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 Myoelectric control system (MCS) had been applied to hand exoskeleton to 

improve the human-machine interaction. The current MCS enables the 

exoskeleton to move all fingers concurrently for opening and closing hand and 

does not consider robustness issue caused by the condition not considered in 

the training stage. This study addressed a new MCS employing novel 

myoelectric pattern recognition (M-PR) to handle more movements. 

Furthermore, a rejection-based radial-basis function extreme learning machine 

(RBF-ELM) was proposed to tackle the movements that are not included in 

the training stage. The results of the offline experiments showed the RBF-ELM 

with rejection mechanism (RBF-ELM-R) outperformed RBF-ELM without 

rejection mechanism and other well-known classifiers. In the online 

experiments, using 10-trained classes, the M-PR achieved an accuracy of 

89.73% and 89.22% using RBF-ELM-R and RBF-ELM, respectively. In the 

experiment with 5-trained classes and 5-untrained classes, the M-PR accuracy 

was 80.22% and 59.64% using RBF-ELM-R and RBF-ELM, respectively 
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1. INTRODUCTION  

Many countries have a significant number of people with disability. The results of the Survey of 

Disability, Ageing and Carers (SDAC) in 2009 showed that four million people in Australia (18.5%) suffer 

from disability. Stroke is one of the major factors causing disability in Australia. In 2009, it was estimated that 

1.8% of Australians have suffered from a stroke. Of the people who are impaired due to stroke, 62% reported 

that stroke is the primary cause of disability. About 40% of them have difficulties using their arms or fingers 

or difficulties in gripping [1].   

Inevitably, hand disability caused by stroke has decreased the quality of life for individuals and carers. 

Therefore, many attempts have been made to tackle this problem through traditional therapy or even advanced 

technology such as robot technology [2-5]. The hand exoskeleton, as a part of robotic devices, becomes the 

best solution to recovering the quality of life for the following reasons. It is portable and worn by the subject 

so that the therapy can be done anywhere and anytime. Besides, it is easy to be equipped with an interactive 

interface such as a game technology to enhance the effectiveness of the therapy. 

https://creativecommons.org/licenses/by-sa/4.0/
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The hand exoskeleton is expected to help the wearer comfortably. Therefore, a user does not feel 

uncomfortable and have trouble when doing a motion task while wearing it. In other words, the assistance 

should be provided as needed [6, 7]. To attain such a smooth interaction, the control system of the robot should 

consider the human intention. However, developing such a control method is not an easy task. Different 

biological signals have been considered to detect the user’s intention. Myoelectric signal (MES) or 

electromyography (EMG) signal that contains sufficient information of the user’s intention has been used to 

control rehabilitation devices or assistive robots for years. Myoelectric control has been implemented in two 

ways: non-pattern recognition and pattern recognition [8]. In the first application, the EMG signal has been 

utilized to detect force or any physical information such as angle to control the exoskeleton devices [9-11]. The 

second type of EMG implementation is the EMG-based pattern recognition. It has been done by analyzing the 

EMG signals and classifying the correct movement from predefined sets of limb movements. Different types 

of movements have been studied so far such as hand [12-19] and leg [20, 21] movements. 

Some hand exoskeletons have employed surface EMG to come up with a smooth human-machine 

interaction. Mulas et al. [22] have developed a hand exoskeleton controlled by EMG signal. The EMG signal 

collected from the subject’s forearm is used to predict the user’s intention to move or not to move. This 

information was employed to drive fingers of the hand exoskeleton or keep them in a rest state. All fingers 

excluding the thumb are controlled simultaneously. Furthermore, Wege and Zimmermann [23] have developed 

myoelectric control system (MCS) for a hand exoskeleton that could move an individual finger based on the 

user's intention. The MCS utilizes EMG electrodes to acquire electrical activities from 16 muscles. Moreover, 

the control system employs a blind source separation to separate the information contained in the high-density 

surface EMG signals at the forearm into several signals related to a specific finger movement. However, the 

experimental result is not satisfying. 

