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 In recent years, balance control of two-wheeled bicycle has received more 

attention of scientists. One difficulty of this problem is the control object is 

unstable and constantly impacted by noise. To solve this problem, the authors 

often use robust control algorithms. However, robust controller of self-

balancing two-wheeled bicycle are often complex and higher order so affect 

to quality during real controlling. The article introduces the stochastic 

balanced truncation algorithm based on Schur analysis and applies this 

algorithm to reduce order higher order robust controller in control balancing 

two-wheeled bicycle problem. The simulation results show that the reduced 4th 

and 5th order controller arcoording to the stochastic balanced truncation 

algorithm based on Schur analysis can control the two-wheeled bicycle model. 

The reduced 3rd order controller cannot control the balance of the two-wheeled 

bicycle model. The reduced 4th and 5th order controller can replace the original 

controller while the performance of the control system is ensured. Using 

reduced 5th, 4th order controller will make the program code simpler, reducing 

the calculation time of the self-balancing two-wheel control system. The 

simulation results show the correctness of the model reduction algorithm and 

the robust control algorithm of two-wheeled self-balancing two-wheeled 

bicycle. 
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1. INTRODUCTION 

In recent years, research on self-balancing two-wheeled bicycle has been interested by many 

scientists. In particular, a difficult problem is the study of self-balancing problem of the robot. To solve the 

problem of balancing two-wheeled bicycle, there are three basic methods as follows; (a) controlling balance 

by the flywheel, as in the studies of Beznos [1], Xu [2], and Kim [3]. Lee [4] Gallaspy [5], and Suprapto [6]; 

Thanh [7], (b) controlling balance by centrifugal force as in the study of Tanaka and Murakami [8], and (c) 

controlling balance by changing the center of gravity as Lee and Ham's research [9]. Among these three 

methods, control of balance using the flywheel has the advantage of being responsive and can be balanced even 

when the vehicle is not moving. 

In two-wheeled robot models that control the balance by using the flywheel, two-wheeled bicycle uses 

the flywheel according to the principle of gyroscope [1, 5-7] to create a balanced torque for the wheels. The 

momentum usually revolves at high speed, so the flywheel dissipates a large amount of energy. This problem 

leads to a difficulty in the operation power of the robot as the robot is only powered by a battery with a limited 

https://creativecommons.org/licenses/by-sa/4.0/
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capacity. In contrast, the two-wheeled bicycle model uses the flywheel according to the principle of inverted 

pendulum [2-4], to create a balanced torque for the car, the flywheel rotates only at very small speed, so the 

energy dissipated by the flywheel is low. Due to the reason, this model is suitable in terms of energy saving 

for the car. Therefore, the authors proposed the self-balancing two-wheeled robot using the flywheel based on 

the principle of inverted pendulum. 

Because two-wheeled bicycles often have to work in different conditions, the carrying capacity may 

vary, the external forces acting on the vehicles may change. It is difficult to find the model of self-balancing 

two-wheeled bicycle, and Two-wheel bicycle can be considered as indeterminate objects [5]. Several control 

algorithms of two-wheeled bicycle have been proposed such as: nonlinear control by Beznol [1], Lee và  

Ham [9], the compensated design using the orbital approach by Gallaspy [5], PD controller by Surpato [6]. 

Due to the uncertainty of two-wheel model, the robust control method in [7] is the most suitable. However, in 

the robust control design method RH∞ first introduced by McFarlane and Glover in 1992 [10], the controllers 

usually have a high order (controller level is defined as the denominator). The high order controller introduces 

the disadvantage when we use it to control the bicycle. The program is complex. The calculation time is long, 

so the response of the system is slow. Therefore, reducing the order of the controller while ensuring the quality 

of the controller has a significant meaning in practical applications. In order to reduce the controller order, 

there are 2 methods can be followed: 

The first method: this method selects a fixed structure of the order reduction controller and then 

applies optimal algorithms to find the parameters of the order reduction controller so that the standards of the 

robust control are met. The second method: designing a robust controller for an uncertain object will obtain a 

high-order controller, then perform a high-order controller reduction according to the order reduction 

algorithms to obtain a reduced order controller. 

