involve gene selection, 

classification and clustering have been carried out [6]. A suitable hybrid system in bioinformatics has been 

developed to detect cancer (gene mutation) and other diseases in a more accurate manner [7]. 

https://creativecommons.org/licenses/by-sa/4.0/
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2. LITERATURE REVIEW 

Cancer involves abnormal cell-growths, which is fatal if it is ignored as the developed tumour may 

spread to other body parts via bloodstream [8]. There are several common cancers: lung, prostate, breast, and 

oral cancers and colons [9]. An example of the cancer level shown in Figure 1, and for this, we need to know 

what the DNA microarray technology and what kind the machine is learning that applied to the microarray.  
 

 

 
 

Figure 1. Cancer progression in the colon 
 

 

2.1. Microarray technology 

In Biology, DNA is the blueprint of an organism and therefore it has all the information necessary 

for the biological process. When it comes to computational biology, this information is required for 

prediction, analysis and so much more. Hence, this information is required to be present in a form where 

computationally relevant for processing and analysis. Therefore, gene expression profiles in the form of 

numerical representation are used to perform feature selection, and classification. Microarray technology is 

the solution to such a requirement. DNA microarray (also commonly known as DNA chip or biochip) can be 

adapted to reveal the expression levels of many genes in a single reaction concurrently [10]. Firstly, the 

structure of the protein is different from the structure of the gene and its analysis is still difficult. Therefore, 

the analysis of thousands of proteins will take a great deal of time. We also saw that one amino acid can be 

encoded by several codons, sequence of amino acids in the protein We will have several probabilities for the 

gene formula that produced this protein. The easiest way is to extract the mRNA in the cell and measure its 

percentage. Generally, the hybridization principle is used in Microarray technology to measure the gene 

expression levels in the human body [11]. 

Figure 2 shows the basic process involved in microarray technology. To conduct gene expression 

profiling, DNA sample and control sample from a patient is obtained. Then, DNA in the sample is denatured 

into single-stranded molecules. After that, the single-stranded molecules are cut into smaller fragments and 

then label it with a fluorescent dye. The green dye is for the control sample and red dye is for a normal 

sample. Both samples are inserted into the chip to hybridize or bind with the synthetic DNA on the chip. 

After the hybridization, the gene expression can be identified through the changes of colour on the chip. 

Therefore, this technology can be used in cancer diagnosis and drug response [12]. Thus, via machine 

learning, significant information about genes representing a disease state and those highly associated genes 

that shared biological features can be extracted [13].  

An accurate cancer diagnosis can be attained by executing the microarray data classification by 

simply building classifiers to compare the gene expression profiles of tissues of known and unknown cancer 

status [14]. As a result, the classification process could be misleading due to the existence of noisy and 

irrelevant data. Therefore, a feature selection method should be devised to reduce the size of the feature set, 

or gene set [15]. In general, a microarray diagnosis process involves feature selection and classification [16]. 

To update, many machine learning algorithms have been developed for detecting mutations, e.g., ANN, 

SVM, clustering, and swarm intelligence algorithm. By using these methods, an optimal subset of genes can 

then be chosen to build a classification model.  
 

2.2. Feature selection techniques 

There are three feature selection techniques in classification, i.e., filter, wrapper, and embedded 

methods as shown in Figure 3. Filter based approaches are well known for data filtering or pre-processing to 

rank the genes and then the highly ranked genes will be used in further analysis. Then for the wrapper-based 

method, gene selection is done using the machine learning method and uses cross-validation to assess the 

feature subset score. Whereas embedded based. However, microarray data contain many non-significant 

features that would degrade the performance of most of the learning algorithms [17].  
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Figure 2. DNA microarrays 
 

 

 
 

Figure 3. The feature selection methods 
 

 

2.3. Different methods of feature selection 

Normalization involves reducing unwanted variation within arrays. Typical assumptions made in 

some major normalization methods are: 

− Only a small number of genes are differentially expressed in terms of condition. 

− Annotation: This process involves gene characterization. 

