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 There are many methods for identifying the stability of complex dynamic 

systems. Routh and Hurwitz’s criterion is one of the earliest and commonly 

used analytical tools analysing the stability of dynamic systems. However, it 

requires tedious and lengthy derivations of all components of the Routh array 

to solve the stability problem. Therefore, it is not a simple method to define 

analytically, stability boundaries for the coefficients of the system 

characteristic equation. The proposed brand-new criterion is an effective 

alternative technique in identifying stability higher-order linear time-invariant 

dynamic system that binds the coefficients of the system characteristic 

polynomial at the stability boundaries by means of an additional single 

constant k. It defines the necessary and sufficient conditions for the absolute 

stability of higher-order dynamic systems. It also allows the analysing of the 

system’s precise marginal stability or marginal instability condition when the 

roots are relocated on imaginary jω-axis of s-plane. The criterion proposed by 

the authors, in contrast to Routh criteria, simplifies the identification of 

maximum and minimum stability limits for any coefficient of the higher-order 

characteristic equation significantly. The derived in the paper stability 

boundary formulas for the polynomial coefficients are successfully used for 

the proportional integral derivative (PID) controller with single or multiple 

gains selections in closed-loop control systems.  
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1. INTRODUCTION 

The research on the stability of higher-order systems was initiated by Edward Routh and Adolf 

Hurwitz long ago, their theory is being used now by control experts while analysing the stability of dynamic 

systems and added to many books on control engineering [1-4]. It provides an effective tool for identifying 

stability condition dynamic system and roots of its system polynomial on the jω-axis of s-plane. Nevertheless, 

it does not provide an effective method for identifying precise stability limits of higher-order system operation 

analytically or numerically by mathematically analysing the coefficients of the system characteristic 

polynomial. Deriving analytical expressions based on the Routh array is a very tedious and lengthy process.  

It becomes a formidable task for systems with an order higher than four. Besides, for special cases of all zeros 

in an array raw, the use of standard Routh procedure does not provide a solution to the problem.  

https://creativecommons.org/licenses/by-sa/4.0/
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Some researchers have managed to solve specific system stability problems by using  

the Routh-Hurwitz criterion. In paper [5], the authors used the Hermite-Biehler theorem to derive  

the Routh-Hurwitz criterion and managed to capture the system’s unstable root counting. While performing 

stability analysis, the Routh array may suffer some singularities. One example is when the first element of a 

row turns out to be zero. The solution to this case was discussed in some papers [5-7] and textbooks [1-4]. 

Some researchers have used the ϵ-method to solve the stability problem for the special case when there are zero 

leftmost elements together with an all-zero row in the Routh array [6]. A minor reconstruction of Routh’s array 

is demonstrated in [7] to solve a particular case of leading elements in the array becoming zero. In reconstructed 

array, locations of a polynomial root are defined by means of considering first-column sign changes, similar to 

Routh’s method, which eliminates the use of the ϵ-approach.  

The singularity in the Routh array would occur in case of all elements in a row become zero.  

In [8], the authors have presented a solution for the roots of a polynomial in the right-half of s-plane and on  

the jω-axis for the case when a few row elements in the Routh array become zero. They have used the continued 

fraction approach to solve the problem. When a system parameter is of the ϵ-order, the advantage of  

the ϵ-method of the Routh-Hurwitz criterion for the zero rows was elaborated in [9]. In [10], authors have 

replaced zero row coefficients with the derivative of the polynomial corresponding to the row next to  

the zero-row to fill the row as an additional procedure and doing that they have managed to identify  

the polynomial roots located symmetrically on the right and left and on the jω-axis. [7].  