According to the authors, in the first method, the controller can be a low order controller [7], but two 

optimization problems need to be sovle simultaneously (problems in fiding parameters of the controller and 

robust control). This issue leads to difficuty of this method. The parameter of the low order controller may not 

be found if the chosen controller is not suitable. In the second method, the order reduction problem is an 

independent problem, so it always gives the order reduction result as in [11]. Due to that reason, the second 

method has the advantage over the first method because the low order controller can be found in any senario. 

In this paper, the authors proposed the control method of two-wheeled bicycle using model reduction 

algorithm in two steps as follow: (a) design the RH controller to control the balance of two-wheeled bicycle, 

the found controller is called a full-level controller, and (b) applying order reduction algorithm to reduce order 

of RH controller to lower order controller while ensuring quality. This step reduction is meant to reduce the 

system response time. 

 

 

2. DYNAMIC MODEL AND MATHEMATICAL MODEL OF THE SELF-BALANCING TWO-

WHEELED BICYCLE  

2.1.  Dynamic model of the self-balancing two-wheeled bicycle 

The two-wheeled bicycle model is developed based on the principle of balance using flywheel 

according to the principle of inverted pendulum [2-4]. It is briefly described the principle of balancing of the 

vehicle as follows: if no external torque (torque) is applied to an object or system (or the total torque applied 

to an object is zero), then the total torque of the object will be preserved. 

The vehicle moving by 2 wheels, when the vehicle deviates from the balance position (corresponding 

to a q angle according to vertical axis). The gravity of the vehicle creates a torque that makes the car tend to 

fall down. To maintain a state of equilibrium, we put on the vehicle a flywheel that operates on the principle 

of "the inverted pendulum". This flywheel will rotate around the axis (with an angular acceleration of ) and 

create a torque to compensate the torque generated by the vehicle's gravity. To control the acceleration of the 

flywheel, we uses a DC dc motor with the voltage applied to the motor being U. Then, the problem of balancing 

control becomes the problem of controlling the 𝜃 angle (output) by controlling the voltage U (input) applying 

to the motor. The problem requires that the 𝜃 angle (output) always go to zero. The self-balancing two-wheeled 

bicycle that the authors built is shown in Figure 1.  

The model machanical parameters: long: 1.19 m; height: 0.5 m; width: 0.4 m; the flywheel weight: 

3.976 kg, diameter: 0.26m; Driving the flywheel using DC motor: 100W-15V-3400 rpm with H-bridge  

driver; Measuring the flywheel velocity by Encoder Sharo 100 pulse; Measuring the q amgle by sensor  

GY-521 MPU-6050; Forward and reverse system consists of a DC motor, H-bridge driver and a remote 

controller. The hardware system is connected to Ardruino microprocessor according to the following block 

diagram as shown in Figure 2. 
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Figure 1. The self-balancing two-wheeled bicycle model 
 

 

 
 

Figure 2. Schematic structure of bicycle controller 
 

 

2.1.  Mathematical model of the self-balancing two-wheeled bicycle 

Dynamic model of the self-balancing two-wheeled bicycle is shown in Figure 3. Where: m1 is the 

bicycle weight (including DC motor), m2 is the flywheel weight, h1 is the height of the center gravity of the 

bicycle (excluding the flywheel), h2 is the height of the center gravity of the flywheel, I1 is the inertia torque of 

the bicycle, I2 is the inertia torque of the flywheel, q is the tilt angle of the bicycle corresponding to the vertical 

axis, j is the rotation angle of the flywheel. We have: the absolute velocity of point A is |𝑣𝐴| = ℎ1�̇�.  

The absolute velocity of point B is |𝑣𝐵| = ℎ2�̇�. In [5], the author used Lagrange equation to develop the 

dynamic model of the vehicle. 
 
𝑑

𝑑𝑡
{
𝜕𝑇

𝜕�̇�𝑖
} −

𝜕𝑇

𝜕𝑞𝑖
+
𝜕𝑉

𝜕𝑞𝑖
= 𝑄𝑖         (1) 

 

where: T is the total kinetic energy of the system, V is the total potential energy of the system, Qi is the external 

force, qi is the generalized coordinate. 
 

