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 In wind energy conversation systems (WECS), power quality and energy 

conversion efficiency are crucial aims of control algorithms. These two points 

are self-contradictory and difficult to trade off where enhancing the efficiency 

of conversion may also enhance instability of output signal as well.  In current 

work, we submit a wind turbines control scheme to ensure regular power and 

achieve variable load requests in battery based variable speed PMGS system. 

In the submitted scheme, model predictive control (MPC) is joint with fuzzy 

logic to achieve the advantages of these two diverse approaches. The suggested 

controller could enhance the power reliability performance of the wind turbine.  

According to obtained results, the proposed topology overcomes the 

traditional proportional/integral (PI) model by achieving profits in the context 

of step-overshoot response and the measure of total harmonic-distortion of 

nearly 1.1 percent and 1.13 percent, respectively. 
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1. INTRODUCTION 

Wind green resource has been one of the key renewable_energy resources to develop and apply due 

to global warming and growing load requirements [1]. In this respect, for a number of decades, control 

techniques of wind energy plants have been investigated through a lot of studies. Nevertheless, the control 

strategies topic is yet an open issue for researchers. According to the essential purpose of the controller, the 

wind turbine controller can be one of two types. On one hand, the maximum power tracking algorithm, i.e., 

MPPT, in which the object is to fulfil the effective conversion of wind energy. On the other hand, for turbines 

run above normal wind-speed, the main control object is system power quality in addition to the efficiency of 

energy-conversion [2]. Besides the aforementioned issues, one of the crucial challenging tasks is the 

management of the existing networks to keep a normal generator functionality in case of a disturbance 

occurrence, i.e., fault ride through (FRT) of the system. In these respects, power-conversion efficiency and 

power-fluctuation reduction have been considered, separately, in-depth (see for example [3] and references 

therein). However, improving the quality of power without employing energy storage tools could result in 

system capability lack where many power-qualities improving approaches depend on using off energy-storage 

devices. J. Hussain et al. [2] introduce a new adaptive MPPT regime to address the issues mentioned  

previously i.e., power quality and enhancing energy efficiency. E. Iyasere et al. [4] introduces a robust 

controller as a modern paradigm WT enhancement scheme. Boukhezzar et al. in [5] suggest a nonlinear control 
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for wind turbine schemes. Zhang et al. in [6] propose a novel maximum power point tracking (MPPT) technique 

via the strengthening of a learning technique (network based) to address the fluctuations of the system situation. 

Model predictive technique (MPC) schemes can cope with the issues of linear and nonlinear constraints in multi-

objective optimization problems. Consequently, in [7-10] apply this approach, i.e., MPC in the machine side 

controller (MSC). P. Kou et al. [11], MPC has been utilised for battery-based wind turbine controller. Cannon et 

al. [12] used the MPC approach for improving the efficiency of energy conversion and the mechanical load. In 

[13, 14] address the issue of multi objective control in WT employing the technique of MPC. In [15], authors 

consider issues of energy conversion and drive train loads via the technique of MPC. D. Q. Mayne et al. [16] 

address the stability issue in MPC strategy employing a terminal quality-constraint. M. Soliman et al. [17], authors 

provide a model predictive scheme in which the system is adapted w.r.t condition of the wind where linear process 

is needed in the modelling of MPC scheme. A tuning scheme is suggested by reference [18] utilising the design 

of sensitivity tables. In [19], Bououden et al. address control performance and system efficiency by Appling a 

fuzzy logic based MPC technique. A. Kusiak et al. [20], weights for various wind speed conditions are modified 

by data classification. H. F. Khazaal et al. [21] introduce a fuzzy-MPC scheme to address wind turbines of 

variable-speed using Inequalities of Matrix approach. 

In our manuscript, unlike the work provided in [21] and our previous work in [22], we employ 

proportional/integral (PI) technique for the optimal power task (instead of P/O technique used in work [22]), a 

fuzzy technique for adjusting of the DC/DC bidirectional convertor, and a joint of MPC with fuzzy technique 

(fuzzy-MPC) is provided for the inverter of the grid side. The introduced approach not only ensures the high-level 

energy conversion capability of the system but also mitigates, as far as possible, alternating of the power to insure 

reliability of the power plants. The rest of this manuscript is prepared as follows; in section 2 we provide some 

details about the considered model. Results and simulations are submitted and discussed in section 3. Finally, the 

work is concluded in section 4. 
 