Importantly, the Routh-Hurwitz criterion unable to determine the case of instability for the case of 

multiple roots on the jω-axis of the s-plane [2, 4, 11]. Routh array does not provide a solution for  

the number of multiple jω-axis roots unless solving it with the auxiliary polynomial. However, even  

the application of auxiliary procedure does not show sign change in the first column of Routh’s array for some 

unstable systems that have repeated multiple roots on jω-axis and no roots of the system polynomials in  

the right half s-plane [11]. In [10], the authors are managed to count the number of roots on jω-axis that are 

complex polynomials. The authors in [12] have investigated possible relation between the multiplicity of  

jω-axis poles and the zero rows numbers in the Routh array. The main outcome was a proof that the existence 

of multiple zero rows in the Routh array is a source of instability of the system despite sign change in the first 

column. In paper [13], authors have aimed at the modelling of cyclic physical phenomenon and investigated 

harmonic oscillations of systems at the borders of stability regions. Stability boundary oscillations are used in 

many science and engineering applications [13]. The authors in [14, 15] conducted boundary locus analysis to 

achieve a stable control system design. The authors identified stability regions of controller coefficients based 

on a solution of characteristic equation in s domain (s=jω). In the research paper [13], the authors have 

identified the harmonic oscillation boundary of systems by matching the roots of the characteristic polynomial 

with amplitude-angle (𝑀 − 𝜃) plane and representing roots of the polynomial as λ = 𝑀𝑒𝑗𝜃 . 

Another common method of n-th order systems stability studies is related to analysing numerical 

eigenvalues of n state equations [16, 17]. However, it does not simplify the solution of the problem for  

the n-th order system, the dimensions of a matrix of eigenvalues and matrix A, i.e. (λI-A), are of the same n-th 

order. Therefore, the level of complexity of stability problem solution is the same as to look into the roots of 

the original n-th order system characteristic polynomial. In other words, it requires calculation numerically  

the roots λ of n-th order polynomial to verify the stability of a given system. Therefore the analytical solution 

of the problem is not possible. The new theory of stability was initially introduced in [18] and successfully used 

to identify the boundary conditions analytically for up to sixth order systems. The Laplace transform of 

polynomial equation is introduced, and the manipulation of signals and systems in terms of stability in  

the Laplace domain explained [19]. Another work presents simple tools to quickly determine whether a given 

system is stable, and to determine the value range of coefficients [20]. Global asymptotic stability of  

the equilibrium point of a delayed system given by a higher-order delayed differential equation of retarded  

type with several time-varying delays is exaplined [21]. A higher-order shear deformation theory is  

used to determine the stability of elastic plates in [22]. Stability boundaries and lateral posture control is 

disceribed in [23].  

The literature review has shown that so far there is no any systematic and exact solution for stability 

problem of linear higher-order dynamic systems that can identify exact stability boundaries of system behaviour 

through the coefficients of its polynomial equation and doing that is able thoroughly to analyse and differentiate 

marginal stability or instability of systems at the boundary regions of stability. The importance of such theory 

could also contribute to closed-loop controllers design and selection of gains for the controller of dynamic 

systems. The closed-loop controller gains are part of the system characteristic polynomial coefficients and, 

therefore, stability limits of the coefficients can be used, in turn, to identify stability limits for the gains.  

The method described in this paper aims to solve these problems. Besides, it can precisely define the number 

and types of conjugate jω-axis roots on the s-plane while the dynamic system is at the stability boundary region 

and their influence on marginal stability or instability for some special cases of zero coefficients. 
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In the current paper in section 2 presents a completely modified and simpler approach for identifying 

stability of higher-order time-invariant linear dynamic systems with only two polynomials as an alternative to 

the renowned Routh-Hurwitz criterion and any other method. The discovered criterion and algorithms for 

system stability are new and have never been published in relation to the stability control of dynamic systems. 

The algorithms in this paper have been developed intuitively based on certain systematic relations of  

the coefficients of system characteristic polynomial at the boundaries of stability. The algorithms are 

successfully applied to various types of higher-order dynamic systems as well as polynomials of some selected 

engineering applications with closed-loop controllers. The presented algorithms are essential tools to identify 

marginal stability or instability of the systems for the case of multiple roots of the polynomials on jω-axis of 

the s-plane. Section 3 demonstrates the use of the developed theory for defining stability limits for single and 

multiple gains of closed-loop controllers for various engineering systems with higher-order dynamic models. 