 

 
 

Figure 3. Self-balancing two-wheel bicycle model 
 

 

The total kinetic energy of the system defined by: 𝑇 = 𝑇1 + 𝑇2. T1, which is the kinetic energy of the 

two-wheeled vehicles, is determined by the following formula:  
 

𝑇1 =
1

2
𝑚2|𝑣𝐵|

2 +
1

2
𝐼1�̇�

2  
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T2, which is the flywheel kinetic energy, is determined by the following formula:  
 

𝑇2 =
1

2
𝑚2|𝑣𝐵|

2 +
1

2
𝐼2(�̇� + �̇�)  

 

We have: 
 

𝑇 =
1

2
𝑚1|𝑣𝐴|

2 +
1

2
𝑚2|𝑣𝐵|

2 +
1

2
𝐼1�̇�

2 +
1

2
𝐼2�̇�

2 +
1

2
𝐼2�̇�

2 + 𝐼2�̇��̇�    (2) 

 

 𝑇 =
1

2
(𝑚1ℎ1

2 +𝑚2ℎ2
2 + 𝐼1 + 𝐼2)�̇�

2 +
1

2
𝐼2�̇�

2 + 𝐼2�̇��̇�    (3) 

 

The total potential energy of the system: 
 

𝑉 = 𝑔. 𝑐𝑜𝑠 𝜃 . (𝑚1ℎ1 +𝑚2ℎ2)       (4) 
 

With qi = q, taking (1-4), we get: 
 

 (𝑚1ℎ1
2 +𝑚2ℎ2

2 + 𝐼1 + 𝐼2)�̈� + 𝐼2�̈� − 𝑔. 𝑠𝑖𝑛 𝜃 . (𝑚1ℎ1 +𝑚2ℎ2) = 0   (5) 
 

With qi = j, taking (1–4), we get: 
 

𝐼2�̈� + 𝐼2�̈� = 𝑇𝑚.         (6) 
 

With Tm is the motor shaft torqe. 

Considering a DC dc motor with a gear ratio of a:1, the torque of the DC motor driving the flywheel 

is as follows: 
 

𝑇𝑚 = 𝑎𝐾𝑚𝑖 = 𝑎𝐾𝑚 [
𝑈−𝐾𝑒�̇�

𝑅
],       (7) 

 

with Km is the motor torque constant, Ke is the back-emf constant, R is the resistance of the motor. Substitute 

(7) into (6), we get: 
 

𝐼2�̈� + 𝐼2�̈� = 𝑇𝑚 = 𝑎𝐾𝑚 [
𝑈−𝐾𝑒�̇�

𝑅
].       (8) 

 

In (5) and (8) are the dynamic system equation. It is clear that the system is nonlinear. Linearizing the model 

and turn it into a state space model. Assume that when the vehicle is operating, the vehicle's inclination angle 

is very small (𝜃 < 100). Linearizing in (5) around the equilibrium point (𝜃 = 𝜑 = 0, 𝑠𝑖𝑛 𝜃 = 𝜃), we have: 
 

(𝑚1ℎ1
2 +𝑚2ℎ2

2 + 𝐼1 + 𝐼2)�̈� + 𝐼2�̈� − 𝑔. 𝜃. (𝑚1ℎ1 +𝑚2ℎ2) = 0   (9) 
 

𝐼2�̈� + 𝐼2�̈� = 𝑇𝑚 = 𝑎𝐾𝑚 [
𝑈−𝐾𝑒�̇�

𝑅
]       (10) 

 

Taking𝐴1 = (𝑚1ℎ1
2 +𝑚2ℎ2

2 + 𝐼1 + 𝐼2); 𝐵1 = (𝑚1ℎ1 +𝑚2ℎ2) 
 

Taking 𝑥 = [

𝜃 = 𝑥1
�̇� = 𝑥2
�̇� = 𝑥3

], is state variable, 𝑦 = 𝜃, 𝑢 = 𝑈 

 

We have the state space model describing the system as follow: 
 

�̇� = 𝐴𝑥 + 𝐵𝑢          (11) 
 

𝑦 = 𝐶𝑥 + 𝐷𝑢  
 

with: 
 

𝐴 =

[
 
 
 

0 1 0
𝐵1𝑔

(𝐴1−𝐼2)
0

𝑎𝐾𝑚𝐾𝑒

𝑅(𝐴1−𝐼2)

−
𝐵1𝑔

(𝐴1−𝐼2)
0 −𝑎𝐾𝑚𝐾𝑒

𝐴1

𝐼2𝑅(𝐴1−𝐼2)]
 
 
 
;𝐵 = [

0

−
𝑎𝐾𝑚

𝑅(𝐴1−𝐼2)

