
TELKOMNIKA Telecommunication, Computing, Electronics and Control

Vol. 18, No. 6, December 2020, pp. 3067~3072

ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, Decree No: 21/E/KPT/2018

DOI: 10.12928/TELKOMNIKA.v18i6.16100  3067

Journal homepage: http://journal.uad.ac.id/index.php/TELKOMNIKA

Direct split-radix algorithm for fast computation of type-II

discrete Hartley transform

Mounir Taha Hamood
Electrical Engineering Department, College of Engineering, University of Tikrit, Iraq

Article Info ABSTRACT

Article history:

Received Mar 20, 2020

Revised Jun 3, 2020

Accepted Jun 25, 2020

 In this paper, a novel split-radix algorithm for fast calculation the discrete

Hartley transform of type-II (DHT-II) is intoduced. The algorithm is

established through the decimation in time (DIT) approach, and implemented

by splitting a length N of DHT-II into one DHT-II of length N/2 for even-

indexed samples and two DHTs-II of length N/4 for odd-indexed samples.

The proposed algorithm possesses the desired properties such as regularity,

inplace calculation and it is represented by simple closed form decompositions

leading to considerable reductions in the arithmetic complexity compared to the

existing DHT-II algorithms. Additionally, the validity of the proposed

algorithm has been confirmed through analysing the arithmetic complexity

by calculating the number of real additions and multiplications and

associating it with the existing DHT-II algorithms.

Keywords:

Decimation-in-time approach

Discrete Hartley transform

Generalized DHTs

Split radix algorithm

Type-II DHT (DHT-II) This is an open access article under the CC BY-SA license.

Corresponding Author:

Mounir Taha Hamood,

Electrical Engineering Departement, College of Engineering,

University of Tikrit,

Tikrit, P O BOX 42, Iraq.

Email: m.t.hamood@tu.edu.iq

1. INTRODUCTION

The Hartley transform (HT) is an orthogonal transform that maps a real valued function into its

frequency real components [1], used in diverse fields such as signal/image processing, digital communications

and many other applications [2]. Although HT and the Fourier transform (FT) [3], shares equivalent properties,

it allows a function to be separated into two autonomous sets of sinusoidal components; these sets are

characterized in terms of negative and positive frequency components respectively. Another advantage of the

HT over the FT is that the computation of the kernel of HT is exactley same as that of its inverse, so that the

inverse transform differs from forward only by the scale factor, hence identical utilization of the HT can be used

for signal synthesis and analysis. As we know that a real generalized discrete version of Hartley transform

(GDHT) [4] can be defined analogous to the complex generalized discrete of fourier transform (GDFT) [5].

Also, it is well known that there is a fast way of computing Hartley transform that is analogous to the fast

fourier transform (FFT) as there is a simple step to go from DFT to the DHT [6]. Consequently the fast

algorithm developed in this paper also constitutes a fast way of arriving at GDFT. In fact the approach via the

GDHT proves to be advantageous mainly because of the simplifications that results from the fact that no

complex arithmetic is required when real data are being processed.

In genral, the DHT transform kernel can be extended to allow shifts in either time index, frequency

index or both indexes. The resulting invertble transforms are reffered to as generalized discrete Hartley

transforms (GDHTs) and are defined as;

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 6, December 2020: 3067 - 3072

3068

X(k) = ∑ x(n)𝑐𝑎𝑠 (𝜃
(2n + n𝑜)(2k + k𝑜)

4
)

N-1

n=0

 k = 0,1, . . . , N-1 (1)

where 𝑐𝑎𝑠(𝜃) = 𝑐𝑜𝑠 (𝜃) + 𝑠𝑖𝑛 (𝜃), 𝜃 = 2𝜋/𝑁 is the kernel of the transform, and the constants 𝑛𝑜 and 𝑘𝑜 are

the parameters that identify shifts in the frequency and time domains. By applying a different set of these

parameters, a different types of GDHT can be obtained. As the input sequence 𝑥(𝑛) can be accurately

retrieved from the output sequence 𝑋(𝑘), therefore 𝑥(𝑛) is completely defined by a set of coefficients 𝑋(𝑘)

in diverse domain. In many realted applications, it is ordinary to specify a problem in a appropriate domain

because numerous characteristics of the signals can be only revealed in particular domain. This paper deals

with a particular type of GDHT when 𝑛𝑜 = 0 and 𝑘𝑜 = 1 that is known in literature as type-II DHT [7].

