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 The recursive least squares (RLS) algorithm was introduced as an alternative 

to least mean square (LMS) algorithm with enhanced performance. 

Computational complexity and instability in updating the autocolleltion matrix 

are some of the drawbacks of the RLS algorithm that were among the reasons 

for the introduction of the second-order recursive inverse (RI) adaptive 

algorithm. The 2nd order RI adaptive algorithm suffered from low convergence 

rate in certain scenarios that required a relatively small initial step-size. In this 

paper, we propose a new second-order RI algorithm that projects the input 

signal to a new domain namely discrete wavelet transform (DWT) as pre step 

before performing the agorthim. This transformation overcomes the low 

convergence rate of the second-order RI algorithm by reducing the self-

correlation of the input signal in the mentioned scenatios. Expeirments are 

conducted using the noise cancellation setting. The performance of the 

proposed algorithm is compared to those of the RI, original second-order RI 

and RLS algorithms in different Gaussian and impulsive noise environments. 

Simulations demonstrate the superiority of the proposed algorithm in terms of 

convergence rate compared to those algorithms. 
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1. INTRODUCTION 

Adaptive filtering techniques can promote accurate solutions and high convergence rates in many 

signal processing problems [1-3]. Some of these well-known problems; such as, noise cancellation [4, 5], 

channel equalization [6], and system identification [7, 8], have been addressed by many researchers for many 

decades. The straightforward steps of the least mean square (LMS) adaptive algorithm in weights update 

together with its fast convergence (if optimum step-size is selected), made it a very popular filtering algorithm. 

However, its convergence rate is easily affected by the spread of the eigenvalue of the autocorrelation matrix 

of the tap-input vector [9-13]. 

The recursive least square (RLS) algorithm [9] was introduced as an alternative to LMS algorithm with 

a superior performance. Particularly, in highly correlated environments with the possibility of high eigenvalue 

spread of the autocorrelation matrix. However, the RLS algorithm has its own drawbacks such as; high 

computational complexity, and updating the inverse autocorrelation matrix that may raise numerical stability 

problems [14]. To overcome such problems of the RLS algorithm, many other algorithms have been proposed. 

https://creativecommons.org/licenses/by-sa/4.0/
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The recursive inverse (RI) algorithm [15] has been proposed to overcome some of the above  

mentioned drawbacks. It has been shown that the RI algorithm performs significantly better than LMS 

algorithm and its variants. Also, its performance is very comparable to that of the RLS algorithm, in terms of 

convergence rate and excess mean square error (MSE) [16], in various settings, with less computational 

complexity. Futher improvement of the performance of the recursive inverse algorithm was achived by 

considering second-order estimation of the correlations in the update equation of the RI algorithm [17]. Even 

though the second-order RI converges to a lower MSE, its convergence rate is less than those of the RI and 

RLS algorithms. This slow convergence is due to second-order estimation of the correlations. 

In this paper, we propose the use of discrete wavelet transform (DWT) to improve the performance of  

the second-order RI algorithm. This domain-based transformation gurentees the reduction of the self-correlation 

of the input signal that, in turn, helps to overcomes the low convergence rate of the second-order RI algorithm. 

Hence, we use the advantages of the RI algorithm compared to the RLS algorithm and by the virtue of DWT, 

the convergence rate is increased. The rest of the paper can be descried as follows: in section 2, DWT is 

reviewed. In section 3, the proposed algorithm is introduced. In section 4, simulation results that compare  

the performance of the proposed algorithm to those of the RI, second-order RI and RLS algorithms in different 

Gaussian and impulsive noise environments in a noise cancellation setting are presented. Finally, conclusions 

are drawn in section 5. 
 

 

2. DISCRETE WAVELET TRANSFORM (DWT) 

Multi-resolution decomposition theory that was developed by Mallat [18], gives scale-invariant 

interpretation of signals and images. Wavelet transform is considered to be a powerful approach of  

multi-resolution analysis to analyse signals that possess both low and high-frequency components. It has been 

developed to solve the time-frequency resolution problem in short time fourier transform (STFT) [19-21]. 