𝑎𝐾𝑚
𝐴1

𝐼2𝑅(𝐴1−𝐼2)

] 𝐶 = [1 0 0];𝐷 = [0] 
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The nominal parameters of the two-wheeled bicycle model are shown in Table 1 as follows: 

explaining research chronological, including research design, research procedure (in the form of algorithms, 

Pseudocode or other), how to test and data acquisition [1-3]. The description of the course of research should 

be supported references, so the explanation can be accepted scientifically [2, 4]. Tables and figures are 

presented center, as shown below and cited in the manuscript.  Substituting for the system of (11), we obtain 

the following parameters: 

 

𝐴 = [
0 1 0

47.2048 0 0.0100
-47.2048 0 -0.1248

]; 𝐵 = [
0

-0.2230
2.8541

];𝐶 = [1 0 0]. 

 

Convert the vehicle model into transfer function: 

 

𝑆(𝑠) =
𝜽(𝑠)

𝑼(𝑠)
=

−0.223𝑠

𝑠3+0.1284𝑠2−47.2𝑠−5.589
      (12) 

 

 

Table 1. The parameters of the two-wheeled bicycle mode 
Parameter Value Unit 

𝐼1 0.1105 Kg.m2 

ℎ1 0.105 m 

𝐼2 0.03289 Kg.m2 

ℎ2 0.205 m 

𝑚1 10.024 Kg 

𝑚2 3.976 Kg 

𝐾𝑒  0.045 V.s/Rad 

𝐾𝑚  0.045 Nm/A 

𝑅 0.52  

𝑎 1:1  

𝑔 9.81 m/s2 

 

 

Remark on two-wheel drive models. The self-balancing two-wheeled bicycle model shows that some 

parameters of self-balancing two-wheeled bicycle are uncertain such as: the changing load volume (leading to 

a change in the center of gravity of the car), the inertia torque of the bicycle changed. Additionally, operating 

two-wheeled bicycle may be influenced by external uncertainties such as: the external force and uncertain noise 

due to the changing of topography. Therefore, The two-wheeled bicycle is the uncertain object. In particular, 

the authors pay the most attention to the uncertainty due to the change of load weight. Specifically, the authors 

consider 4 cases of two-wheeled bicycle carrying different loads as shown in the Table 2. 

Uncertain factors may reduce the accuracy of two-wheeled mathematical models. Therefore, the 

control quality is reduced and the system can even become unstable. Due to the uncertain properties, the various 

control algorithm for the two wheeled bicycle has been proposed: nonlinear control by Beznol [1], Lee và  

Ham [4], the compensated design using the orbital approach by Gallaspy [5], PD controller by Surpato [8]. The 

most suitable algorithm to control the uncertain object was the algorithm in [10]. 

 

 

Table 2. Parameters of the two-wheeled bicycle model as the load is different 
Case Load volume 𝑚𝑡  (kg) Height of the center of gravity ℎ1 (m) Moment of inertia𝐼1 (Kg.m2) 

1 5 0.205 0.6314 

2 5 0.155 0.3609 

3 7 0.055 0.0515 

4 7 0.155 0.409 

 

 

3. OPTIMAL DESIGN RH FOR BALANCE WHEEL PROBLEM 

The structure of the balancing control system for self-balancing two-wheeled bicycle is shown in 

Figure 4. The balancing control system consists of 3 loop controls , namely, loop control the rotation angle of 

the flywheel, loop control the velocity tilt angle of bicycle and loop control the tilt angle of bicylce. The robust 

controller R(s) is used in loop control the tilt angle of bicylce. To design a robust control system for  

self-balancing two-wheeled bicycle, the control structure diagram shown in Figure 4 is used by the authors. 
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Figure 4. The robust control structure for self-balancing two-wheeled bicycle 

 

 

3.1.  Developing the self-balancing two-wheeled bicycle model 𝑆𝑚(𝑠) 
Assuming that when the vehicle is in operation, the inclination of the bicycle is very small, we 

linearize in (5) around the equilibrium point (𝜃 = 𝜑 = 0,𝑠𝑖𝑛 𝜃 = 𝜃). We have: 
 

(𝑚1ℎ1
2 +𝑚2ℎ2

2 + 𝐼1 + 𝐼2)�̈� + 𝐼2�̈� − 𝑔. 𝜃. (𝑚1ℎ1 +𝑚2ℎ2) = 0   (13) 
 

