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 In this paper, a novel split-radix algorithm for fast calculation the discrete 

Hartley transform of type-II (DHT-II) is intoduced. The algorithm is 

established through the decimation in time (DIT) approach, and implemented 

by splitting a length N of DHT-II into one DHT-II of length N/2 for even-

indexed samples and two DHTs-II of length N/4 for odd-indexed samples. 

The proposed algorithm possesses the desired properties such as regularity, 

inplace calculation and it is represented by simple closed form decompositions 

leading to considerable reductions in the arithmetic complexity compared to the 

existing DHT-II algorithms. Additionally, the validity of the proposed 

algorithm has been confirmed through analysing the arithmetic complexity 

by calculating the number of real additions and multiplications and 

associating it with the existing DHT-II algorithms. 
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1. INTRODUCTION  

The Hartley transform (HT) is an orthogonal transform that maps a real valued function into its 

frequency real components [1], used in diverse fields such as signal/image processing, digital communications 

and many other applications [2]. Although HT and the Fourier transform (FT) [3], shares equivalent properties, 

it allows a function to be separated into two autonomous sets of sinusoidal components; these sets are 

characterized in terms of negative and positive frequency components respectively. Another advantage of the 

HT over the FT is that the computation of the kernel of HT is exactley same as that of its inverse, so that the 

inverse transform differs from forward only by the scale factor, hence identical utilization of the HT can be used 

for signal synthesis and analysis. As we know that a real generalized discrete version of Hartley transform 

(GDHT) [4] can be defined analogous to the complex generalized discrete of fourier transform (GDFT) [5]. 

Also, it is well known that there is a fast way of computing Hartley transform that is analogous to the fast 

fourier transform (FFT) as there is a simple step to go from DFT to the DHT [6]. Consequently the fast 

algorithm developed in this paper also constitutes a fast way of arriving at GDFT. In fact the approach via the 

GDHT proves to be advantageous mainly because of the simplifications that results from the fact that no 

complex arithmetic is required when real data are being processed. 

In genral, the DHT transform kernel can be extended to allow shifts in either time index, frequency 

index or both indexes. The resulting invertble transforms are reffered to as generalized discrete Hartley 

transforms (GDHTs) and are defined as; 

https://creativecommons.org/licenses/by-sa/4.0/
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X(k) = ∑ x(n)𝑐𝑎𝑠 (𝜃
(2n + n𝑜)(2k + k𝑜)

4
)

N-1

n=0

               k = 0,1, . . . , N-1 (1) 

 

where 𝑐𝑎𝑠(𝜃) = 𝑐𝑜𝑠 (𝜃) + 𝑠𝑖𝑛 (𝜃), 𝜃 = 2𝜋/𝑁 is the kernel of the transform, and the constants 𝑛𝑜 and 𝑘𝑜 are 

the parameters that identify shifts in the frequency and time domains. By applying a different set of these 

parameters, a different types of GDHT can be obtained. As the input sequence 𝑥(𝑛) can be accurately 

retrieved from the output sequence 𝑋(𝑘), therefore 𝑥(𝑛) is completely defined by a set of coefficients 𝑋(𝑘) 

in diverse domain. In many realted applications, it is ordinary to specify a problem in a appropriate domain 

because numerous characteristics of the signals can be only revealed in particular domain. This paper deals 

with a particular type of GDHT when 𝑛𝑜 = 0 and 𝑘𝑜 = 1 that is known in literature as type-II DHT [7].  

A lot of algorithms were introduced for fast calculation of the GDHTs [8-10]. Among them,  

the split-radix algorithm that was first proposed for the calculations of the FFT [11-13] and then developed 

for other transforms [14-17], has proved it gives the lowest arithmetic complexity known in literature [18, 

19], that employs radix-4 decomposition to the odd-indexed samples and radix-2 decomposition to  

the even-indexed samples of the power-of-two samples. However, the developments of the split radix 

algorithms introduced for the DHT-II (SR-DHT-II) were use indirect approaches [20, 21]. Therefore, it is 

purpose of this paper to introduce a direct split radix algorithm for the efficient calculations of the DHT-II 

using decimation-in-time (DIT) approach. The paper is prepared in four sections as follows: section 2 

purposes the development of the new split-radix algorithm based on DIT approach for the DHT-II. In section 

3, the evalution of the proposed algorithm is studied by calculating their arithmetic complexity and 

associating them with the radix-2 algorithm. A conclusion is then given in section 4. 