This method is successfully tested on the model of a hard disk drive with a single-gain lead compensator [24] 

and the model of a two-inertia system with multiple gain controller design [25]. 
 
 

2. RESEARCH METHOD  

2.1.  General stability criteria 

In general, the characteristic polynomial for the higher-order dynamic system can be presented as follows: 
 

𝑎𝑛𝑠𝑛 + 𝑎𝑛−1𝑠𝑛−1 + 𝑎𝑛−2 𝑠
𝑛−2 + ⋯ + 𝑎1𝑠 + 𝑎0 = 0 (1) 

 

One of the conditions of possible stability is that all the coefficients of the polynomial must be positive real 

numbers [23]. However, positive values of the coefficients alone do not provide the stability of the system.  

The current paper presents stability criteria of the higher-order systems with all positive values coefficients as 

well as when some coefficients have zero values, which leads to special cases of marginal stability or instability. 

The general necessary stability criteria for any n-order dynamic system (where n ≥ 3) can be solely expressed by 

the set of two nonlinear (2) or (3) with the introduction of an additional unknown variable 𝑘 that couples both 

equations together. If the system order n is an odd number, then two equations are presented, as follows: 
 

𝑎𝑛 =     (𝑎𝑛−2 − (𝑎𝑛−4 − ⋯ − (𝑎3 − 𝑎1𝑘)𝑘) … )𝑘 

 (2) 

𝑎𝑛−1 = (𝑎𝑛−3 − (𝑎𝑛−5 − ⋯ − (𝑎2 − 𝑎0𝑘)𝑘) … )𝑘 
 

If the highest order of the system n is an even number, then two equations are presented differently, as follows: 
 

𝑎𝑛 =     (𝑎𝑛−2 − (𝑎𝑛−4 − ⋯ − (𝑎2 − 𝑎0𝑘)𝑘) … )𝑘 

 (3) 

𝑎𝑛−1 = (𝑎𝑛−3 − (𝑎𝑛−5 − ⋯ − (𝑎3 − 𝑎1𝑘)𝑘) … )𝑘 
 

It can be seen from (2) and (3) that unknown parameter k must be a real positive number to ensure 

that coefficients 𝑎𝑛 and 𝑎𝑛−1 are positive real numbers, which is an obvious stability condition for the system. 

The fundamental law of marginal or boundary stability of any dynamic system with order 𝑛 ≥3 is stated as 

follows: “if (2) or (3) are satisfied and there exists a solution of these equations with at least one common k as 

a positive real root, then all the coefficients in (1) are having stability boundary values and the system under 

consideration is in the state of marginal or boundary stability condition”. At this stage, some of the roots of 

characteristic polynomial (1) form conjugate pairs and strictly located on the imaginary jω-axis of the s-plane. 

Therefore, (2) or (3) represent the necessary and sufficient criteria to define accurately stability boundary value 

for all the coefficient of systems with characteristic polynomial order 𝑛 ≥3, provided algebraic (2), or (3) have 

at least one common positive real solution for k. In other words, if conditions (2) or (3) satisfy, then the dynamic 

system is in the state of marginal stability or instability, i.e., it is precisely in between the stable and unstable 

zones of behaviour. The boundary values for the coefficients of the n-th order system (1) can be obtained by 

mathematically excluding unknown k from both (2) or (3). The newly developed (2) or (3) have no analogy to 

any stability criteria shown so far in the literature. The relationship between the coefficients of the characteristic 

polynomial at the state of system stability boundary regions has been discovered intuitively. Still, it can be 

verified by any other method that describes stability boundary conditions for a dynamic system. 
 