DWT decomposes the signal into orthogonal set of wavelets using filter banks. The output of the filter banks 

is a group of coefficients used to calculate the details and approximations of the signal. Accordingly,  

the original signal can be reconstructed from the scaling and the wavelet coefficients. A structure of discrete 

wavelet transform adaptive filter (DWTAF) is shown in Figure 1. 

According to DWT theory, reconstruction of the original signal x(𝑘) can be performed using  

the following finite sum: 
 

x(𝑘) = ∑ ∑ 𝜃𝑗,𝑛 𝜓𝑗,𝑛(𝑘)𝑛∈𝑍
𝐽−1
𝑗=0   (1) 

 

where 𝜃𝑗,𝑛 are the wavelet coefficients and 𝜓𝑗,𝑛(𝑘) are the wavelet functions that form an orthogonal basis. 

The purpose of DWT adaptive filter is to generate the discrete reconstruction of x𝑗(𝑘) which is the projected 

discrete form of x(𝑘) in wavelet subspace. x𝑗(𝑘) is given by: 
 

x𝑗(𝑘) = ∑ 𝜃𝑗,𝑛 𝜓𝑗,𝑛(𝑘)𝑛∈𝑍   (2) 
 

if v𝑗(𝑘) is the approximation of projected x𝑗(𝑘), then 
 

v𝑗(𝑘) = ∑ �̂�𝑗,𝑛 𝜓𝑗,𝑛(𝑘)𝑛∈𝑍   (3) 
 

where �̂�𝑗,𝑛is the discrete approximation of the wavelet coefficients 𝜃𝑗,𝑛, 
 

�̂�𝑗,𝑛 = ∑ x(𝑙) �̂�𝑗,𝑛(𝑙)  𝑙   (4) 
 

where �̂�𝑗,𝑛(𝑙) represents the discrete approximation of the wavelet functions 𝜓𝑗,𝑛(𝑙) given that, 
 

ℎ𝑗(𝑙, 𝑘) = ∑ �̂�𝑗,𝑛(𝑙) 𝜓𝑗,𝑛(𝑘) 𝑛∈𝑍   (5) 
 

Now, substituting (4) and (5) in (3) results in 
 

v𝑗(𝑘) = ∑ x(𝑙) ℎ𝑗(𝑙, 𝑘)  𝑙   (6) 
 

In (6) is simply the discrete convolution of the input signal x(𝑘) and the filter coefficients ℎ𝑗(𝑙, 𝑘). Using 

orthogonality and time-steadiness, filter indices can be rewritten as: 
 

ℎ𝑗(𝑙, 𝑘) = ℎ𝑗(𝑙 − 𝑘)  (7) 

 



TELKOMNIKA Telecommun Comput El Control   

 

Discrete wavelet transform recursive inverse algorithm using second-order… (Mohammad Shukri Salman) 

3075 

Therefore, 
 

v𝑗(𝑘) = ∑ x(𝑙) ℎ𝑗(𝑙 − 𝑘)  𝑙   (8) 
 

 

3. DWT SECOND-ORDER RECURSIVE INVERSE ALGORITHM 

Following the structure shown in Figure 1 and using the same notation used in section 2, the updated 

equation of the second-order RI algorithm [17] can be written as: 
 

C(𝑘 + 1) = ⌈I − 𝜇(𝑘)R(𝑘)⌉C(𝑘) + 𝜇(𝑘)p(𝑘)  (9) 
 

where 𝑘 is the time parameter (𝑘 =  1, 2, . . . ), C(𝑘) represents the filter weight vector calculated at time 

𝑘, v(𝑘)  =  Wx(𝑘) represents the transformed input signal and W represents the wavelet transform matrix of 

size 𝐽 ×  𝑁. 𝜇(𝑘) represents the variable step-size [16] which satisfies the convergence criterion [9],  

the autocorrelation matrix R(𝑘) represents the estimate of the tap-input vector, and p(𝑘) represents the estimate 

of the cross-correlation vector between the desired output signal 𝑑(𝑘) and the tap-input vector estimated, 

recursively, as: 
 

R(𝑘) = 𝛽1R(𝑘 − 1) + 𝛽2R(𝑘 − 2) + v(𝑘) v𝑇(𝑘)  (10) 

  

p(𝑘) = 𝛽1p(𝑘 − 1) + 𝛽2p(𝑘 − 2) + 𝑑(𝑘) v(𝑘)  (11) 
 

where 𝛽1 and 𝛽2 are positive constants. Choosing the coefficients in (10) and (11) to be equal, i.e. 𝛽1 = 𝛽2 =
1

2
𝛽, 

will gurentee that the The number of multiplications in the second order update equations will be the same as 

the first order update equations [16]. 