The latest MCS for the hand exoskeleton is the one developed by Ho et al. [24]. The exoskeleton’s 

structure fits different finger lengths and aligns with the virtual center of rotation of the metatarsophalangeal 

(MCP) and the proximal interphalangeal (PIP). This device is able to detect the user’s intention from the user’s 

muscle for hand opening and closing. Thus, this device is able to drive all the finger movements simultaneously 

to open and close the hand. The aforementioned facts show that the workable myoelectric controller on the 

current hand exoskeleton deals with simple finger movements, i.e. simultaneous finger movements such as 

opening and closing the hand. Moreover, the present EMG-based controller is designed to recognize the 

movements that are involved in the training. However, it fails to recognize the movements that are not included 

in the training stage [25]. In real-time application, the trained movements are limited, yet the untrained 

movements are many. As a result, the performance of the MCS decreases when it works in real-time or clinical 

application. 

In summary, two main problems appear in the current MCS for the hand exoskeleton. The first is 

related to the limited number of finger movements that can be dealt with. The second is related to the capability 

of the MCS to reject the untrained movements that possibly appear in the real-time application. This paper 

proposes a new MCS for the hand exoskeleton that overcomes these two issues. The improved MCS that is 

proposed employs the EMG-based pattern recognition (EMG-PR) to enable complex finger movements, 

instead of hand opening and closing. Furthermore, to cope with the untrained movement issue, this paper 

proposes a classifier called radial basis function extreme learning machine [26] with rejection mechanism 

(RBF-ELM-R). RBF-ELM-R detects the untrained movements and rejects them. In other words, the system 

will consider the rejected movements as a no-action or a rest state. The paper is organized as follows;  

section 2 provides a description of the basic concept of RBF-ELM with rejection mechanism (RBF-ELM-R). 

Section 3 presents the proposed MCS. Section 4 provides the experimental result and statistical analysis for 

the offline and online classification of the proposed system on the hand exoskeleton. Section 5 presents the 

conclusion. 

 

 

2. REJECTION-BASED EXTREME LEARNING MACHINE 

2.1.   Extreme learning machine 

Extreme learning machine (ELM) is an exceptional innovation of single-layer feed-forward neural 

network (SLFN), which overcomes shortcomings of the neural network, especially in the processing time. It omits 

an iterative learning process by setting the hidden node weight randomly and calculating the output weight 

analytically. Therefore, the training time is extremely fast when compared with the traditional neural networks. 

Interestingly, the hidden node part can be constructed using either original nodes or a kernel function [26]. 

The output function of ELM for a generalized SLFN (for one output node case) is: 

 

𝑓(𝑥) = ∑ 𝛽𝑖ℎ𝑖(𝑥)
𝐿
𝑖=1 = ℎ(𝑥)𝛽 (1) 
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where β = [𝛽1, . . . , 𝛽𝐿]
𝑇 is the vector of the output weight between the hidden layer of L nodes and the output 

node, h(x) = [ℎ1(𝑥), . . . , ℎ𝐿(𝑥)] is the output vector of the hidden layer. The objective of ELM is to minimize 

the error and the norm of weight: 
 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: ‖𝐻𝛽 − 𝑇‖2𝑎𝑛𝑑‖𝛽‖  (2) 
 

where T is the target. For the classification purpose, the output of ELM as shown in (1) could be modified as: 
 

𝑓(𝑥) = ℎ(𝑥)𝛽 = ℎ(𝑥)𝐻𝑇 (
1

𝐶
+𝐻𝐻𝑇)

−1

𝑇  (3) 

 

where 
 

𝐻 = [
ℎ(𝑥1)
⋮

ℎ(𝑥𝑁)
] = [

ℎ1(𝑥1) ⋯ ℎ𝐿(𝑥1)
⋮ ⋮ ⋮

ℎ1(𝑥𝑁) ⋯ ℎ𝐿(𝑥𝑁)
] (4) 

 

and C is a user-specified parameter, L is the number of the hidden unit, and N is the number of the training 

data. The parameters C and L should be chosen properly to achieve good generalization performance. However, 

there is no specific method to determine both parameters except trial and error. Fortunately, Huang et al. [26] 

proved that the big number of L gives a good performance so that the users just need to determine the parameter 

of C. Furthermore, in (4), h(x) is a feature mapping (hidden layer output vector). 
 