 

3. RESULTS AND ANALYSIS  

3.1.  Stability range for the closed-loop control systems 

In (4), R(s) is the input signal, Y(s) is the output signal, H(s) is the feedback signal, G(s) is the plant 

model (system under observation), and K(s) is the controller model. In (2) or (3) can be successfully applied to 
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identify stability ranges for the gains of the closed-loop control system (4). The s-domain transfer function for 

the closed-loop control system can be expressed as follows: 
 

𝑌(𝑠)

𝑅(𝑠)
=

𝐺(𝑠)𝐾(𝑠)

1+𝐺(𝑠)𝐾(𝑠)𝐻(𝑠)
 (4) 

 

3.1.1. Case of single gain controller design  

The stability analysis of a system with a single gain controller can be demonstrated on the model of  

a hard disk drive with the lead compensator. The plant model of the hard disk drive system can be expressed 

as follows [19]: 
 

𝐺(𝑠) = 𝐴/𝐵 (5) 
 

𝐴 = 𝑛4𝑠4 + 𝑛3𝑠3 + 𝑛2𝑠2 + 𝑛1𝑠 + 𝑛0, 
 

𝐵 = 𝑑10𝑠10 + 𝑑9𝑠9 + 𝑑8𝑠8 + ∙∙∙  +𝑑4𝑠4 + 𝑑3𝑠3 + 𝑑2𝑠2, 
 

where:  
 

𝑛4 = 1.197 ∙ 1026,  𝑛3 = 2.12 ∙ 1029, 𝑛2 = 5.826 ∙ 1034, 
 

𝑛1 = 4.366 ∙ 1037,  𝑛0 = 6.189 ∙ 1042, 𝑑10 = 1, 𝑑9 = 5336,  
 

𝑑8 = 4.124 ∙ 109,  𝑑7 = 1.302 ∙ 1013,  𝑑6 = 4.216 ∙ 1018, 
 

 𝑑5 = 6.72 ∙ 1021,  𝑑4 = 1.198 ∙ 1027,  𝑑3 = 7.496 ∙ 1029, 
 

𝑑2 = 9.668 ∙ 1034. 
 

The lead compensator with a proportional gain kp can be presented as follows: 
 

𝐾(𝑠) = 𝑘𝑝(4𝑠 + 2)/(𝑠 + 2) (6) 
 

Substituting (5), (6) into (4) and assuming 𝐻(𝑠) = 1, yields the following close-loop system characteristic 

polynomial of 11th order dynamic system, where: 
 

𝑎11 = 𝑑10, 𝑎10 = 𝑑9 + 2𝑑10,  𝑎9 = 𝑑8 + 2𝑑9, 
 

𝑎8 = 𝑑7 + 2𝑑8, 𝑎7 = 𝑑6 + 12𝑑7, 𝑎6 = 𝑑5 + 2𝑑6, 
 

𝑎5 = 𝑑4 + 2𝑑5 + 4𝑘𝑝𝑛4, 𝑎4 = 𝑑3 + 2𝑑4 + 2𝑘𝑝(2𝑛3 + 𝑛4), 
 

𝑎3 = 𝑑2 + 2𝑑3 + 2𝑘𝑝(2𝑛2 + 𝑛3), 
 

𝑎2 = 2𝑑2 + 2𝑘𝑝(2𝑛1 + 𝑛2), 𝑎1 = 2𝑘𝑝(2𝑛0 + 𝑛1),  
 

𝑎0 = 2𝑘𝑝𝑛0. 
 

For the eleventh (odd) order characteristic polynomial, two stability boundary polynomials can be presented 

as (2). By substituting all the coefficients into (2) and dividing one by another, the proportional gain 𝑘𝑝 can be 

excluded from the resulting single algebraic 6th order stability boundary equation with variable k as follows: 
 

𝑝6𝑘6 + 𝑝5𝑘5 + 𝑝4𝑘4 + 𝑝3𝑘3 + 𝑝2𝑘2 + 𝑝1𝑘 + 𝑝0, (7) 
 

where coefficients are functions of only given constant parameters.  