 

2. PROPOSED MODEL FOR THE WT CONTROL  
The diagram of the complete wind energy scheme is illustrated in Figure 1. This model proposes the 

employing of various types of algorithms for machine-side/load-side inverter, while the scheme employs an 

uncontrolled-rectifier for simplicity. This arrangement of joining a fuzzy tech with predictive model tech in the 

management of the power transferring can create a robust system. Where the MPC part assists the model w.r.t to 

past-outputs and determines coming up inputs and thus gives system robustness. Fuzzy logic, on the other hand, 

can deal with the non-linear behavior of the model. 
 

2.1.  Proportional-integral control of the blades pitch angle 

The benefit of MPPT techniques is to improve wind turbine efficiency. For this purpose, different 

approaches for optimal power have been created and applied like the incremental conductance method, 

perturb/observe, and hill climbing approach. Hill climbing schemes or P&O approaches are the commonly utilized 

tracking algorithms for the MPPT purpose in the wind turbines, e.g., for more details, refer to [23] (and the references 

therein). In the current work, we employ conventional PI approach to adjust the blades pitch-angle of Figure 1.  
 

 

 
 

Figure 1. The proposed control scheme for the WT and battery system 
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According to reference [24], the captured power, i.e., mechanical power 𝑃𝑚, from the wind can be 

determined as,  
 

𝑃𝑚  = 0.5 𝜌 𝜋 𝑅2  𝐶𝑝 (𝜆, 𝛽)  𝑉𝑤
3         (1) 

 

where, 𝑃𝑚 is the extracted wind power, 𝑅 is the rotor blade radius,  ρ = density of  the air, 𝑉𝑤  is speed of the 

wind, 𝛽  is pitch angle, 𝜆 is the tip speed ratio, and 𝐶𝑝 (𝜆, 𝛽) is the power conversion coefficient and according 

to our turbine model, can be modeled with the following generic equation, 
 

𝐶𝑝 (𝜆, 𝛽)  =   0.5 ( 
116

𝜆𝑖
− 0.4𝛽 − 5 ) 𝑒

−(
21

𝜆𝑖
)
       (2) 

 

1/𝜆𝑖  =   
1

𝜆𝑖+0.08 𝛽
  -   

0.035

𝛽3          (3) 

 

Consequently, the maximum power point tracking can be determined using the following equation [23] 
 

𝑃𝑚𝑝𝑝𝑡  = 0.5 𝜌 𝜋 𝑅2  𝐶𝑜𝑝𝑡         (4) 
 

here, 𝜆𝑜𝑝𝑡 is optimal value of tip speed ratio at which the power and the power conversion coefficient are 

maximums. 
 

2.2.  Battery energy-storage system controller 

A battery storage device can be utilised to store the excess produced-energy. This storage can be used 

to supply the load if additional energy is needed. Consequently, a bi_ directional controller is needed to 

discharge/or charge the battery storage device if there is an overflow/shortage of energy, respectively. The state 

of battery charging (SOC) percentage information (percentage of the device capacity) can be used to express 

the quantity of electrochemical energy remained in a battery storage device e.g. see in [25, 26] and the 

references there in for more details on SOC. A buck-boost operation mode of bi-directional DC controller can 

be employed for charging/or discharging purpose. In the proposed approach, a system of energy storage is 

applied to keep DC voltage at a stable level where a fuzzy controller is employed to accomplish this job. 
 