2.2.  Radial basis ELM 

If the feature mapping h(x) is unknown to the user, a kernel function can be used to represent h(x). 

Then, as shown in (3) would be: 
 

1

1 1

1
( )
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N
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  (5) 

 

where 
 

𝛺𝐸𝐿𝑀 = 𝐻𝐻𝑇 : 𝛺𝐸𝐿𝑀𝑖,𝑗
= ℎ(𝑥𝑖). (𝑥𝑗) = 𝐾(𝑥𝑖 , 𝑥𝑗) (6) 

 

and K is a kernel function. Following our work results [27, 28], this paper employed a radial basis function 

(RBF) kernel and it is called radial basis function extreme learning machine (RBF-ELM). The RBF kernel is 

defined as 
 

𝐾(𝑢, 𝑣) = 𝑒𝑥𝑝(−𝛾‖𝑢 − 𝑣‖2)  (7)  
 

2.3.  RBF-ELM-R 

To reject the movements that are not trained or involved in the training section or even the movements 

that may be out of physical limitation, a rejection mechanism is added to the RBF-ELM. The rejection 

mechanism is conducted based on the confidence level of the output of RBF-ELM. The output is accepted if 

the confidence level is higher than the predefined threshold value. This value is derived from the experimental 

procedures that differentiate the rest state and the finger movements. Otherwise, the output will be rejected if 

the confidence level is lower than the predefined threshold value. The confidence level is calculated using 

entropy [29] and defined by; 
 

𝐸(𝑛) = ∑ 𝑜𝑗(𝑛)𝑙𝑛
𝑁∑(𝑜𝑗(𝑛))

𝑗
  (8) 

 

where N is the number of the output unit, n is the iteration of data, and Oj is the jth output of the output layer 

of ELM. The low entropy indicates that the probability of a specific output can clearly be differentiated from 

others. On the other hand, high entropy implies that the probabilities of the outputs are similar or very close to 

each other so that there is ambiguity in determining the correct output. 
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3.  THE PROPOSED MYOELECTRIC CONTROL FOR THE HAND EXOSKELETON 

This paper proposes a novel MCS for the hand exoskeleton with minimum channel reading. The MCS 

consists of two main parts, the myoelectric pattern recognition (MPR) and non-pattern recognition blocks  

(M-non-PR), as depicted in Figure 1. Using just two EMG channels, the MPR produces the intended finger 

motion that the robot should perform and the M-non-PR estimates the strength of the intended movement. 

However, in this paper, all experiments involved only one level of strength, which is maximum voluntary 

contraction (MVC). 
 

 

 
 

Figure 1. Myoelectric control system developed to control the hand exoskeleton 
 

 

3.1.  Data aquisition 

The FlexComp Infiniti™ System from Thought Technology was used to acquire the signals from two 

EMG sensors, MyoScan™ T9503M, that were put on the subject’s forearm as seen in Figure 2. The acquired 

EMG signals were amplified with a total gain of 1000 and sampled at 2000 Hz. A band-pass filter between  

20 Hz and 500 Hz filters the collected EMG signals. Besides, a notch filter was employed to remove the 50 Hz 

line interference. Before being applied to the hand exoskeleton, the MCS was tested in the offline experiment 

to examine and verify the efficacy of the proposed system. Eight subjects were involved consisting of 2 females 

and 6 males aged 24-60 years. All subjects were normally limbed with no muscle disorder. The subjects were 

asked to perform a particular posture of finger movement for 5s and then take rest for 5s. Each action was 

repeated six times. 
 