 

 

2. DEVELOPMENT OF SR-DHT-II ALGORITHM 

The type-II discrete Hartley transform (DHT-II) of length 𝑁 for the real valued samples 𝑥(𝑛) is 

given as [22]: 
 

X(k) = ∑ x(n)𝑐𝑎𝑠 (𝜃𝑛 (
2k + 1

2
))

N-1

n=0

               k = 0,1, . . . , N-1 (2) 

 

where the transform length 𝑁 is identified to be powers of two 𝑁 = 2𝑚. The inverse DHT-II transform 

(known as the type-III DHT) is defined as; 
 

x(n) =
1

𝑁
∑ X(k)𝑐𝑎𝑠 (𝜃𝑛 (

2k + 1

2
))

N-1

k=0

               n = 0,1, . . . , N-1 (3) 

 

The decimation-in-time algorithm (DIT) derivation of the SR-DHT-II algorithm starts by decomposing  

the transformed sequence 𝑋(𝑘) into its odd 𝑋𝑜𝑑(𝑘) and even 𝑋𝑒𝑣(𝑘) indexed sequences. Therefore (2) can be 

decomposed to, 
 

X(k) = Xod(k) + Xev(k) (4) 
 

where 𝑋𝑜𝑑(𝑘) and 𝑋𝑒𝑣(𝑘) represents the odd- and even-indexed sequences of 𝑋(𝑘) respectively, both are of 

length (𝑁/2). Firstly, radix-2 algorithm for the 𝑋𝑒𝑣(𝑘) can be written as; 
 

Xev(k) = ∑ x(2n)

N/2-1

n=0

cas (2𝜃n(
2k + 1

2
)) = X2n(k) (5) 

 

Secondly, radix-4 algorithm for the DHT-II can be developed by dividing the input samples 𝑥(𝑛) into four 

(𝑁/4) DHTs-II as follows: 
 

X(k) = Xo(k) + X1(k) + X2(k) + X3(k) (6) 
 

where, 
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Xi(k) = ∑ x(4n + i)

𝑁/4-1

n=0

cas (𝜃(4n + i)(
2k + 1

2
))              i = 0,1,2,3 (7) 

 

Therefore, by considering the odd indexed samples only for the 𝑋(𝑘) in (6) i.e., [𝑋𝑜𝑑(𝑘) = 𝑋1(𝑘) + 𝑋3(𝑘)], 
we get: 
 

( ) ( )

( ) ( )

4 4

4 4

1 1

=0 =0

1 1

=0 =0

2 +1 2 +1 2 +1 2 +1
2 2 2 2

2 +1 2 +1
2 24 1 4 4 3 4 3

4 1 4 4 3 4 3

+ +1 + +

+ + + +

( ) ( ) ( ) ( ) ( )

( ) ( )

= ( ) + ( )

= +

N N

N N

n n

n n

od

k k k k

k kn n n n

n n n n

kX x cas x cas

x cas x cas

 

   

− −

− −

 

 

 
(8) 

 

Applying 𝑐𝑎𝑠 property given in [1] as follows; 
 

cas(𝛼 + 𝛽) = cos(𝛼)cas(𝛽) + sin(𝛼)cas(-𝛽) (9) 
 

𝑐𝑎𝑠(. ) term in (8) can be simplified to: 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
= 0