− Summarization: Performing only a single measurement after performing a combination in a certain manner 

− Statistical Analysis: From a statistical point of view, the number of genes could be larger than the number of 

samples, thus leading to faulty classification. Feature selection should be performed by selecting the most 

informative gene to improve the accuracy and efficiency of the classification process and to address the 

problem of dimensionality. 

− Biological Interpretation: To interpret microarray data, one must have an adequate number of replicate 

measurements to determine results that have real predictive value. Dimensionality reduction is therefore 

essential. 

In microarray classification, samples are classified into both abnormal (cancer) and normal datasets 

based on microarray measurements [18, 19]. It is challenging to train the classifiers on such datasets of high 

dimensionality [20]. Preprocessing is an essential step to address this dimensionality problem, and then apply 

the classification algorithm for monitoring model complexity via regularization. Machine learning enables a 

system to automatically perform the learning process. It is not a real learning process; however, the system 

can recognize complex data patterns and make intelligent decisions based on computational methods. 

Classification is a procedure used to categorize sample data into a few classes. Some popular classification 

methods employed in data mining and other fields are artificial neural network (ANN), decision tree, support 

vector machine (SVM) and swarm intelligence. 

Artificial neural network (ANN) or neural network (NN) is a method in artificial intelligence that 

mimics the complex processes as in the human brain. ANN requires a huge number of units’ collection that is 

interconnected to permit communication between the units. The unit also denoted as nodes or neurons. They 

are simple processers function in parallel. Next is the decision tree method; this is a predictive modelling tool 

that falls under supervised learning. There are two main entities in decision tree called nodes. Besides, there 
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are two types of decision trees such as classification and regression trees. SVM is another popular supervised 

classification method. The basic principle of SVM is, creates hyperplane that separates the dataset into 

classes. Furthermore, the swarm intelligence method is to use numerous simple agents with no rule to interact 

locally and globally. Popular swarm intelligence algorithms are ant colony optimization (ACO), artificial bee 

colony optimization (ABC), and particle swarm optimization (PSO).  

 

 

3. RELATED WORK 

Several microarray applications have been reported in related review [21]. However, microarray can 

be hybridized with machine learning algorithms such as non-swarm intelligence and swarm intelligence 

algorithms. After detecting and filtering gene expression datasets, samples should be accurately classified 

into known groups by the features of gene expression. Hence, support vector machines (SVM), prediction 

analysis of microarrays (PAM), classification and regression trees (CART), K nearest-neighbor (K-NN) 

methods can be employed. Turgut, et al., applied a machine learning classifier for microarray breast cancer. 

First, they perform the right types of machine learning algorithms without applying any feature selection, and 

then they used two different feature selections. Examples of machine learning algorithms KNN, SVM, 

decision trees, MLP, random forest, logistic regression, adaboost and gradient boosting machine [22]. They 

claimed that MLP did not improve accuracy. 

Bharathi, A. M. Natarajan minimized the gene set for more accurate classification using  

ANOVA [23]. The ranking of a gene was computed using ANOVA. SVM was used as a classifier. The 

technique was compared with the T-test classifier. Interestingly, the hybridization technique of ANOVA and 

SVM was accurate even using a minimum number of genes. While, another research proposed an artificial 

immune recognition system to classify microarray data (cancer, disease or normal tissues) [24]. The result 

was then compared with those of other classifiers. In AIRS, a memory cell is used for training samples to 

build a classifier. The experiment was applied to colon cancer, brain tumour, and nine tumour datasets. AIRS 

performed better than other machine learning methods such as KNN, OneR, and Naïve Bayes. 

Karayianni, et al., employed the fuzzy clustering method with viewpoints to identify unlabeled 

samples [24]. The clusters are identified by calculating the expression mean of each feature with labelled 

samples. This technique was applied to breast cancer, brain cancer, AML, and MLL datasets. Sudip Mandal 

and Indrojit Banerjee applied ANN to diagnose and detect cancer [25]. A special kind of ANN called 

multilayer feed forward neural network (MLFF) was used. The performance of ANN is dependent on 

parameters such as the number of hidden layers, number of nodes and weights. Different datasets consisting 

of breast and lung cancerous cells were employed. Two analyses were performed: cross-validation and new 

dataset testing. Datasets were divided into training (80%) and testing (20%) datasets. Due to the noise in the 

dataset, the accuracy was 96% after cross-validation and 94% for new dataset testing. ANN was designed 

with a single hidden layer, but the structure of ANN can be tuned for better accuracy. 