A lot of algorithms were introduced for fast calculation of the GDHTs [8-10]. Among them,

the split-radix algorithm that was first proposed for the calculations of the FFT [11-13] and then developed

for other transforms [14-17], has proved it gives the lowest arithmetic complexity known in literature [18,

19], that employs radix-4 decomposition to the odd-indexed samples and radix-2 decomposition to

the even-indexed samples of the power-of-two samples. However, the developments of the split radix

algorithms introduced for the DHT-II (SR-DHT-II) were use indirect approaches [20, 21]. Therefore, it is

purpose of this paper to introduce a direct split radix algorithm for the efficient calculations of the DHT-II

using decimation-in-time (DIT) approach. The paper is prepared in four sections as follows: section 2

purposes the development of the new split-radix algorithm based on DIT approach for the DHT-II. In section

3, the evalution of the proposed algorithm is studied by calculating their arithmetic complexity and

associating them with the radix-2 algorithm. A conclusion is then given in section 4.

2. DEVELOPMENT OF SR-DHT-II ALGORITHM

The type-II discrete Hartley transform (DHT-II) of length 𝑁 for the real valued samples 𝑥(𝑛) is

given as [22]:

X(k) = ∑ x(n)𝑐𝑎𝑠 (𝜃𝑛 (
2k + 1

2
))

N-1

n=0

 k = 0,1, . . . , N-1 (2)

where the transform length 𝑁 is identified to be powers of two 𝑁 = 2𝑚. The inverse DHT-II transform

(known as the type-III DHT) is defined as;

x(n) =
1

𝑁
∑ X(k)𝑐𝑎𝑠 (𝜃𝑛 (

2k + 1

2
))

N-1

k=0

 n = 0,1, . . . , N-1 (3)

The decimation-in-time algorithm (DIT) derivation of the SR-DHT-II algorithm starts by decomposing

the transformed sequence 𝑋(𝑘) into its odd 𝑋𝑜𝑑(𝑘) and even 𝑋𝑒𝑣(𝑘) indexed sequences. Therefore (2) can be

decomposed to,

X(k) = Xod(k) + Xev(k) (4)

where 𝑋𝑜𝑑(𝑘) and 𝑋𝑒𝑣(𝑘) represents the odd- and even-indexed sequences of 𝑋(𝑘) respectively, both are of

length (𝑁/2). Firstly, radix-2 algorithm for the 𝑋𝑒𝑣(𝑘) can be written as;

Xev(k) = ∑ x(2n)

N/2-1

n=0

cas (2𝜃n(
2k + 1

2
)) = X2n(k) (5)

Secondly, radix-4 algorithm for the DHT-II can be developed by dividing the input samples 𝑥(𝑛) into four

(𝑁/4) DHTs-II as follows:

X(k) = Xo(k) + X1(k) + X2(k) + X3(k) (6)

where,

TELKOMNIKA Telecommun Comput El Control 

Direct split-radix algorithm for fast computation of type-II discrete… (Mounir Taha Hamood)

3069

Xi(k) = ∑ x(4n + i)

𝑁/4-1

n=0

cas (𝜃(4n + i)(
2k + 1

2
)) i = 0,1,2,3 (7)

Therefore, by considering the odd indexed samples only for the 𝑋(𝑘) in (6) i.e., [𝑋𝑜𝑑(𝑘) = 𝑋1(𝑘) + 𝑋3(𝑘)],
we get:

() ()

() ()

4 4

4 4

1 1

=0 =0

1 1

=0 =0

2 +1 2 +1 2 +1 2 +1
2 2 2 2

2 +1 2 +1
2 24 1 4 4 3 4 3

4 1 4 4 3 4 3

+ +1 + +

+ + + +

() () () () ()

() ()

= () + ()

= +

N N

N N

n n

n n

od

k k k k

k kn n n n

n n n n

kX x cas x cas

x cas x cas

 

   

− −

− −

 

 

(8)

Applying 𝑐𝑎𝑠 property given in [1] as follows;

cas(𝛼 + 𝛽) = cos(𝛼)cas(𝛽) + sin(𝛼)cas(-𝛽) (9)

𝑐𝑎𝑠(.) term in (8) can be simplified to:

() () () ()