4 4

4 4

=0 =0

=0

1 1

2 +1 2 +1 2 +1 2 +1

2 2 2 2

1 1

2 +1 2 +1 2 +1 2 +1

2 2 2 2

4 1 4 1

4 3

+ +

4 3 3 ( + ) -

( ) 4 ( ) 4

3 ( + ) 4 4

( ) + -

+

=

n

N N

N N

n n

n

k k k k

k k k k

od n n

x n

n n

x n n n

k cos x cas sin x cas

sin cas

X

cos cas 

   

  

− −

− −

+ 

 
 

(10) 

 

The negative indices of 𝑐𝑎𝑠 terms in (10) can be simplified to; 
 

( ) ( )

( )

( )

1

2 +1

2

=0

-1

=0

-1

=0

-1

=0

-
1
2

1
2

2( - -1)+1

2

(- - )

( - - )

( ) ( )

( )

( )

- =

=

=

N

k

m

N

n

N

n

N

n

N k

m k

N k

m x m m

x m m

x m m

x cas cas

cas

cas

 





 





 (11) 

 

From (11) we get the relation, 
 

∑ x(4n + i)
𝑁

4
−1

n=0 cas (-4𝜃n
2k+1

2
) = ∑ x(4n + i)

𝑁

4
−1

n=0 cas (4𝜃𝑛
2(

𝑁

4
-k-1)+1

2
)  (12) 

 

Therefore 𝑋𝑜𝑑  (𝑘) in (10) becomes; 
 

( ) ( )

( ) ( )

4

2 +1 2 +1

2 4 2

2 +1 2 +1
4 +1 4 +12 2

4 +3 4 +3

1

1

- -

3 - - 3

( ) = ( ) + ( )

( ) + ( )+

N

k N k

k k
od n n

n n

k

k

k k

k

X X cos X sin

X cos X sin

 

 
 (13) 

 

where 𝑋4𝑛+1(𝑘) and 𝑋4𝑛+3(𝑘) are two DHTs-II of length (𝑁/4) , defined as: 
 

X4n+1(k) = ∑ x(4n + 1)

𝑁
4

−1

n=0

cas (4𝜃n(
2k + 1

2
)) (14) 

 

X4n+3(k) = ∑ x(4n + 3)

𝑁
4

−1

n=0

cas (4𝜃n(
2k + 1

2
)) (15) 

 

Substituting (5) and (13) into (4), 𝑋(𝑘), we get, 
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( ) ( ) 

( ) ( ) 2 +1 2 +1

2 2

2 +1 2 +1

2 4 +1 4 +12 4 2

4 +3 4 +3 4

1

13 3

( ) - -

- -

= ( ) ( ) + ( ) 

( ) + ( ) 

+

+ k k

k N k

n n n

N

n n

k k k k

k k

X X X cos X sin

X cos X sin

 

 

 (16) 

 

Using the following trigonometric identities, 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

3 3 3

3 3 3

2 2 2

2 2 2

2 2 2

2 2 2

+

+

+

+

= =

cos =

cos = =

=

cos cos cos sin sin sin

sin sin cos sin cos

cos cos sin sin sin

sin sin cos cos sin cos

  

  

  

  

   

   

   

   

− −

= +

−

= + −

 (17) 

 

Other decompositions 𝑋(𝑘 + 𝑁/4), 𝑋(𝑘 + 𝑁/2) and 𝑋(𝑘 + 3𝑁/4) can be calculated, as  
 

( ) ( )

( ) ( )2 +1

2

2 +1 2 +1
2 4 +1 4 +14 4 2 4 2

2 +1
4n+3 4n+3 4 2

1

3 1 3

( ) - -

- -

= ( ) ( ) ( ) 

( ) ( ) + k

N N k N k
n n n

N k

+ +k k k k

k k

X X X sin X cos

X sin X cos

 

 

 − − 

 − 

 (18) 

 

( ) ( )

( ) ( )2 +1 2 +1

2 2

2 +1 2 +1
2 4 +1 4 +12 2 4 2

4 +3 4 +3 4

1

13 3

( ) - -

- -

= ( ) ( ) + ( ) 

( ) + ( ) k k

N k N k
n n n

N
n n

+k k k k

k k

X X X cos X sin

X cos X sin

 