2.3.  Controller of load-side inverter 

The controller of load-side inverter (LSI) is a current_regulated approach inverter in which current in 

the direct_axis id  is used to regulate the voltage of the dc bus while current in the quadrature_axis iq is applied 

to control the system reactive power (see Figure 1). The reactive power request is set to zero to confirm unity 

power factor condition. The controller of load-side inverter is a hybrid scheme produced as a joint of fuzzy 

algorithm and MPC technique. The key feature of the model predictive approach is using the plant model for 

the prediction of future performance for some variables within a definite horizon of the model. Figure 2 depicts 

the flowchart for MPC procedure in which cost function is given as, 
 

𝑔 =  ∑ 𝜆𝑗 𝐽
𝑗 (𝑥𝑗

∗ −  𝑥𝑗
𝑃)2         (5) 

 

here, λj is the weighting factor, xj
P is the prediction of the variable xj, and xj

∗  is the reference command. dq_load 

currents-prediction can be used to adjust the current of LSI and this quantity depends on the dq-converter-voltage 

components. The Park and Clarke voltage transformation can be expressed, respectively, as follows in (2) and (3), 
 

[
Vd

j

Vq
j ] =    [

cos θ sin θ
 − sin θ cos θ

] [
Vα

j

Vβ
j ]       (6) 

 

[
Vα

j

Vβ
j ] =  Vdc

∗  [

2

3

−1

3

−1

3

0
1

√3

−1

√3

]  [

Sa

Sb

Sc

]        (7) 

 

here, Vα
j
 and  Vβ

j
  are the stationary vectors for voltage within the α and β axis,   Vd

j
 and Vq

j
 are the dq_axis 

component vectors of voltage and  Sabc are the controller switching signals.  Euler formula is employed to 

determine the discrete dq_ currents as follows; 
 

igd
j [  k +  1 ] =  

Ts

L
 [Vgd

j [ k] − Vd
j [ k ]]   +    (1 −

Ts

L
) igd

j [ k ]     (8) 
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igq
j [ k +  1 ] =  

Ts

L
 [Vgq

j [ k ] −  Vq
j [ k ]] +   (1 −

R Ts

L
) igq

j [ k ]     (9) 

 

Error signals dq-axis load currents  ∆igd
j [k + 1] and ∆igq

j [k + 1] are determined as follows; 

 

∆igd
j [ k +   1 ] =  ∆igd

∗ [ k ]   −   ∆igd
j [ k +   1 ]      (10) 

 

∆igq
j [ k +   1 ] =  ∆igq

∗ [ k ]   −   ∆igq
j [ k +   1 ]     (11) 

 

The cost function in the prediction procedure can be determined as follows; 
 

  gj =  |∆igd
j [ k +  1]|  + |∆igq

j [ k +  1]|       (12) 

 

Now, this cost function could be minimized by choosing the optimum switching signals values. The input 

reference-current of the model predictive, i.e.,  iq
∗  can be estimated through the inference of fuzzy logic (see 

Figure 3) where the fuzzy logic for current control is given in Figure 4 the input/output membership-function 

given in Figure 5. The associated Inference_Rule for the Fuzzy controller is presented in Table 1.  
 
 

 
 

Figure 2. Pitch angle control block diagram 
 
 

 
 

Figure 3. MPC algorithm flowchart 
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Figure 4. LSI reference current prediction 
 

 

 
 

Figure 5.  Input/output membership_function of fuzzy technique 
 

 

Table 1. Fuzzy controller Inference_Rule 
e/∆e N Z P 

N N N Z 
Z Z Z P 

P Z P P 

 
 

3. RESULTS OF THE SIMULATION 

System components (the generator, battery, and turbine) are modelled using the Simulink environment 

of MATLAB package as shown in Figure 6 to investigate the overall performance of the proposed approach. 

In the simulation study, the parameters of the components for the scheme are set according to Table 2 and the 

simulation is passed for 4 sec in each situation. The entire simulation results can be put in two parts. First, 

results for the variable wind-speed case. Second, results for different load case. 
 

 

 
 

Figure 6. Proposed model block diagram 
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Table 2. System parameters setting 
Parameters Values 

Wind Turbine  

frequency 50Hz 
average power 25Kw 

voltage 380v 

average wind speed 12 m/sec 

Direct, Quadrature-axis inductance Ld, Lq 0.435mH 

Number of pole-pairs 4 

Battery storage system 
Initial SoC 60% 

battery capacity 6.5 Ah 

nominal voltage 350v 

 

 

3.1.  Machine side controller response 

Four various levels of wind speeds are excited at system input in the time interval between 0 sec and 

4 sec as shown in Figure 7. The optimal power tracking (turbine rotor-speed response) for the imposed 

reference parameter is depicted in Figure 8. After a tiny oscillation following the wind speed oscillation, the 

power-coefficient is kept at the optimum level fast, where it endures around 0.2 sec to move amid two various 

stable levels.  
 