The solution of (7) yields four real and two complex k roots. In accordance with rules of stability, 

only real roots of (7) could be considered for the marginal stability of the closed-loop system. Four real roots 

are 0.4912*10-6, 0.0139*10-6, 0.0077*10-6, 0.0006*10-6. Value of 𝑘𝑝at the state of marginal stability can be 

calculated from (32) and presented as follows: 
 

𝑘𝑝= C/D, where (8) 
 

C= 𝑑𝑑11 − 𝑑𝑑9𝑘 + 𝑑𝑑7𝑘2 − 𝑑𝑑5𝑘3 + 𝑑𝑑3𝑘4 − 𝑑𝑑1𝑘5, 
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D= 𝑛𝑛5𝑘3 − 𝑛𝑛3𝑘4 + 𝑛𝑛1𝑘5. 
 

Substituting four real roots of (7) into (8) yield three positives and one negative values of 𝑘𝑝. Negative value 

leads to instability of the system because of the coefficient 𝑎0 of the system is directly proportional to 𝑘𝑝, i.e. 

𝑎0 = 2𝑘𝑝𝑛0, and cannot be negative. As a result, the minimum stability limit for the 𝑘𝑝 is zero, i.e. 𝑘𝑚𝑖𝑛 = 0. 

The remaining three calculated positive value for 𝑘𝑝 are 0.0079, 0.2119, 0.1726. Solving for  

the roots of eleventh order characteristic polynomial for these three values of 𝑘𝑝 yields a pair of roots located 

on the imaginary axis of s-plane ±𝑗0.1427 ∗ 104, ±𝑗0.8488 ∗ 104, ±𝑗1.1411 ∗ 104, respectively. The analysis 

of all solutions shows that only one gain value 𝑘𝑝𝑚𝑎𝑥 =0.0079 corresponds to the marginal stability condition 

of the closed-loop system, where all the roots located at the left half of the s-plane.  
 

3.1.2. Case of multiple gain controller design 

The advantage of applying (2) and (3) for stability analysis of higher-order closed-loop dynamic 

systems can be demonstrated for the case of applying multiple gain controllers to the system. The criteria (2) 

and (3) were tested on the example of the model of a two-inertia system with a proportional-differential (PD) 

controller. The plant model of such a two-inertia system can be expressed as follows [20]: 
 

𝐺(𝑠) = 𝑛0/( 𝑑4𝑠4 + 𝑑3𝑠3 + 𝑑2𝑠2 + 𝑑1𝑠 + 𝑑0), where: (9) 
 

𝑛0 = 0.0625, 𝑑4 = 1, 𝑑3 = 2, 𝑑2 = 1.5, 𝑑1 = 0.5,  
 

𝑑0 = 0.0625. 
 

Substituting (9), 𝐾(𝑠) = 𝑘𝑝 + 𝑠𝑘𝑑 into (4) and assuming 𝐻(𝑠) = 1 yields the following fourth-order 

characteristic polynomial of the closed-loop system: 
 

𝑑4𝑠4 + 𝑑3𝑠3 + 𝑑2𝑠2 + (𝑑1 + 𝑛0𝑘𝑑)𝑠 + (𝑑0 + 𝑛0𝑘𝑝) = 0 (10) 
 

The two stability boundary polynomials (3) for the characteristic polynomial (10.45) can be presented as follows: 
 

𝑑4 = 𝑘𝑑2 − 𝑘2(𝑑0 + 𝑛0𝑘𝑝) (11) 
 

𝑑3 = 𝑘(𝑑1 + 𝑛0𝑘𝑑) (12) 
 

By dividing (11) by (12), the following expression for 𝑘𝑑 can be derived: 
 

𝑘𝑑 = [𝑑2𝑑3 − 𝑑3(𝑑0 − 𝑛0𝑘𝑝)𝑘 − 𝑑1𝑑4] 𝑛0𝑑4⁄   (13) 
 

Substituting (13) into (12) yields the following quadratic equation: 
 