 

 
 

Figure 2. Placement of the electrode A (flexor policis longus) and  

electrode B (flexor digitarium superficialis) 
 

 

3.2.  Myoelectric patern recognition 

Figure 3 describes the myoelectric pattern recognition (MPR) using rejection-based ELM. The 

proposed system evaluates the amplitude of the EMG signals to detect the motion intention of the user. To do 

so, the average of root mean square (RMS) from two channels is compared with the threshold value. If the 

mean is lower than the threshold value, this produces “no motion”. Otherwise, the MPR will be activated and 

generates the intended movement. In more detail explanation from feature extraction to post-processing, the 

following will illustrate it. 

As stated in Tkach et al. [30] that the coefficients of autoregressive (AR) model and time-domain 

(TD) features were stable and robust to the electrode location shift and the change of signal level, this paper 

extracted features from the TD feature and coefficients of the autoregressive model. The TD features consisted 

of mean absolute value (MAV), slope sign changes (SSC), waveform length (WL), and zero crossings (ZC). 

In addition, the parameters of Hjorth time domain parameters were added to improve the performance of the 

system [31]. The features were extracted with duration of 100 ms every 100 ms. After features were extracted 

from all EMG channels, they were then concatenated to form a large feature set. As a result, the dimension of 

the feature set is large. Therefore, the dimension was reduced and at the same time projected to new features 

that are more separable. This paper utilized spectral regression discriminant analysis (SRDA), following the 

recommendation of previous work [28]. SRDA is an extension of linear discriminant analysis (LDA) that can 

improve the performance of LDA in terms of speed and ability to work on a large dataset [32]. 
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To enhance the classification performance, the proposed MCS introduces a rejection mechanism into 

radial basis function extreme learning machine or as it is called RBF-ELM-R. To investigate and verify the 

performance of RBF-ELM-R, offline classification was conducted. In the offline classification, the 

performance of RBF-ELM-R was compared with the original RBF-ELM and other well-known classifiers such 

as support vector machine (SVM), least-square support vector machine (LS-SVM), linear discriminant analysis 

(LDA), and k-nearest neighbor (kNN). There were 10 classes involved in the experiments. These 10 classes 

consist of 5 individual finger movements, 4 combined finger movements, and hand-close (HC) movement. The 

individual finger movements involve thumb (T), index (I), middle (M), ring (R), and little (L) fingers. The four 

combined movements were the pinching of thumb and index (T-I), thumb and middle (T-M), thumb and ring 

(T-R), and thumb and little (T-L). The classifier sometimes misclassifies the movement into wrong movements. 

The post-processing that is conducted after the classification can overcome this issue. A majority vote [33] is 

one of the post-processing methods that can be used to smoothen the classification results. It employs the output 

from the present state and previous states and produces a new classification result based on the class that 

appears most frequently. This procedure produces the finger movement class that removes fake 

misclassifications. 
 

 

 
 

Figure 3. The proposed myoelectric pattern recognition 
 

 

3.3.  Myoelectric non-patern recognition 

The main component of MCS is the myoelectric pattern recognition (M-PR). Nevertheless, the MCS 

also consists of the myoelectric non-pattern recognition (M-non-PR) to detect the strength of the intended 

movement. However, the M-non-PR is not discussed in this paper. All experiments consider the MVC. The  

M-non-PR system has similar steps as the M-PR except in the classification stage. As seen in Figure 1, the  

M-non-PR estimates the strength of the signal by getting the root mean square (RMS) values of all the EMG 

channels. Then, the average of RMS values is calculated and sent to the proportional controller. 
 