 

 
 

Figure 7. System input excitation (wind speed) 
 

 

 
 

Figure 8. The response of rotor speed for abrupt input excitation 
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3.2.  The response of the DC line bi-directional control  

DC_bus voltage Vdc is wanted to be around a steady reference point  Vdc
∗  (nearly 650v, as shown in 

Figure 9) which will be adjusted to AC phase voltage of 230v /50Hz at load side via inverter cct. According to 

the load power demand the bi-directional controller will determine which process of charge or discharge to 

take place. As shown in Figure 9, in the situation when the created wind power is high and the requested  

load-power is low, in this case the overflowing power is used to charge the storage device and vice versa. In 

addition, Figure 10 shows the dc current of through the battery circuit and Figure 11 depicts the percentage 

variation of energy storage due to charge – discharge process where initial charging state percentage is 60%.  
 

 

 
 

Figure 9. Boosted DC link voltage 
 

 

 
 

Figure 10. Battery charge/discharge current 
 

 

3.3.  Load side controller response 

Along with the previous step-change in wind speed level, the influence of abrupt load change (see 

Figure 12 at second 3) is inspected simultaneously in order to show the stability of the scheme against 

environmental fluctuations. Figure 13 shows the change in DC-bus current due to this sudden variation in load 

current. The simulation is run through two various methods of load_side control, one is our proposed scheme 

and another one is the traditional PI scheme as a baseline to the proposed scheme performance. 

Figure 14 proves that both approaches have a good response versus sudden fluctuations in wind-speed. 

The figure presents voltage fluctuations w.r.t various wind-speed and load-current. Nevertheless, the proposed 

model has additional reliability and robustness than the benchmark classical scheme upon all operational 

region. Besides, our proposed scheme tracks faster at a steady voltage under load fluctuation. When the 

proposed system undergoes a step change, it provides a key decreasing in overshoot and settling time values 

(see Table 3). Enhancement in the overshoot response is around 1.1% while the reduction in settling time is 

around 0.33 msec. 
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Figure 11. Battery charging state (percentage) 

 

 
 

Figure 12. Output load current 

 

 

 
 

Figure 13. DC–bus current 
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Figure 14. Comparison with the conventional PI approach 

 

 

Table 3. Response to step input 
Metric/technique   Overshoot value (%) Time of system settling (msec) 

Proposed 1.41 0.21 
Traditional PI 2.51 0.53 

 

 

Total harmonic_distortion (THD) of voltage or current signals, on the other hand, is a key quantity 

beneficial in qualifying the AC waveform quality and this important metric can be determined as (8), 
 

THDv  =    
1

V1
 √∑ Vi

2∞
i=2   × 100%        (8) 

 

here, i is the harmonic index  and  V1 is the fundamental voltage bin.  In this work, the THD measure  

(Figure 15) introduces a tiny volume of decreasing from 3.7% for the benchmark scheme to 2.55% for our 

proposed model at 50Hz frequency. It is worth mention here that these limits of THD are almost reasonable 

according to IEEE standards. In addition, the usage of uncontrolled-rectifier and the passive components in the 

topology of the proposed scheme results in some high harmonics limits. Consequently, there is a need for using 

a filter for the machine side to mitigates effects of high harmonics.  

 

 

 
 

Figure 15. Harmonics performance at 50Hz frequency 
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4. CONCLUSION 

This work introduces a controlling approach that considers of joining of fuzzy technique with model 

predictive techniques in management of the battery-storage based turbine system. Where the MPC part predicts 

the model w.r.t to past-readings and determines future inputs and thus gives system robustness. Fuzzy logic, 

on the other hand, can deal with the non-linear behaviour of the model. Simulation output results verify the 

efficiency of the proposed approach in pursuing the required recommended metrics in terms of overshoot and 

settling time. 
 

 

REFERENCES 
[1] S. Simani, “Overview of modelling and advanced control strategies for wind turbine systems,” Energies, vol. 8,  

no. 12, pp. 13395-13418, 2015.   