() () () ()
= 0

4 4

4 4

=0 =0

=0

1 1

2 +1 2 +1 2 +1 2 +1

2 2 2 2

1 1

2 +1 2 +1 2 +1 2 +1

2 2 2 2

4 1 4 1

4 3

+ +

4 3 3 (+) -

() 4 () 4

3 (+) 4 4

() + -

+

=

n

N N

N N

n n

n

k k k k

k k k k

od n n

x n

n n

x n n n

k cos x cas sin x cas

sin cas

X

cos cas 

   

  

− −

− −

+ 

 

(10)

The negative indices of 𝑐𝑎𝑠 terms in (10) can be simplified to;

() ()

()

()

1

2 +1

2

=0

-1

=0

-1

=0

-1

=0

-
1
2

1
2

2(- -1)+1

2

(- -)

(- -)

() ()

()

()

- =

=

=

N

k

m

N

n

N

n

N

n

N k

m k

N k

m x m m

x m m

x m m

x cas cas

cas

cas

 





 





 (11)

From (11) we get the relation,

∑ x(4n + i)
𝑁

4
−1

n=0 cas (-4𝜃n
2k+1

2
) = ∑ x(4n + i)

𝑁

4
−1

n=0 cas (4𝜃𝑛
2(

𝑁

4
-k-1)+1

2
) (12)

Therefore 𝑋𝑜𝑑 (𝑘) in (10) becomes;

() ()

() ()

4

2 +1 2 +1

2 4 2

2 +1 2 +1
4 +1 4 +12 2

4 +3 4 +3

1

1

- -

3 - - 3

() = () + ()

() + ()+

N

k N k

k k
od n n

n n

k

k

k k

k

X X cos X sin

X cos X sin

 

 
 (13)

where 𝑋4𝑛+1(𝑘) and 𝑋4𝑛+3(𝑘) are two DHTs-II of length (𝑁/4) , defined as:

X4n+1(k) = ∑ x(4n + 1)

𝑁
4

−1

n=0

cas (4𝜃n(
2k + 1

2
)) (14)

X4n+3(k) = ∑ x(4n + 3)

𝑁
4

−1

n=0

cas (4𝜃n(
2k + 1

2
)) (15)

Substituting (5) and (13) into (4), 𝑋(𝑘), we get,

  ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 6, December 2020: 3067 - 3072

3070

() () 

() () 2 +1 2 +1

2 2

2 +1 2 +1

2 4 +1 4 +12 4 2

4 +3 4 +3 4

1

13 3

() - -

- -

= () () + ()

() + ()

+

+ k k

k N k

n n n

N

n n

k k k k

k k

X X X cos X sin

X cos X sin

 

 

 (16)

Using the following trigonometric identities,

() () () () () ()

() () () () () ()

() () () () () ()

() () () () () ()

3 3 3

3 3 3

2 2 2

2 2 2

2 2 2

2 2 2

+

+

+

+

= =

cos =

cos = =

=

cos cos cos sin sin sin

sin sin cos sin cos

cos cos sin sin sin

sin sin cos cos sin cos

  

  

  

  

   

   

   

   

− −

= +

−

= + −

 (17)

Other decompositions 𝑋(𝑘 + 𝑁/4), 𝑋(𝑘 + 𝑁/2) and 𝑋(𝑘 + 3𝑁/4) can be calculated, as

() ()

() ()2 +1

2

2 +1 2 +1
2 4 +1 4 +14 4 2 4 2

2 +1
4n+3 4n+3 4 2

1

3 1 3

() - -

- -

= () () ()

() () + k

N N k N k
n n n

N k

+ +k k k k

k k

X X X sin X cos

X sin X cos

 

 

 − − 

 − 

 (18)

() ()

() ()2 +1 2 +1

2 2

2 +1 2 +1
2 4 +1 4 +12 2 4 2

4 +3 4 +3 4

1

13 3

() - -

- -

= () () + ()

() + () k k

N k N k
n n n

N
n n

+k k k k

k k

X X X cos X sin

X cos X sin

 

 

 −  

−   

 (19)

() ()

() ()2 +1

2

3 2 +1 2 +1
2 4 +1 4 +14 4 2 4 2

2 +1
4n+3 4n+3 4 2

1

13 3

() - -

- -

= () () ()

() () k

N N k N k
n n n

N k

+ +k k k k

k k

X X X sin X cos

X sin X cos

 

 

 + − 

 − −
 (20)