By taking the expectation of (10), the new equation can be written as:  
 

R̅(𝑘) =
1

2
𝛽R̅(𝑘 − 1) +

1

2
𝛽R̅(𝑘 − 2) + 𝑅𝑣𝑣   (12) 

 

where Rvv  =  𝐸{ v(𝑘) v𝑇(𝑘)} and R̅(𝑘) =  𝐸{R(𝑘)}. The poles of the system in (12) can be calcutaed using: 
 

𝑧1 =
1

4
(𝛽 − √𝛽2 + 8𝛽)  

 

𝑧2 =
1

4
(𝛽 + √𝛽2 + 8𝛽)   

(13) 

 

which have magnitudes less than unity if 𝛽 <  1. By solving (12) using the initial conditions  
R̅(−2) =  R̅ (−1) = R̅(0) =  0,  it results in, 
 

R̅(𝑘) = (
1

𝛽−1
+ 𝛼1𝑧1

𝑘 + 𝛼2𝑧2
𝑘) Rvv   (14) 

 

where, 
 

𝛼1 =
𝛽−𝑧2

(1−𝛽)(𝑧2−𝑧1)
,  

𝛼2 =
𝛽−𝑧1

(1−𝛽)(𝑧2−𝑧1)
 .  

(15) 

 

using, 
 

𝛾(𝑘) =
1

𝛽−1
+ 𝛼1𝑧1

𝑘 + 𝛼2𝑧2
𝑘    (16) 

 

then, in the DWT second-order RI algorithm, the variable step-size is selected as: 
 

𝜇(𝑘) =
𝜇0

𝛾(𝑘)
 ,  (17) 

 

where 𝜇0 is a constant [16] selected as: 
 

𝜇0 <  𝜇𝑚𝑎𝑥 =
2(1−𝛽)

𝜆𝑚𝑎𝑥 Rvv
  

   

 
 

where 𝜆𝑚𝑎𝑥 is the maximum eigenvalue of Rvv. 
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The adaptive estimation error can be defined as: 
 

𝑒(𝑘) = 𝑑(𝑘) − 𝑦(𝑘)   (18) 
 

where, 
 

𝑦(𝑘) =  v𝑇(𝑘)C(𝑘) = ∑ 𝑣𝑗 (𝑘)𝑐𝑗(𝑘) = ∑ ∑ 𝑐𝑗(𝑘) ℎ𝑗(𝑙 − 𝑘) 𝑥(𝑙)𝑙 .𝐽−1
𝑗=0

𝐽−1
𝑗=0   (19) 

 

The major advantage of RI-based algorithms over the RLS-based algorithm is the unnecessity to update the inverse 

autocorrelation matrix [16]. Such an update of the inverse autocorrelation matrix might cuase numerical instabilities 

in RLS-based algorithms [22-24]. Fortunately, this is not the case for the RI algorithm and its variants. 
 

 

 
 

Figure 1. Structure of discrete wavelet transform transversal adaptive filter 
 

 

4. SIMULATION RESULTS 

The proposed algorithm is compared to the RI, second-order RI and RLS algorithms in the noise 

cancellation setting as shown in Figure 2 in terms of convergence rate and mean square error (MSE). In all 

conducted expeirments, filter length for all implemenetd algorithms was equal to 16 taps and SNR =  30 dB. 

The received signal is generated using: 

 

𝑥𝑖(𝑘) = 1.79𝑥𝑖(𝑘 − 1) − 1.85𝑥𝑖(𝑘 − 2) + 1.27𝑥𝑖(𝑘 − 3) − 0.41𝑥𝑖(𝑘 − 4) + 𝑛0(𝑘),  
 

where 𝑛0(𝑘) is a Gaussian process with zero mean and variance 𝜎2 =  0.15. The simulation results for 

Gaussian and impulsive noise are obtained by averaging 1000 independent runs. For all experiments,  

the algorithms are simulated using the parameters in Table 1. 
 