[2] J. Hussain, M. K. Mishra, “Adaptive maximum power point tracking control algorithm for wind energy conversion 

systems,” IEEE Transactions on Energy Conversion, vol. 31, no. 2, pp. 697-705, 2016. 

[3] M. Jahanpour-Dehkordi, et al., "Development of a Combined Control System to Improve Performance of a PMSG 

Based Wind Energy Conversion System under Normal and Grid Fault Conditions," IEEE Transactions on Energy 

Conversion, vol. 34, no. 3, pp. 1287-1295, 2019. 

[4] E. Iyasere, et al., “Robust nonlinear control strategy to maximize energy capture in a variable speed wind turbine 

with an internal induction generator, “Journal of Control Theory and Applications, vol. 10, no. 2, pp. 184-194, 2012.  

[5] B Boukhezzar, H. Siguerdidjane, “Nonlinear control of a variable-speed wind turbine using a two-mass model,” IEEE 

Transactions on Energy Conversion, vol. 26, no. 1, pp. 149-162, 2011.   

[6] Wei C., et al., “An adaptive network-based reinforcement learning method for MPPT control of pmsg wind energy 

conversion systems,” IEEE Transactions on Power Electronics, vol. 31, no. 11, pp. 7837-7848, 2016. 

[7] A. Calle-Prado, et al., “Model predictive current control of grid-connected neutral-point-clamped converters to meet 

low-voltage ride-through requirements,” IEEE Trans. Ind. Electron., vol. 62, no. 33, pp. 1503-1514, 2015.  

[8] A. J. Sguarezi, et al., “A predictive power control for wind energy,” North American Power Symposium, 2010. 

[9] L. Shengquan, et al., “Model-based model predictive control for a direct-driven permanent magnet synchronous 

generator with internal and external disturbances,” Transactions of the Institute of Measurement and Control, 2019. 

[10] V. Yaramasu and B. Wu, “Predictive control of a three-level boost converter and an npc inverter for high-power 

pmsg-based medium voltage wind energy conversion systems,” IEEE Transactions on Power Electronics, vol. 29, 

no. 10, pp. 5308-5322, 2014.   

[11] P. Kou, D. Liang, F. Gao, and L. Gao, “Coordinated predictive control of dfig-based wind-battery hybrid systems: Using 

non-gaussian wind power predictive distributions,” IEEE Trans. Energy Conv., vol. 30, no. 2, pp. 681-695, 2015. 

[12] M. A. Evans, M. Cannon, and B Kouvaritakis, “Robust MPC tower damping for variable speed wind turbines,” IEEE 

Trans. Control Syst. Technol., vol. 23, no. 1, pp. 290-296, 2014.  

[13] T. Barlasvan, G. Veen, and G. Kuik, “Model predictive control for wind turbines with distributed active flaps: 

Incorporating inflow signals and actuator constraints,” Wind Energy, vol. 15, no. 5, pp. 757-771, 2012. 

[14] M. D. Spencer, K. A Stol, C. P. Unsworth, and J. E. Cater, “Norris Model predictive control of a wind turbine using 

short-term wind field predictions,” Wind Energy, vol. 16, pp. 417-434, 2013.  

[15] M. Soliman, and O. P Malik, “Westwick Multiple model mimo predictive control for variable speed variable pitch 

wind turbines,” Proceedings of the American Control Conference (ACC), Baltimore, MD, USA, pp. 2778-2784, 2010. 

[16] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. Scokaert, “Constrained model predictive control: Stability and 

optimality,” Automatica, vol. 36, no. 6, pp. 789-814, 2000.  

[17] M. Soliman, and O. P., Malik, “Westwick, Multiple model predictive control for wind turbines with doubly fed 

induction generators,” IEEE Trans. Sustain. Energy, vol. 2, no. 3, pp. 215-225, 2011.   

[18] A. Jain, G. Schildbach, L. Fagiano, and M. Morari, “On the design and tuning of linear model predictive control for 

wind turbines,” Renew. Energy, vol. 80, pp. 664-673, 2015.  

[19] S. Bououden, M. Chadli, S. Filali and A. El Hajjaji, “Fuzzy model based multivariable predictive control of a variable 

speed wind turbine,” Renewable Energy, vol. 37, no. 1, pp.  434-439, 2012. 