In [26], they used the α depended on the degree-based feature selection method to solve the 

imbalance problem between the feature number and the instance number in microarray data-based gene 

expression. The classification accuracy of smaller gene size was better than that of larger gene size. Nine 

datasets have been used in this study such as colon tumour, central nervous system tumour, diffuse large B 

cell lymphoma, leukemia 1, AML, lung cancer, prostate cancer, breast cancer, and leukaemia. The results 

were compared with other techniques such as NB (Naïve Bayes), DT (decision tree), SVM (support vector 

machine) and K-NN (K-nearest neighbour). As reported, the k-NN classifier had better performance under 

seven α values. Li and colleagues assessed five feature selection methods such as KNN, C4.5, Naïve Bayes 

and SVM with leukemia and ovarian cancer datasets [27, 28] has presented a comparative study on three 

feature selection methods with four data sets. They used prostate, colon tumour, and Leukemia and Hepato 

datasets. SVM performs better on all the datasets. 

Chanho and Sung-Bae conducted an analysis of colon cancer and Lymphoma datasets by seven gene 

selection methods and six classifiers. Besides, Ji-Gang and Hong-Wen developed a gene selection method 

based on Bayes error filter (BBF) [29]. BBF can select significant genes while removing non-significant 

genes. This evaluated using datasets include colon, prostate, lymphoma, leukemia, and DSLBCL. They had 

used SVM and KNN for measuring accuracies. They observed that SVM performed well on all the datasets 

used. Xing, Jordan, and Karp studied different classifiers such as the Gaussian classifier, regression classifier, 

and KNN. Feature reduction by these three methods shows better results. They proposed a hybrid approach 

of filter and wrapper for feature selection in high dimensional data. Mainly they have used Markov Blanket 

filtering and then classified with the use of three different classifiers. Thus, these classifiers able to perform 

better with the reduced significant feature space compared to full feature space [30].  

On top of that, Onskog and colleagues had presented microarrays classification on seven  

cancer-related data. Double cross-validation methods are applied to obtain a strong error rate. The results 
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show that SVM with a radial basis kernel and linear kernel performed steadily with these data sets. 

Moreover, based on the t-test there is a synergistic association between the methods and gene selection 

process [31]. Besides this, [32] proposed a machine learning study on prostate cancer data set. In particular, 

the t-test and interquartile range are combined for feature selection. The results produced show that Bayes 

Network is outperformed, Naïve Bayes. In [33] different discrimination methods are used for classification 

on three cancer gene expression data sets. The methods are nearest-neighbour classifiers, linear discriminant 

analysis, and classification trees. From the output, the nearest neighbour classifies better compared to the 

decision tree classifier.  

Furthermore, Sung Bae and colleagues used three microarray data sets namely, Leukemia, colon, 

and Lymphoma with feature selection and classifiers. The investigation results show that the ensemble 

classifiers produced the best classification rate compared to other methods [34]. Abusamra has done an 

investigation on eight different feature selection methods and three classification methods. The feature 

selection methods include max minority, information gain, Gini index, t- statistics, the sum of variances and 

one-dimension support vector machine was compared. The classification methods are SVM, KNN, and 

random forest. Two types of glioma expression data sets are used in this experiment. The results show that 

the selection of significant genes had boosted classification accuracy. In both datasets, SVM performed better 

than other classification methods [35].  

The maximum relevance minimum redundancy (mRMR) algorithm is a special group of filter-based 

approaches which able to select concurrently highly predictive but uncorrelated features. This algorithm 

mainly selects features subset having the maximum association with a class (relevance) and the minimum 

association between themselves (redundancy). The feature’s ranking is given based on minimal-redundancy-

maximal-relevance measures. Hence F-statistics is used to calculate the relevance and Pearson correlation 

coefficient is used to calculate the redundancy [36]. Besides this, [37] developed the Monte Carlo feature 

selection (MCFS) algorithm to identify informative features. The MCFS algorithm is integrating 

interdependencies among features. It has some similarity as in random forest methodology but differs in 

terms of feature ranking calculation [37].  