 

 
 

Figure 2. Block diagram of adaptive noise cancellation configuration 
 

 

Table 1. Parameters used for simulating the proposed, 2nd order RI, RI and RLS algorithms in all experiments 
Algorithm 𝜇0 𝛽 

Proposed 0.1 0.99 

2nd order RI 0.1 0.99 

RI 0.0005 0. 99 
RLS - 0.99 
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4.1.  Additive Gaussian noise 

In order to test the performance of the proposed algorithm, the signal is assumed to be distorted with an 

additive white/correlated Gaussian noise (AWGN/ACGN) process. The correlated noise is created using AR(1) 

process (𝑁0(𝑘 +  1)  =  0.7𝑁0(𝑘)  +  𝑣(𝑘)) where 𝑣(𝑘) respresents a white Gaussian process with mean equals 

to zero and a variance that maintains a 30 dB SNR. From Figure 3 and Figure 4, it can be seen that the proposed 

algorithm converges to same MSE (MSE = −30 dB) of all algorithms with faster convergence rate (approximately 

170, 350 and 850 iterations faster than the RLS, 2nd order RI and RI algorithms, respectively). 

 

4.2.  Additive impulsive noise 

Man-made noise, such as underwater acoustic noise, added to the received signal makes it hard to 

model the signal using Gaussian distribution. To over come this problem, such type of noise is believed to 

better modelled using a Gaussian mixture model. The impulsive noise process is generated by the probability 

density function [25]. 𝑝 = (1 − 𝜁)𝐺(0, 𝜎2) + 𝜁𝐺(0, 𝜅𝜎2) with variance 𝜎𝑝
2 = (1 − 𝜁)𝜎2 + 𝜁𝜅𝜎2 where 

𝐺(0, 𝜎2) is a Gaussian probability density function with zero mean and variance 𝜎2 that represents the nominal 

background noise. 𝐺(0, 𝜅𝜎2) represents the impulsive component of the noise model, where 𝜁 is the probability 

and 𝜅 ≥ 1 is the strength of the impulsive noise components, respectively.  

In order to test the robustness of the proposed algorithm, and to study the effects of the impulsive 

components (outliers) of the noise process in the noise cancellation setting, an impulsive noise process is 

generated by the aforementioned probability density function with 𝜁 =  0.2 and 𝜅 =  100. Firstly, the signal 

is assumed to be distorted by an additive white impulsive noise (AWIN) process. Then, the same experiment 

is repeated while assuming the signal is corrupted by a correlated impulsive noise created using  

the aforementionedAR(1). In both Figures 5 and 6 it can be seen that the proposed algorithm converges to 

same MSE (MSE = −30 dB) of the 2nd order RI and RI algorithms with faster conver-gence rate (approximately 

400 and 600 iterations faster than 2nd order RI and RI algorithms, respectively). In addition, it is noted that 

even though the RLS tries to converge at the beginning, it starts to slowly diverge after almost 800 iterations. 
 

 

  

 

Figure 3. The ensemble MSE for the proposed, RI, 

2nd order RI and RLS algorithms in AWGN 

 

Figure 4. The ensemble MSE for the proposed, RI, 

2nd order RI and RLS algorithms in ACGN 
 

 

  
 

Figure 5. The ensemble MSE for the proposed, RI, 

2nd order RI and RLS algorithms in AWIN 

 

Figure 6. The ensemble MSE for the proposed, RI, 

2nd order RI and RLS algorithms in ACIN 
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5. CONCLUSIONS 

In this paper, a new domain transform based second-order RI algorithm was proposed. Applying DWT at 

the input signal has highly improved the performance of the original second-order RI algorithm. The performance 

of the proposed algorithm was evaluated using noise cancellation setting. It was compared to those of the RI, 2nd 

order RI and RLS algorithms in different Gaussian and impulsive noise environments. Condcuted experiments 

demonestrated that the proposed algorithm has superior convergence rate compared to those algorithms. 
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