For in-place computations, other points 𝑋(𝑁/4 − 𝑘 − 1), 𝑋(𝑁/2 − 𝑘 − 1), 𝑋(3𝑁/4 − 𝑘 − 1) and

𝑋(𝑁 − 𝑘 − 1) need to be computed. These points can be derived using trigonometric identities given by (17)

and the periodicity property of DHT-II, we get:

() ()

() ()2 +1 2 +1

2 2

2 +1 2 +1
2 4 +1 4 +14 4 2 4 2

4 +3 4 +3 4

1 1 1

13 3

(- -) - - - -

- -

= () () + ()

() + ()

+

k k

N N k N k
n n n

N
n n

k k k k

k k

X X X cos X sin

X cos X sin

 

 

  

−   

 (21)

() ()

() ()2 +1

2

2 +1 2 +1
2 4 +1 4 +12 2 2 4 2

2 +1
4n+3 4n+3 4 2

1 1 1

13 3

(- -) - - - -

- -

= () () ()

() () + k

N N k N k
n n n

N k

k k k k

k k

X X X sin X cos

X sin X cos

 

 

 + − 

 − 

 (22)

() ()

() ()2 +1 2 +1

2 2

3 2 +1 2 +1
2 4 +1 4 +14 4 2 4 2

4 +3 4 +3 4

1 1 1

13 3

(- -) - - - -

- -

= () () ()

() () k k

N N k N k
n n n

N
n n

k k k k

k k

X X X cos X sin

X cos X sin

 

 

 − + 

− −  

 (23)

() ()

() ()2 +1 2 +1

2 2

2 +1 2 +1
2 4 +1 4 +12 2 4 2

4 +3 4 +3 4

1 1 1

13 3

(- -) - - - -

- -

= () () ()

() () k k

N k N k
n n n

N
n n

N k k k k

k k

X X X sin X cos

X sin X cos

 

 

 − − 

−  −
 (24)

From decompositions (16) and (18)-(24), it is clearly that this algorithm processes data in groups of eight

points, specifically 𝑋(𝑘), 𝑋(𝑘 + 𝑁/4), 𝑋(𝑘 + 𝑁/2), 𝑋(𝑘 + 3𝑁/4), 𝑋(𝑁/4 − 𝑘 − 1), 𝑋(𝑁/2 − 𝑘 − 1),
𝑋(3𝑁/4 − 𝑘 − 1) and 𝑋(𝑁 − 𝑘 − 1). The index 𝑘 is in the range 0 ≤ 𝑘 ≤ 𝑁/8 − 1, with the first

4-points, found for 𝑘 = 0, becomes 𝑋(0), 𝑋(𝑁/4), 𝑋(𝑁/2) and 𝑋(3𝑁/4). The algorithm butterfly

contains a special indexing scheme known as retrograde [23, 24], i.e., when the negative indices of samples

𝑋(𝑁/4 − 𝑘 − 1), 𝑋(𝑁/2 − 𝑘 − 1), 𝑋(3𝑁/4 − 𝑘 − 1) and 𝑋(𝑁 − 𝑘 − 1) are decremented, the positive

indices of samples 𝑋(𝑘), 𝑋(𝑘 + 𝑁/4), 𝑋(𝑘 + 𝑁/2) and 𝑋(𝑘 + 3𝑁/4) are incremented. The resultant

in-place butterfly structure for this algorithm is shown in Figure 1.

TELKOMNIKA Telecommun Comput El Control 

Direct split-radix algorithm for fast computation of type-II discrete… (Mounir Taha Hamood)

3071

Figure 1. An in-place butterfly of the SR-DHT-II algorithm; where 𝐶(𝛽) = 𝑐𝑜𝑠(𝜋(2𝑘 + 1)/𝑁)

and 𝑆(𝛽) = 𝑠𝑖𝑛((𝜋(2𝑘 + 1)/𝑁), dotted and solid lines stand for subtraction and additions respectively

3. ARITHMETIC COMPLEXITY

In (16) and (18-24) represent the decompositions of the developed DHT-II split-radix algorithm. For in-

place computation, a double butterfly is used as shown in Figure 1. Therefore, the trivial arithmetic operations