(𝑑0𝑑3 + 𝑑3𝑛0𝑘𝑝)𝑘2 − 𝑑2𝑑3𝑘 + 𝑑3𝑑4 = 0 (14) 
 

The solution of (14) can be presented as follows: 
 

𝑘 = [𝑑2 ± √𝑑2
2 − 4𝑑4(𝑑0 + 𝑛0𝑘𝑝)] 2(𝑑0 + 𝑛0𝑘𝑝)⁄  (15) 

 

The stability boundary is achieved when the expression under the square root is equal zero, and  

the solution of (15) yields a single positive answer for 𝑘 (stability rule). As a result, at the stability boundary 

condition for the system the expression for a maximum limit of 𝑘𝑝 can be derived from (15) as follows: 
 

𝑘𝑝
𝑚𝑎𝑥 = (𝑑2

2 − 4𝑑0𝑑4) (4𝑑4𝑛0)⁄  (16) 
 

The minimum limit of 𝑘𝑝 can be obtained from the condition that for a stable system, all the coefficients of 

characteristic polynomial (10) must be positive. Therefore, the coefficient 𝑑0 + 𝑛0𝑘𝑝 must have a positive 

value and the minimum value for 𝑘𝑝 can be calculated as follows: 
 

𝑘𝑝
𝑚𝑖𝑛 = −𝑑0/𝑛0 (17) 

 

To provide absolute stability of the closed-loop system, the following condition for 𝑘𝑝 must be provided: 
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𝑘𝑝
𝑚𝑖𝑛 < 𝑘𝑝 <   𝑘𝑝

𝑚𝑎𝑥 (18) 
 

For any value of 𝑘𝑝 within limits (18), two values for 𝑠𝑠 are be calculated from (15) and subsequently 

two corresponding limit values for 𝑘𝑑 can be calculated from (13). An additional condition for the system 

stability is that the minimum limit for 𝑘𝑑 must be more than one calculated from the corresponding coefficient 

of the system characteristic polynomial, i.e. 
 

 𝑘𝑑
𝑚𝑖𝑛 >−𝑑1/𝑛0. (19) 

 

Using all the stability conditions (13), (15) to (19), the following graph of a function 𝑘𝑑 = 𝑓(𝑘𝑝) for  

the boundary values can be obtained, as shown in Figure 1. For all the boundary values of the system gains, 

the solution of the characteristic polynomial (10) yields one pair of conjugate roots at the imaginary axis of  

s-plane, i.e., the system is at the condition of marginal stability. 

 

 

 
 

Figure 1. Stability boundary curves for 𝑘𝑑 = 𝑓(𝑘𝑝) 
 

 

Figure 2 shows the region of absolute stability of the system that lies in between the upper and lower 

lines of the graph. The highest range of stability is at 𝑘𝑝
𝑚𝑖𝑛 = −1, where -8 < 𝑘𝑑 < 40. At  𝑘𝑝

𝑚𝑎𝑥 = 8, the stability 

region is reduced to a single value 𝑘𝑑 =16. In case of applying PID controller 𝐾(𝑠) = 𝑘𝑝 + 𝑠𝑘𝑑 + 𝑘𝑖/𝑠 to  

the model of the two-inertia system [19], the following fifth-order characteristic equation can be obtained: 
 

 𝑑4𝑠5 + 𝑑3𝑠4 + 𝑑2𝑠3 + (𝑑1 + 𝑛0𝑘𝑑)𝑠2 + (𝑑0 + 𝑛0𝑘𝑝)𝑠 + +𝑛0𝑘𝑖 = 0 (20) 
 

Two stability boundary polynomials (2) for the characteristic polynomial (20.55) can be presented as follows: 
 

𝑑4 = 𝑘𝑑2 − 𝑘2(𝑑0 + 𝑛0𝑘𝑝), (21) 
 

𝑑3 = 𝑘(𝑑1 + 𝑛0𝑘𝑑) − 𝑘2𝑛0𝑘𝑖 (22) 
 