3.4.  Proportional controller 

In this proportional controller, the control signal for the hand exoskeleton is proportional to the 

contraction level of the EMG signal. If the intended motion is detected, then the motor command is sent to the 

robot. The amplitude of the robot motion is proportional to the contraction level of the EMG signal. If the 

contraction level exceeds the MVC, then the MVC will be used as the motor command. 
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3.5.  The hand exoskeleton 

The proposed MCS was applied to the hand exoskeleton developed in our previous work [34]. The 

hand exoskeleton is able to flex fingers actively at the metacarpophalangeal (MCP) joint and passively at the 

proximal interphalangeal (PIP) and distal interphalangeal (DIP) joint. The Arduino microcontroller board was 

used to drive the five linear DC motors for actuating the hand exoskeleton as described in Figure 1 and  

Figure 4. The hand exoskeleton did not have any sensors, neither force nor angle sensors. The hand exoskeleton 

merely relied on the EMG sensors. 
 

 

 
 

Figure 4. The hand exoskeleton used in the experiment 
 
 

4. RESULT AND ANALYSIS 

This section presents the results of offline and online experiments. Offline experiment was conducted 

to investigate the performance of the proposed MCS, in particular the myoelectric pattern recognition using 

RBF-ELM-R. Meanwhile, online experiment was aimed at applying the proposed MCS to the hand 

exoskeleton. To test the proposed method, comparison with other well-known classifiers was also carried out. 
 

4.1.    Offline experiment 

4.1.1. The perfrmance of RBF-ELM-R 

In the offline experiment, the paper investigates the effectiveness of the rejection mechanism in  

RBF-ELM-R and its implication on the performance of the myoelectric pattern recognition system. As seen in  

Tables 1 and 2, all experiments used six categories from 10 classes. Each of them consists of trained and 

untrained classes ranging from 5 and 5 to 10 and 0, respectively. When the M-PR was trained using 5 trained 

classes for testing data, the remaining 5 classes were used for training data. This will continue from the first 

category to the sixth. In addition, threshold value varied from 0.1 to 1.0 with increment 0.1.  

Furthermore, this paper investigates the performance of the system that utilizes the rejection 

mechanism and compares it with the system without the rejection mechanism. Since this study conducted 10 

classes in which each has trained and untrained classes, three-fold cross validation was used. This means that 

when about 30% of the data is used for testing, the remaining is for training. Figure 5 and Table 1 present the 

experimental results.  

Figure 5 and Table 1 indicate that M-PR with small threshold values achieved high accuracy. In 

addition, the system that is trained using 5 classes and then tested using 5 untrained classes achieved poor 

accuracy. Another interesting fact provided in Table 1 is that the system without rejection mechanism  

(RBF-ELM) and with rejection mechanism (RBF-ELM-R) experienced poor performance when the untrained 

classes were imposed into the system. The accuracy of RBF-ELM on 10 trained classes was 87%. However, 

the accuracy dropped to 65.9% when one untrained class was introduced to the system (as can be noticed in 

the dark-gray background in Table 1. Fortunately, the system with rejection mechanism (RBF-ELM-R) could 

improve the dropped accuracy of RBF-ELM due to the existence of the untrained classes in the testing stage 

by around 10%, when using threshold 1.0. Similar improvement also occurred in all cases, but the enhancement 

became less by increasing the number of untrained classes in the testing. 

In addition to Table 1, Table 2 describes the accuracy when the rejection mechanism is combined with 

the majority vote. It seems that the majority vote decreases the accuracy of the system with the rejection 

mechanism, especially for low threshold values. The rejection rate of the low threshold value is high so that 

the majority vote does not have enough data to vote the correct outputs. Therefore, the majority vote is not 

appropriate to be implemented on the rejection-based classifier, especially for the low threshold values. 
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Table 1. The accuracy achieved across eight subjects using six-fold cross-validation without using the 

majority vote 
#classes Rejection with threshold (accuracy %) 

No Rejection Train- ed Un- trained 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

5 5 71.0 60.1 49.3 43.8 38.1 34.1 31.2 28.4 26.5 25.4 23.8 

6 4 74.5 74.6 61.2 56.2 51.6 47.4 43.7 40.1 36.6 34.6 30.8 

7 3 NA 87.7 75.4 68.5 63.7 58.6 55.0 51.2 47.6 44.7 39.5 

8 2 NA 94.1 88.5 79.0 75.0 70.8 67.8 64.6 61.7 58.7 51.1 

9 1 NA 97.8 95.4 89.1 85.9 84.8 83.4 81.2 78.5 75.9 65.9 

10 0 NA NA 99.6 99.0 98.6 98.4 98.1 97.4 96.2 94.6 87.0 

 