 

 −  

−   

 (19) 

 

( ) ( )

( ) ( )2 +1

2

3 2 +1 2 +1
2 4 +1 4 +14 4 2 4 2

2 +1
4n+3 4n+3 4 2

1

13 3

( ) - -

- -

= ( ) ( ) ( ) 

( ) ( ) k

N N k N k
n n n

N k

+ +k k k k

k k

X X X sin X cos

X sin X cos

 

 

 + − 

 − −
 (20) 

 

For in-place computations, other points 𝑋(𝑁/4 − 𝑘 − 1), 𝑋(𝑁/2 − 𝑘 − 1), 𝑋(3𝑁/4 − 𝑘 − 1) and  

𝑋(𝑁 − 𝑘 − 1) need to be computed. These points can be derived using trigonometric identities given by (17) 

and the periodicity property of DHT-II, we get: 
 

( ) ( )

( ) ( )2 +1 2 +1

2 2

2 +1 2 +1
2 4 +1 4 +14 4 2 4 2

4 +3 4 +3 4

1 1 1

13 3

( - - ) - - - -

- -

= ( ) ( ) + ( ) 

( ) + ( ) 

+

k k

N N k N k
n n n

N
n n

k k k k

k k

X X X cos X sin

X cos X sin

 

 

  

−   

 (21) 

 

( ) ( )

( ) ( )2 +1

2

2 +1 2 +1
2 4 +1 4 +12 2 2 4 2

2 +1
4n+3 4n+3 4 2

1 1 1

13 3

( - - ) - - - -

- -

= ( ) ( ) ( ) 

( ) ( ) + k

N N k N k
n n n

N k

k k k k

k k

X X X sin X cos

X sin X cos

 

 

 + − 

 − 

 (22) 

 

( ) ( )

( ) ( )2 +1 2 +1

2 2

3 2 +1 2 +1
2 4 +1 4 +14 4 2 4 2

4 +3 4 +3 4

1 1 1

13 3

( - - ) - - - -

- -

= ( ) ( ) ( ) 

( ) ( ) k k

N N k N k
n n n

N
n n

k k k k

k k

X X X cos X sin

X cos X sin

 

 

 − + 

− −  

 (23) 

 

( ) ( )

( ) ( )2 +1 2 +1

2 2

2 +1 2 +1
2 4 +1 4 +12 2 4 2

4 +3 4 +3 4

1 1 1

13 3

( - - ) - - - -

- -

= ( ) ( ) ( ) 

( ) ( ) k k

N k N k
n n n

N
n n

N k k k k

k k

X X X sin X cos

X sin X cos

 

 

 − − 

−  −
 (24) 

 

From decompositions (16) and (18)-(24), it is clearly that this algorithm processes data in groups of eight 

points, specifically 𝑋(𝑘), 𝑋(𝑘 + 𝑁/4), 𝑋(𝑘 + 𝑁/2), 𝑋(𝑘 + 3𝑁/4), 𝑋(𝑁/4 − 𝑘 − 1), 𝑋(𝑁/2 − 𝑘 − 1),
𝑋(3𝑁/4 − 𝑘 − 1) and 𝑋(𝑁 − 𝑘 − 1). The index 𝑘 is in the range 0 ≤ 𝑘 ≤ 𝑁/8 − 1, with the first  

4-points, found for 𝑘 = 0, becomes 𝑋(0), 𝑋(𝑁/4), 𝑋(𝑁/2) and 𝑋(3𝑁/4). The algorithm butterfly  

contains a special indexing scheme known as retrograde [23, 24], i.e., when the negative indices of samples 