𝐼2�̈� + 𝐼2�̈� = 𝑇𝑚 = 𝑎𝐾𝑚 [
𝑈∗−(𝐾𝑒+𝐾1)�̇�+𝐾2�̇�

𝑅
]      (14) 

 

Taking:𝐴1 = (𝑚1ℎ1
2 +𝑚2ℎ2

2 + 𝐼1 + 𝐼2); 𝐵1 = (𝑚1ℎ1 +𝑚2ℎ2) 
 

Taking𝑥 = [

𝜃 = 𝑥1
�̇� = 𝑥2
�̇� = 𝑥3

], is state variable, 𝑦 = 𝜃, 𝑢 = 𝑈∗ 

 

We have the state space model describing the system as follow: 
 

�̇� = 𝐴𝑥 + 𝐵𝑢  
 

𝑦 = 𝐶𝑥 + 𝐷𝑢         (15) 
 

The system parameters: 
 

𝐴 =

[
 
 
 

0 1 0
𝐵1𝑔

(𝐴1−𝐼2)

𝑎𝐾𝑚𝐾2

𝑅(𝐴1−𝐼2)

𝑎𝐾𝑚(𝐾𝑒+𝐾1)

𝑅(𝐴1−𝐼2)

−
𝐵1𝑔

(𝐴1−𝐼2)
−𝑎𝐾𝑚𝐾2

𝐴1

𝐼2𝑅(𝐴1−𝐼2)
−𝑎𝐾𝑚(𝐾𝑒 + 𝐾1)

𝐴1

𝐼2𝑅(𝐴1−𝐼2)]
 
 
 

;𝐵 = [

0

−
𝑎𝐾𝑚

𝑅(𝐴1−𝐼2)

𝑎𝐾𝑚
𝐴1

𝐼2𝑅(𝐴1−𝐼2)

];  

 

𝐶 = [1 0 0]; 𝐷 = [0]. 
 

Chosing 𝐾1 = 2,𝐾2 = 5. Substituting the parameters in Table 1 into (15), the model is converted to the transfer 

function form: 
 

𝑆𝑚(𝑠) =
𝜃(𝑠)

𝑈(𝑠)
=

−0.223𝑠

𝑠3+4.722𝑠2−47.2𝑠−254
       (16) 

 

To design a robust controller for self-balancing two-wheeled bicycle, the authors followed the steps of 

designing a robust controller RH∞ according to [10, 12]. We get the robust controller: 
 

𝑅(𝑠) =
𝐻(𝑠)

𝐷(𝑠)
         (17) 

 

with 
 

𝐻(𝑠) = −2.23.10−7𝑠30 − 4.67.10−4𝑠29 − 0.266𝑠28 − 22.96𝑠27 − 1006𝑠26 − 2.853.104𝑠25 
 

−5.837.105𝑠24 − 4.199.1011𝑠18 − 9.144.106𝑠23 − 1.139.108𝑠22 − 1.158.109𝑠21 − 9.776.109𝑠20 
−6.949.1010𝑠19 − 2.172.1012𝑠17 − 9.663.1012𝑠16 − 3.71.1013𝑠15 − 1.231.1014𝑠14 
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−3.53.1014𝑠13 − 8.74.1014𝑠12 − 1.862.1015𝑠11 − 3.398.1015𝑠10 − 5.276.1015𝑠9 − 6.903.1015𝑠8 
 

−7.511.1015𝑠7 − 6.676.1015𝑠6 − 4.721.1015𝑠5 − 2.556.1015𝑠4 − 9.953.1014𝑠3 − 2.482.1014𝑠2 
 

−2.977.1013𝑠 − 0.00439 
 

𝐷(𝑠) = 4.971.10−14𝑠30 + 2.032.10−10𝑠29 + 2.663.10−7𝑠28 + 1.221.10−4𝑠27 + 9.72.10−3𝑠26 
 

+0.3918𝑠25 + 10.14𝑠24 + 187.1𝑠23 + 2612𝑠22 + 2.862.104𝑠21 + 1.088.107𝑠18 + 2.523.105𝑠20 
 

+1.82.106𝑠19 + 5.428.107𝑠17 + 2.273.108𝑠16 + 8.005.108𝑠15 + 2.372.109𝑠14 + 5.9.109𝑠13 
 

+1.225.1010𝑠12 + 2.107.1010𝑠11 + 2.962.1010𝑠10 + 3.341.1010𝑠9 + 2.941.1010𝑠8 
 

+1.931.1010𝑠7 + 8.743.109𝑠6 + 2.286.109𝑠5 + 1.519.108𝑠4 − 5.226.107𝑠3 + 3.6.10−6𝑠2 
 

+5.32.10−22𝑠 
 

3.2.  Compare the robust controller with another controller 

The bicycle with the varying parameter is controlled by PID control method. The result is then used 

to compare to the case which the robust controller is applied. Simulation diagram of self-balancing  

two-wheeled bicycle control system using robust controller and PID controller are shown in Figure 5. 