By dividing (21) by (22), the following formula for 𝑘𝑝 can be obtained: 
 

𝑘𝑝 = (𝑑2𝑑3 − 𝑑1𝑑4 − 𝑛0𝑑4𝑘𝑑)/(𝑛0𝑑3𝑘) −  (23) 
 

−(𝑑0𝑑3 − 𝑛0𝑑4𝑘𝑖)/(𝑛0𝑑3) 
 

Substituting (23) into (21) yields the following quadratic equation: 
 

(𝑛0𝑘𝑖)𝑘2 − (𝑑1 + 𝑛0𝑘𝑑)𝑘 + 𝑑3 = 0 (24) 
 

The solution of (24) can be presented as follows: 
 

𝑘 = [𝑑1 + 𝑛0𝑘𝑑 ± √(𝑑1 + 𝑛0𝑘𝑑)2 − 4𝑑3𝑛0𝑘𝑖] (2𝑛0𝑘𝑖)⁄  (25) 
 

The stability boundary is achieved when the expression of square root in (25) is equal zero, and  

the solution of (25) yields a single positive answer for 𝑘 (stability rule). This condition yields the following 

boundary equation for 𝑘𝑑: 
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(𝑛0
2)𝑘𝑑

2 + (2𝑛0𝑑1)𝑘𝑑 + 𝑑1
2 − 4𝑛0𝑑3𝑘𝑖 = 0  (26) 

 

The solution of (26) yields the boundary equation for 𝑘𝑑 as follows: 
 

𝑘𝑑 = −𝑑1 ± 2 √𝑑3𝑛0𝑘𝑖 (27) 
 

A stability boundary is achieved when the expression of square root in (27) is equal to zero, i.e., when 𝑘𝑖 = 0. 

Therefore, for the absolute stability of the closed-loop system, the following condition must be satisfied:  
 

 𝑘𝑖 > 0 (28) 
 

For any value 𝑘𝑖 > 0, formula (27) yields two limiting values for 𝑘𝑑. The additional condition for the system 

stability is that the minimum limit for 𝑘𝑑 must be more than one calculated from the corresponding coefficient 

of the system characteristic polynomial, i.e. 
 

𝑘𝑑
𝑚𝑖𝑛 >−𝑑1/𝑛0. (29) 

 

By substituting the two limiting values of 𝑘𝑑 into (25) and subsequently into (23), the remaining two  

limiting values for 𝑘𝑝 can be obtained. An additional condition for the system stability is that the minimum 

limit for 𝑘𝑝 must be more than one calculated from the corresponding coefficient of the system characteristic 

polynomial, i.e. 
 

 𝑘𝑝
𝑚𝑖𝑛 >−𝑑0/𝑛0. (30) 

 

Using all the stability conditions (23), (25), (27) to (30), the following 3D graph of function 𝑘𝑝 = 𝑓(𝑘𝑑, 𝑘𝑖) 

for the boundary lines of 𝑘𝑝, 𝑘𝑑  gains versus a few values of 𝑘𝑖  is shown in Figure 2. The absolute stability of  

the system is confined within the space outlined by the limiting values of three gains. Figure 3 shows the only 2D 

view of the lines shown in Figure 2. The maximum values for 𝑘𝑝, 𝑘𝑑, 𝑘𝑖  gains are defined by the terminal condition 

when 𝑘𝑝
𝑚𝑖𝑛 = 𝑘𝑝

𝑚𝑎𝑥 for raising in steps values of 𝑘𝑖 (28) and is calculated on MATLAB software. Increasing 𝑘𝑖 

reduces that stability range of the system, i.e., stability ranges for the other two gains. For all the boundary values of 

the system gains the solution of the characteristic polynomial (55) yields one pair of conjugate roots at the imaginary 

axis of s-plane, i.e., the system is at the condition of marginal stability. An exception is for the points where  

𝑘𝑝
𝑚𝑖𝑛 = 𝑘𝑝

𝑚𝑎𝑥. Figure 4 shows a 2D graph of 𝑘𝑝 = 𝑓(𝑘𝑑) for a single value 𝑘𝑖=0.  
 