(multiplying by -1, 0, 1) will be removed; the resultant butterfly calculates 8 points and requires 16 additions and 8

multiplications. Therefore for transform length 𝑁 = 2𝑚, the split-radix DHT-II needs 𝑙𝑜𝑔2 𝑁 rounds of

butterflies’ computation and each round uses 2𝑁 additions and 𝑁 multiplications. Additionally, one 𝑁/2 and two

𝑁/4 length DHTs-II must be computed, thus the whole split radix DHT-II fulfills the recurrences:

2 4

2 4

() () 2 ()

() () 2 ()2

= +

= +

N N

N N

N

N N

M N + M M

A + A A

 (25)

where 𝐴(𝑁) and 𝑀(𝑁) stand for the number of real additions and multiplications respectively. Solving the

complexity relations in (25), by repeatedly substitution of the initial values 𝑀(4) = 2, 𝑀(4) = 6 and 𝐴(4) = 12,

𝐴(8) = 24, we get the closed form complexity:

() () ()()

() () ()()

2

2

2 11
18

19
18

8
3 9

4 4
3 9

()

()

log

log

= 1

= 1

m

m

N N N N

N N N N

M

A

− − −

− − −

(26)

Comparing the computational complexity of the radix-2 FHT algorithm [25] with this algorithm based on the same

implementaion, shows an important saving in the amount of arithmetic complexity can be achieved as listed in

Table 1. The saving is up to 10% in the number of additions and around 29% in the number of multiplications.

Table 1. Counts in the arithmetic complexities of split-radix and radix-2 DHT-II algorithms
Transform Length Split-raix DHT-II algorithm (A) Radix−2 DHT-II algorithm (B) Saving % (A/B)

𝑁 Mults. Adds. Mults. Adds. Mults. Adds.

8 12 24 12 24 0 0

16 32 68 40 72 20 5.55
32 88 180 112 192 21.42 6.25

64 216 444 288 480 25 7.50

128 520 1060 704 1152 26.13 7.98
256 1208 2460 1664 2688 27.40 8.48

512 2760 5604 3840 6144 28.12 8.78

1024 6200 12572 8704 13824 28.76 9.05

4. CONCLUSION

This paper presents the development of a novel direct algorithm for the fast calculation of the type-II

DHT using split-radix DIT approach. The algorithm has been implemented and its arithmetical complexity has

been analyzed. Comparisons between the developed algorithm and the basic radix-2 algorithm, based on the

amount of the arithmetical operations have been performed. This comparison has revael that the developed split

radix algorithm involve much less arithmetical complexity than radix-2 algorithm (10% saving in the number of

additions and around 29% saving in the number of multiplications have been obtained). The proposed algorithm

  ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 6, December 2020: 3067 - 3072

3072

has regular and simple butterfly framework, and has in place computations. Therefore it enables us to develop and

improve the performance of the multidimensional split-vector radix (SVR) algorithms for the multidimensional

(MD) GDHT for higher dimensions with regard to accesses to the lookup table and to the number of twiddle factor

estimations without any increase in the structural or computational complexities.

REFERENCES
[1] R. N. Bracewell, "The Hartley transform," Oxford University Press, Inc., 1986.

[2] G. Bi, et al., "Fast generalized DFT and DHT algorithms," Elsevier Signal Processing Journal, vol. 65, no. 3, pp. 383-

390, 1998.

[3] H. Sorensen, D. Jones, C. Burrus, and M. Heideman, "On computing the discrete Hartley transform," IEEE

Transactions on Acoustics, Speech and Signal Processing., vol. 33, no. 5, pp. 1231-1238, 1985.

[4] H. Neng-Chung, I. C. Hong, and O. K. Ersoy, "Generalized discrete Hartley transforms," IEEE Transactions on

Signal Processing, vol. 40, no. 12, pp. 2931-2940, 1992.

[5] V. Britanak and K. R. Rao, "The fast generalized discrete Fourier transforms: A unified approach to the discrete

sinusoidal transforms computation," Elsevier Signal Processing Journal, vol. 79, no. 2, pp. 135-150, 1999.

[6] M. T. Hamood, "New Decimation-In-Time Fast Hartley Transform Algorithm," International Journal of Electrical

and Computer Engineering, vol. 6, no. 4, pp. 1654-1661, 2016.

[7] G. Bi and Y. Zeng, "Transforms and Fast Algorithms for Signal Analysis and Representations," Birkhäuser Boston, 2012.