[20] A. Kusiak, W.  Li, and Z. Song, “Dynamic control of wind turbines,” Renewable Energy, vol. 35, no. 2, pp. 456-463, 2010. 

[21] S. Bououden  , S. Filali, and M. Chadli, “Fuzzy predictive control of a variable speed wind turbine,”  Energy Procedia, 

vol. 42, pp. 357-366, 2013.  

[22] H. F. Khazaal, I. Sh. Hburi, M. Farhan, M. Dininawi, "A Hybrid Control Strategy for PMSG-based Standalone Wind 

Turbines with BESS," IOP Conference Series: Materials Science and Engineering, 2020. 

[23] G. Marcelo, E. Villalva Ruppert, “Analysis and Simulation of the P&O MPPT Algorithm Using a Linearized PV 

Array Model,” IEEE Annual Conference on Industrial Electronics, Porto, Potugal, pp. 231-236, 2009. 

[24] S. M. Muyeen, J. Tamura, and T. Murata, “Stability Augmentation of a Grid Connected Wind Farm,” Springer-

Verlag, London, 2009. 

[25] R. Gules, J. De P. Pacheco, H. Hey, “A Maximum Power Point Tracking System with Parallel Connection for PV 

Stand-Alone Applications,” IEEE Transactions on Industrial Electronics, vol. 55, no. 7, pp. 2674-2683, 2008. 

[26] Y. Aysar, G. Napoli, M. Ferraro, V. Antonucci, “Modelling and Control of a Residential Wind/PV/Battery Hybrid 

Power System with Performance Analysis,” Journal of Applied Sciences, vol. 11, no. 22, pp. 3663-3676, 2011. 
 

 

 

https://scholar.google.com/citations?user=S_REESMAAAAJ&hl=en&oi=sra
http://scholar.google.com/scholar_url?url=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS1876610213017384&hl=en&sa=T&ct=res&cd=0&d=10550684835474860575&ei=r1yFXcOyB5yHy9YPjde2gAw&scisig=AAGBfm1j7VcyB7MOCZo-YDDcW1ETBOgMTQ&nossl=1&ws=1206x612&at=Fuzzy%20predictive%20control%20of%20a%20variable%20speed%20wind%20turbine


               ISSN: 1693-6930 

TELKOMNIKA Telecommun Comput El Control, Vol. 19, No. 2, April 2021:  564 - 574 

574 

BIOGRAPHIES OF AUTHORS   
 

 

Ismail Sh. B. Hburi received the B.E. degree in electrical engineering from the University of 

Technology/Baghdad in 1991, the M.Sc. degree in electrical engineering from the University of 

Technology/Baghdad in 2007, and the Ph.D. degree in communications and electronics from 

Brunel University London, U.K., in 2017. He is currently a Lecturer with University of Wasit, 

Iraq. His experience includes lecturing electronics and communication. His current research area 

is 5G, C-RAN, IoT, M2M, WSN, and MIMO systems.  

  

 

Hasan Fahad Al Kazaali received the B.E. degree in electrical engineering from the University 

of Technology/Baghdad, the M.Sc. and the Ph.D. degree in electrical engineering from the 

University of Technology/Baghdad in 2003 and 2010, respectively. He is currently a Lecturer 

with University of Wasit, Iraq. His experience includes lecturing electronics and 

communication. His current research area is 5G, Antenna/ waveguide Design, C-RAN, IoT, 

WSN, and SDR systems.  

  

 

Oguz BAYAT received the B.S. degree from Istanbul Technical University, Istanbul, Turkey, 

in 2000, and M.S degree from University of Hartford, CT, USA, in 2002, and Ph.D. degree from 

Northeastern University, Boston, MA, USA, in 2006, all in electrical engineering. Also, he 

received executive management degree from MIT, MA, USA in 2009. 

  

 

Nibras Hazim Abbas Sarray Atab received the B.E. degree in electrical engineering from the 

Department of Electrical Engineering/University of Wasit/Kut/Iraq. He is currently pursuing a 

Master's degree in electrical engineering within the Department of Electrical and Computer 

Engineering, Altınbaş University, Istanbul, Turkey. 

 