Simulation results of self-balancing two-wheeled bicycle control system when the parameters of model are 

rated and when the model parameters change, Initially, the bicycle deviates 𝜃 =
𝜋

180
(𝑟𝑎𝑑) from the vertical 

axis. Parameters of PID controller: Kp = -450, KI = -30, KD = -15. The results shown in Figure 6. 

 

 

 
 

Figure 5. Simulation diagram of self-balancing two-wheeled bicycle control system using robust controller 

and PID controller 

 

 

Remark by the simulation result in both cases the nominal parameters of the bicycle and the variable 

parameters of the bicycle due to the load varied. PID controller can only balance the bicycle as the bicycle 

parameters is niminal and in case 3. PID controller has not worked in the case 1, 2, and 4. The robust controller 

did work in all 4 cases. It can be seen that the robust controller was able to balance the system even the system 

parameters are varied (load and the height of the center of gravity of the bicycle). The robust controller has the 

advantage over the PID controller 

Howerver, the 30th order controller could lead to the difficulty of operating the balancing process. Due 

to the complex program, the long processing time, the low system response, the system will not be able to adapt 

the requirements of real-time applications and can become unstable. For that reason, reducing the order of the 

controller is needed to simplify the program. The system response is thereby increased, while the robustness is 

ensured.  
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Figure 6. The system output response of self-balancing two-wheeled bicycle control system using robust 

controller and PID controller 
 

 

4. STOCHASTIC BALANCE TRUNCATION ALGORITHM BASED ON SCHUR ANALYSIS  

4.1.  Model reduction problem 

Given a linear, continuous, time-invariant, MIMO system described by the following state space 

model: 
 

�̇� = 𝐴𝑥 + 𝐵𝑢 𝑦 = 𝐶𝑥        (18) 
 

where, 𝑥 ∈ 𝑅𝑛 , 𝑢 ∈ 𝑅𝑝 , 𝑦 ∈ 𝑅𝑞 , 𝐴 ∈ 𝑅𝑛𝑥𝑛 , 𝐵 ∈ 𝑅𝑛𝑥𝑝 , 𝐶 ∈ 𝑅𝑞𝑥𝑛 . The goal of the order reduction problem for 

the model described by state space model given in (17) is to find the model described by state space model: 
 

�̇�𝑟 = 𝐴𝑟𝑥𝑟 + 𝐵𝑟𝑢  
 

𝑦𝑟 = 𝐶𝑟𝑥𝑟          (19) 
 

where, 𝑥𝑟 ∈ 𝑅
𝑟 , 𝑢𝑟 ∈ 𝑅

𝑝 , 𝑦𝑟 ∈ 𝑅
𝑞 , 𝐴𝑟 ∈ 𝑅

𝑟𝑥𝑟 , 𝐵𝑟 ∈ 𝑅
𝑟𝑥𝑝 , 𝐶𝑟 ∈ 𝑅

𝑞𝑥𝑟với 𝑟 ≪ 𝑛. So that the model described by 

in (19) can replace the model described by the (18) applications in analysis, design, and control of the system. 
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4.2.  Stochastic balanced truncation algorithm based on Schur analysis 

Most of the model reduction algorithms have published in the world only apply to stable high order 

linear models (the roots of the charateristic equation are negative) [13-15]. However, many high order 

mathematical models are unstable in reality such as the model in section 3. Therefore, the order reduction 

algorithm should be applicable to reduce the order for the unstable linear system. There are two basic methods 

for model reduction of unstable system. The first method (indirect order reduction algorithm). This algorithm 

divides the unstable original system into stable and unstable components, then applies the order reduction 

algorithm to the stable components [16-24]. At the end, to get the order of reduction of the root system, we add 

the reduced stable components with the unstable components. 