[8] K. Jones, "Design and parallel computation of regularised fast Hartley transform," IEE Proceedings-Vision, Image

and Signal Processing, pp. 70-78, 2006.

[9] G. A. Shah, et al., "A new fast radix-2 decimation-in-frequency algorithm for computing the discrete Hartley transform,"

1st International Conference on Computational Intelligence, Communication Systems and Networks, pp. 363-368, 2009.

[10] M. T. Hamood and S. Boussakta, "New radix-based FHT algorithm for computing the discrete Hartley transform,"

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1581-1584, 2011.

[11] P. Duhamel and H. Hollmann, "Split radix' FFT algorithm," Electronics Letters, vol. 20, no. 1, pp. 14-16, 1984.

[12] S. C. Chan, et al., "Split vector-radix fast Fourier transform," IEEE T. Signal. Proces., vol. 40, pp. 2029-39, 1992.

[13] W. C. Yeh, et al., "High-speed and low power split-radix FFT," IEEE T. Signal. Proces., vol. 51, no. 3, pp. 864-74, 2003.

[14] N. Anupindi, et al., "Split-radix FHT algorithm for real-symmetric data," Electron. Lett., vol. 26, no. 23, pp. 1973-75, 1990.

[15] S. Bouguezel, M. O. Ahmad, and M. N. S. Swamy, "An efficient split-radix FHT algorithm," Proceedings of

the 2004 International Symposium on Circuits and Systems, 2004.

[16] M. T. Hamood, et al., "Decimation-in-frequency split-radix algorithm for computing new Mersenne number transform,"

IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), pp. 298-302, 2010.

[17] D. F. Chiper, "A Structured Dual Split-Radix Algorithm for the Discrete Hartley Transform of Length 2N,"

Springer Circuits, Systems, and Signal Processing Journal, vol. 37, no. 9, pp. 290-304, January 01 2018.

[18] P. Duhamel and M. Vetterli, "Fast Fourier transforms: A tutorial review and a state of the art," Elsevier Signal

Processing Journal, vol. 19, no. 4, pp. 259-299, 1990.

[19] H. Sorensen, M. Heideman, and C. Burrus, "On computing the split-radix FFT," IEEE Transactions on Acoustics,

Speech and Signal Processing, vol. 34, no. 1, pp. 152-156, 1986.

[20] S. Bouguezel, M. O. Ahmad, and M. N. S. Swamy, "A new split-radix FHT algorithm for length-q*2m DHTs,"

IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 51, no. 10, pp. 2031-2043, 2004.

[21] K. Jones, "The Regularized Fast Hartley Transform," Springer Science, 2009.

[22] Z. Wang, G. A. Jullien, et al., "The generalized discrete W transform and its application to interpolation," [1992]

Conference Record of the Twenty-Sixth Asilomar Conference on Signals, Systems & Computers, 1992.

[23] T. Bortfeld and W. Dinter, "Calculation of multidimensional Hartley transforms using one-dimensional Fourier

transforms," IEEE Transactions on Signal Processing, vol. 43, no. 5, pp. 1306-1310, 1995.

[24] O. Nibouche, S. Boussakta, M. Darnell, and M. Benaissa, "Algorithms and pipeline architectures for 2-D FFT and

FFT-like transforms," Elsevier Digital Signal Processing Journal, vol. 20, no. 4, pp. 1072-1086, 2010.

[25] M. T. Hamood, "Fast Algorithm for Computing the Discrete Hartley Transform of Type-II," Indonesian Journal of

Electrical Engineering and Informatics (IJEEI), vol. 4, no. 2, pp. 120-125, 2016.

BIOGRAPHIES AUTHOR

Mounir Taha Hamood received the B.Sc. degree in electrical engineering from University of

Technology, Baghdad, Iraq in 1990 and the M.Sc. degree in electronic and communications

engineering from Al-Nahrain University, Baghdad, Iraq in 1995. He graduated from Newcastle

University, Newcastle upon Tyne, U.K in 2012 with the PhD degree in communications and signal

processing. His doctoral research was in the development of efficient algorithms for fast

computation of discrete transforms. From 2012 to 2016 He was a lecturer in signal processing for

communication at Tikrit University. He is currently an associate professor of signal processing at

the Department of Electrical Engineering, College of Engineering, Tikrit University, Tikrit, Iraq. His

research interest includes discrete transforms, fast algorithms for digital signal processing in one and

multidimensional applications, and communication systems.