𝑋(𝑁/4 − 𝑘 − 1), 𝑋(𝑁/2 − 𝑘 − 1), 𝑋(3𝑁/4 − 𝑘 − 1) and 𝑋(𝑁 − 𝑘 − 1) are decremented, the positive 

indices of samples 𝑋(𝑘), 𝑋(𝑘 + 𝑁/4), 𝑋(𝑘 + 𝑁/2) and 𝑋(𝑘 + 3𝑁/4) are incremented. The resultant  

in-place butterfly structure for this algorithm is shown in Figure 1. 
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Figure 1. An in-place butterfly of the SR-DHT-II algorithm; where 𝐶(𝛽) = 𝑐𝑜𝑠(𝜋(2𝑘 + 1)/𝑁)  

and 𝑆(𝛽) = 𝑠𝑖𝑛((𝜋(2𝑘 + 1)/𝑁), dotted and solid lines stand for subtraction and additions respectively 
 

 

3. ARITHMETIC COMPLEXITY 

In (16) and (18-24) represent the decompositions of the developed DHT-II split-radix algorithm. For in-

place computation, a double butterfly is used as shown in Figure 1. Therefore, the trivial arithmetic operations 

(multiplying by -1, 0, 1) will be removed; the resultant butterfly calculates 8 points and requires 16 additions and 8 

multiplications. Therefore for transform length 𝑁 = 2𝑚, the split-radix DHT-II needs 𝑙𝑜𝑔2 𝑁 rounds of 

butterflies’ computation and each round uses 2𝑁 additions and 𝑁 multiplications. Additionally, one 𝑁/2 and two 

𝑁/4 length DHTs-II must be computed, thus the whole split radix DHT-II fulfills the recurrences: 
 

2 4

2 4

( ) ( ) 2 ( )

( ) ( ) 2 ( )2

= +

= +

N N

N N

N

N N

M N + M M

A + A A

 (25) 

 

where 𝐴(𝑁) and 𝑀(𝑁) stand for the number of real additions and multiplications respectively. Solving the 

complexity relations in (25), by repeatedly substitution of the initial values 𝑀(4) = 2, 𝑀(4) = 6 and 𝐴(4) = 12, 

𝐴(8) = 24, we get the closed form complexity: 
 

( ) ( ) ( )( )

( ) ( ) ( )( )

2

2

2 11
18

19
18

8
3 9

4 4
3 9

( )

( )

log

log

= 1

= 1

m

m

N N N N

N N N N

M

A

− − −

− − −

 
(26) 

 

Comparing the computational complexity of the radix-2 FHT algorithm [25] with this algorithm based on the same 

implementaion, shows an important saving in the amount of arithmetic complexity can be achieved as listed in 

Table 1. The saving is up to 10% in the number of additions and around 29% in the number of multiplications. 
 

 

Table 1. Counts in the arithmetic complexities of split-radix and radix-2 DHT-II algorithms  
Transform Length Split-raix DHT-II algorithm (A) Radix−2 DHT-II algorithm (B) Saving % (A/B) 

𝑁  Mults. Adds. Mults. Adds. Mults. Adds. 

8 12 24 12 24 0 0 

16 32 68 40 72 20 5.55 
32 88 180 112 192 21.42  6.25 

64 216 444 288 480 25 7.50 

128 520 1060 704 1152 26.13 7.98 
256 1208 2460 1664 2688 27.40 8.48 

512 2760 5604 3840 6144 28.12 8.78 

1024 6200 12572 8704 13824 28.76 9.05 

 

 

4. CONCLUSION 

This paper presents the development of a novel direct algorithm for the fast calculation of the type-II 

DHT using split-radix DIT approach. The algorithm has been implemented and its arithmetical complexity has 

been analyzed. Comparisons between the developed algorithm and the basic radix-2 algorithm, based on the 

amount of the arithmetical operations have been performed. This comparison has revael that the developed split 

radix algorithm involve much less arithmetical complexity than radix-2 algorithm (10% saving in the number of 

additions and around 29% saving in the number of multiplications have been obtained). The proposed algorithm 
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has regular and simple butterfly framework, and has in place computations. Therefore it enables us to develop and 

improve the performance of the multidimensional split-vector radix (SVR) algorithms for the multidimensional 

(MD) GDHT for higher dimensions with regard to accesses to the lookup table and to the number of twiddle factor 

estimations without any increase in the structural or computational complexities. 
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