Besides this, Alshamlan and colleagues proposed a new feature selection method called minimum 

redundancy maximum relevance (mRMR) hybrid with an artificial bee colony (ABC). This algorithm is 

specifically to select significant genes from the microarray. The experiment is conducted with six binary and 

multiclass data sets. The produced result shows that the proposed algorithm has achieved better classification 

accuracy compared to mRMR-GA and mRMR-PSO algorithms [38]. Jayger, Sengupta, and Ruzzo [39] study 

various gene selection methods for microarray data classification. They used various statistics test with gene 

selection methods. The statistics tests include Fisher, Golub, Wilcoxon, TNoM, and t-test.   

Huawen, Lei and Huijie compared various gene selection methods [40]. They compared ensemble 

gene selection by grouping with the other three gene selection methods FCBF, mRMR, and ECRP. They 

used five datasets with these techniques. They used two classification methods Naïve Bayes and KNN. They 

compared and analyzed which classification method is effective. While, in [25], they employed the fuzzy 

clustering method with viewpoints to identify unlabeled samples. The viewpoints were constructed by 

computing the average expression for each feature (probe/gene) in the samples with a label. In their work, the 

previously available microarray expression data was introduced as viewpoints in the clustering process. The 

technique was applied to breast cancer, brain cancer, AML, and MLL datasets. The method was found to be 

better than other clustering algorithms such as K means, fuzzy c-means, affinity propagation, and the 

clustering method based on prior biological knowledge. However, Table 1 shows the most related works in 

microarray DNA.  
 
 

Table 1. Most related work for the Microarray DNA 
Dataset References 

Acute lymphoblastic leukemia (ALL), AML, MLL, DLBCL, Lymphoma, SRBCT [26] [27, 29, 44] 
Breast Cancer [32] 

Colon Cancer [29, 44] 

Prostate [16, 29, 44] 
Ovarian cancer [27] 

Lung Cancer [16, 26] 

Glioma, Brain tumour, CNS (Central Neural System) [16, 35] 
Hepatic [44] 

Diabetes [32] 

 

 

Furthermore, [41] hybrid cellular automata and ant colony optimization method to select the 

significant genes then used for classification. Thus, it has produced high accuracy compared to other selected 

methods as shown in the paper. Moreover in [42], an artificial neural network (ANN) is applied to ALL and 
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AML datasets. This research had generated 98% accuracy, where there is no error in ALL datasets and one 

error in AML dataset. The cancer genome atlas (TCGA) is a pilot project launched by the National Institute 

of Health (NIH). This is basically to create a comprehensive atlas of cancer genomic profiles. Hence, most of 

the gene expression data are publicly available at TCGA that are used in prognosis and diagnosis [43].  

 

 

4. CONCLUSION 

This paper reviews the existing classification techniques applied in microarrays that contain high 

dimensional data. The high dimensional data problem can be solved using feature selection methods. Many 

gene selection methods have been used to classify cancerously or any other disease datasets with multi or 

binary classes. The underlying challenge is the efficient detection of different infected genes with different 

characteristics such as mutated genes caused by viruses, radiation, mutagenic chemicals. Machine learning 

techniques have been proposed to analyze microarray data. Hybridized methods can eliminate noise, reduce 

the number of features and ease classification. Swarm intelligence algorithms such as ant colony optimization 

(ACO), artificial bee colony optimization (ABC), particle swarm optimization (PSO) are powerful in feature 

selection. Hybridization between the classical machine learning techniques and the emerging machine 

learning techniques such as swarm intelligence algorithms can yield better results in diagnosis and 

classification. Currently, researchers have developed hybridized computational methods with swarm 

intelligence (SI) methods and proven that these hybridized systems are more accurate. Nevertheless, a model 

that solely relies on swarm intelligence algorithms should be built and analyzed. 
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