The second method (direct order reduction algorithm). This algorithm modifies and adjusts the order 

reduction algorithms so that these algorithms can perform order reduction regardless of whether the original 

system is stable or unstable [25-29]. In the content of this paper, the author introduces the stochastic balanced 

truncation algorithm based on Schur analysis [23, 24]. This is a order reduction algorithm applied to the 

unstable system by indirect order reduction method. The specific contents of the algorithm are as follows: 

Input: The system (𝐴, 𝐵, 𝐶) (stable or unstable) described in (18) has a representation of the form of the transfer 

function: 𝐺(𝑠): = 𝐶(𝑠𝐼 − 𝐴)−1𝐵. 

Step 1: Find the controllability grammian 𝑃 and observability grammian 𝑄 by solving the following Lyapunov 

and Riccati equations:  

 

AP + 𝑃𝐴𝑇 + 𝐵𝐵𝑇 = 0;𝐵𝑊 = 𝑃𝐶
𝑇 + 𝐵𝐷𝑇; 𝑄𝐴 + 𝐴𝑇𝑄 + (𝑄𝐵𝑊 − 𝐶

𝑇)(−𝐷𝐷𝑇)(𝑄𝐵𝑊 − 𝐶
𝑇)𝑇 = 0 

 

Step 2: Find the Schur decomposition for 𝑃𝑄 in both ascending and descending order, respectively, 

 

𝑉𝐴
𝑇𝑃𝑄𝑉𝐴 = [

𝜆1 . . . . . .
0 . . . . . .
0 0 𝜆𝑛

] ;         𝑉𝐷
𝑇𝑃𝑄𝑉𝐷 = [

𝜆𝑛 . . . . . .
0 . . . . . .
0 0 𝜆1

] 

 

Step 3: Find the left/right orthonormal eigen-bases of 𝑃𝑄 associated with the kth big Hankel singular values of 

the all-pass phase matrix (𝑊 ∗ (𝑠))−1𝐺(𝑠). 
 

𝑉𝐴 = [𝑉𝑅,𝑆𝑀𝐴𝐿𝐿 , 𝑉𝐿,𝐵𝐼𝐺⏞  
𝑘

]

 ;     

𝑉𝐷 = [𝑉𝑅,𝐵𝐼𝐺⏞  
𝑘

, 𝑉𝑅,𝑆𝑀𝐴𝐿𝐿]

 

Step 4: Find the SVD of (VL,BIG
T VR,BIG) = UΣV 

Step 5: Form the left/right transformation for the final kth order reduced model. 

 

𝑆𝐿,𝐵𝐼𝐺 = 𝑉𝐿,𝐵𝐼𝐺𝑈𝛴(1: 𝑘, 1: 𝑘)
−1/2; 𝑆𝑅,𝐵𝐼𝐺 = 𝑉𝑅,𝐵𝐼𝐺𝑉𝛴(1: 𝑘, 1: 𝑘)

−1/2  

 

Step 6: Calculate (𝐴𝑟 , 𝐵𝑟 , 𝐶𝑟) = (𝑆𝐿,𝐵𝐼𝐺
𝑇 𝐴𝑆𝑅,𝐵𝐼𝐺 , 𝑆𝐿,𝐵𝐼𝐺

𝑇 𝐵, 𝐶𝑆𝑅,𝐵𝐼𝐺). 

Output: The reduced system (𝐴𝑟 , 𝐵𝑟 , 𝐶𝑟). 
 

 

5. APPLIED LQG ALGORITHM FOR ROBUST CONTROL PROBLEM OF TWO-WHEELED 

BICYCLE 

5.1.  The reduced controller of sef-balancing two-wheeled bicycle 

The full order RH∞ controller is designed as (17), which is a 30th order controller. To obtain low 

controller, we perform order reduction of RH∞ controller in accordance with the stochastic balanced truncation 

algorithm based on Schur analysis in section 4. The results of the order reduction controller are shown in  

Table 3. 