 

 
 

Figure 2. 3D Stability boundary curves for 𝑘𝑝 = 𝑓(𝑘𝑑, 𝑘𝑖) 

 

 

 
 

Figure 3. 2D Stability curves for 𝑘𝑝 = 𝑓(𝑘𝑑 , 𝑘𝑖) 
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Figure 4. 2D Stability boundary curves for 𝑘𝑝 = 𝑓(𝑘𝑑), 𝑘𝑖 = 0 

 

 

If 𝑘𝑖 = 0, then 𝑘𝑑
𝑚𝑖𝑛 = −8<𝑘𝑑<40 and 𝑘𝑝

𝑚𝑖𝑛 = −1<𝑘𝑝<8 as shown in Figure 4. At the left intersection 

of lines (𝑘𝑑
𝑚𝑖𝑛 = −8 and 𝑘𝑝

𝑚𝑖𝑛 = −1), the roots of the closed-loop system are: -1.0000+0.7071i; -1.0000-0.7071i; 

0.0000+0.0000i; -0.0000-0.0000i; -0.0000-0.0000i. At the right intersection of lines (𝑘𝑑
𝑚𝑎𝑥 = 40 and  

𝑘𝑝
𝑚𝑖𝑛 = −1), the roots of the closed − loop system are: -2+0.0000i; -0.0000+1.2246i; -0.0000-1.2246i;  

-0.0000+0.0000i; -0.0000+0.0000i. When 𝑘𝑖 reaches its maximum value (𝑘𝑖
𝑚𝑎𝑥 =18), the plots on Figure 2  

and Figure 3 are converged to a single point and other gains reach their single maximum values, i.e. 𝑘𝑝
𝑚𝑎𝑥 = 8, 

𝑘𝑑
𝑚𝑎𝑥 = 40. The roots of the system characteristic polynomial at this point are -2.0000+0.0000i;  

-0.0000+0.8660i; -0.0000 -0.8660i; 0.0000+0.8660i; 0.0000-0.8660i, i.e., the system has double conjugate 

roots on imaginary axis of s-plane.  

 

 

4. CONCLUSION  

The paper presents an effective and simple tool for the analytical solution of the stability problem of 

higher-order linear time-invariant dynamic systems. It has a significant advantage compared to the Routh-Hurwitz 

technique. The proposed universal stability criteria (2) or (3) establish unique relations between the stability 

boundary values of the system characteristic polynomial coefficients and the newly introduced additional 

parameter k. It is a new approach, and there are no similarities found to these criteria in the literature.  

The newly-developed method is a universal one and can be applied to any higher-order dynamic system.  

The authors of this paper have discovered and established a set of general expressions (2) or (3) that can be 

applied for derivation of necessary stability criteria for any order linear time-invariant dynamic system. These 

results are new and have not been published currently in the literature and were obtained for special cases of 

marginal stability when the same exact set of zero coefficients the system can be either in the state of marginal 

stability or marginal instability, i.e., the system exhibits a dual behaviour. Section 3 is dedicated to the use of 

criteria (2) and (3) to provide marginal and absolute stability for the closed-loop control systems with 

proportional, derivative, and integral gains. The paper discusses in detail the derivation of equations for precise 

stability boundary values of 𝑘𝑝, 𝑘𝑑, 𝑘𝑖 gains based on the two-polynomial criteria (2) and (3). The obtained 

results of the analytical calculation of precision stability boundary values for a multiple-gain higher-order 

closed-loop system do not have an analogy currently in the control theory. The results obtained in this paper 

prove that the developed system stability criteria or algorithm for stability analysis of a higher-order linear 

dynamic system is a step forward in analysing stability conditions of complex dynamic systems and deriving 

precise analytical expressions for multiple gains of closed-loop control systems.  
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