 

5.2.  Controlling the two-wheeled bicycle using the reduced 4th and 5th order controller  

Using the reduced 5th order controller in Table 3 controls the balancing system for two-wheeled 

bicycle having the model as (16). The performance is compared to the performance of the original (30 th order) 

controller. The simulation diagram of two-wheeled bicycle system using the original controller and reduced 

controllers is shown in Figure 7. 
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Table 3. Results of model reduction of the 30th order robust controller 
Order Transfer function – Rr(s) 

5 −4.485.106𝑠5−5.241.107𝑠4−3.026.108𝑠3−8.389.108𝑠2−1.177.109𝑠−6.796.108

𝑠5+2006𝑠4+1.135.104𝑠3−1193𝑠2+6.179.10−13𝑠−4.24.10−14
  

4 −4.485.106𝑠4−2.655.107𝑠3−1.141.108𝑠2−1.833.108𝑠−1.176.108

𝑠4+2000𝑠3−206.5𝑠2+2.369.10−14𝑠−3.026.10−15
  

3 −4.485.106𝑠3+4.047.105𝑠2−9.163.104𝑠−5.881.104

𝑠3−0.1032𝑠2+5.41.10−17𝑠−3.669.10−18
  

 
 

 
 

Figure 7. The simulation diagram of two-wheeled bicycle system using the original controller and reduced 

controllers 
 

 

The simulation results of self-balancing two-wheeled bicycle control system when the parameters 

model are nominal and the bicycle is initially deviated 𝜃 = 𝜋/180 (rad) from the vertical axis. The results 

shown in Figure 8. The simulation results of self-balancing two-wheeled bicycle control system when  

the vehicle is loaded and the bicycle is initially deviated 𝜃 = 𝜋/180 (rad) from the vertical axis. The results 

shown in Figure 9. 
 

 

  
 

Figure 8. Output response of the self-balancing two-wheeled bicycle control system in no load condition 
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Figure 9. Output response of the self-balancing two-wheeled bicycle control system when the system is 

loaded condition (continue) 
 

 

Compared the result between the system using the original controller and the system using the reduced 

controller according to the balanced truncation and other algorithms. The author compared the stochastic 

balanced truncation algorithm based on Schur analysis with the balanced truncation algorithm proposed by 

Moore [30]. This is the most commonly used order reduction algorithm. In Matlab, the command balancmr is 

used to perform the balanced truncation. We get the reduced 4th order controller. 
 

𝑅𝑟(𝑠) =
−4.485.106𝑠4−5.351.108𝑠3+7.513.107𝑠2+2.822.107𝑠+1.307.107

𝑠4+2000𝑠3−206.5𝑠2+1.258.10−10𝑠−4.767.10−12
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The simulation is performed with the nominal parameters of the two-wheeled bicycle model and initially 

deviated from the vertical by an angle 𝜃 =
𝜋

180
(𝑟𝑎𝑑). The result shown in Figure 10. 

 

 

 
 

Figure 10. Output response of the self-balancing two-wheeled bicycle control system using the reduced 

4th order controller  
 

 

5.3.  Evaluated results 

The reduced 4th and 5th order controller arcoording to the stochastic balanced truncation algorithm 

based on Schur analysis can be used to control the two-wheeled bicycle model. The output response of the 

reduced 5th order controller is almost identical to the output response of original controller. The output response 

of the reduced 4th order controller is different from that of the original controller. The reduced 3rd order 

controller cannot control the balance of the two-wheeled bicycle model. 

Compared the result of the two-wheel balancing control system between the system using the reduced 

controller according to the balanced truncation algorithm based on Schur analysis and the system using the 

balanced truncation algorithm (balancmr): We see that the control system using the reduced 4th order controller 

according to the balanced truncation algorithm based on Schur analysis ensure the stable balance of the two-

wheeled bicycle when the bicycle deviates from vertical and when the parameters of the model change, while 

the control system using the reduced 4th order controller according to the balanced truncation algorithm 

(balancmr) does not. 
 

 

6. CONCLUSION 

The paper has developed, modeled a two-wheeled self-balancing bicycle model and designed a robust 

controller to control the balance of two-wheeled bicyle. The paper also introduces the stochastic balanced 

truncation algorithm based on Schur analysis and applies this algorithm to reduce the high order robust 

controller using to control the balance of two-wheeled bicyle. In particularly, the reduced 4th and 5th order 

controller can replace the original controller (30th-order) while the performance of the control system is 

ensured. Using the reduced controller simplify the program, so the computational time is reduced. Therefore, 

the system respose is improved, and the requirements in real-time application are met. The simulation results 

show the correctness of the model reduction algorithm and the robust control algorithm of two-wheeled  

self-balancing two-wheeled bicycle. 
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