 

Table 2. The accuracy achieved across eight subjects using six-fold cross-validation using the majority vote 
#Classes Rejection with threshold (accuracy %) No Rejection 

Trained Un-trained 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  

5 5 43.1 55.7 46.8 42.0 36.7 33.1 30.4 28.0 26.3 25.2 23.6 

6 4 46.6 64.2 56.7 53.2 49.2 45.5 42.4 39.3 36.2 34.4 30.8 

7 3 NA 62.0 67.2 63.5 60.1 56.0 53.1 50.1 47.2 44.7 40.1 

8 2 NA 50.2 74.0 71.4 69.6 66.9 64.9 62.5 60.6 58.4 52.3 

9 1 NA 59.1 70.7 77.7 78.4 79.3 79.2 78.1 76.5 75.2 68.1 

10 0 NA NA 63.2 81.6 87.6 90.5 92.1 92.7 93.0 92.9 90.5 

 

 

 
 

Figure 5. Variation of rejection threshold on the system performance without majority vote 
 

 

Furthermore, Figure 5 indicates that the smaller the threshold value is, the more accurate the system 

is. However, the rejection rate of the system should be considered properly to determine the optimal threshold 

value and avoid wrong rejection. Table 3 can be used to find the optimal threshold value for each case. In the 

experiment that used 5 trained classes, the percentage of the untrained data is 75%. It implies that the system 

with rejection mechanism could reject the output by a rejection rate around or less than this value. Therefore, 

threshold ranging 0.2-0.4 can be the optimal solution for this case. Similarly, if the same procedure is applied, 

the gray background in Table 3 presents the possible threshold values for different cases. 

Looking at Tables 1 and 2, the data presented prove that the motion rejection in the myoelectric control 

improves the performance of the system. Figure 6 shows a detailed comparison between the two systems,  

RBF-ELM and RBF-ELM-R, on the 10-classes experiment. The figure clearly indicates that RBF-ELM-R 

outperforms RBF-ELM on all subjects without exception. RBF-ELM attained accuracy of around 90% while 

RBF-ELM-R is around 92%. The superiority of RBF-ELM-R over RBF-ELM is more obvious when one-way 

ANOVA test is conducted. By setting p at 0.05, the p-value was 0.034, which was less than 0.05. Therefore, 

the enhancement made by RBF-ELM-R is statistically significant. 
 

 

Table 3. The rejection rate of threshold experiments on eight subjects using threefold cross-validation 
# Trained  

classes 

Untrained  

classes (%) 

Threshold (rejection rate %) 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

5 75 89.6 80.1 64.7 56.0 47.4 38.8 32.0 24.2 15.6 10.7 
6 60 99.5 88.9 71.9 62.1 52.6 43.1 35.5 26.9 17.4 11.9 

7 45 100 95.3 80.9 70.1 60.2 49.0 40.5 32.4 23.2 15.8 

8 30 100 98.1 86.5 73.4 63.2 52.7 43.5 36.0 27.9 20.4 

9 15 100 99.3 91.3 77.6 66.6 56.4 46.3 38.5 30.7 23.4 

10 0.0 100 100 94.2 81.0 69.6 58.4 47.5 38.8 31.6 23.9 
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Figure 6. Accuracy achieved by RBF-ELM and RBF-ELM-R (threshold = 1.0) across eight subjects using 

threefold cross-validation using majority vote 
 

 

4.1.2. RBF-ELM-R and other classifiers 

This experiment examines the performance of RBF-ELM-R in comparison with certain well-known 

classifiers such as support vector machine (SVM), least-square SVM (LS-SVM), linear discriminant analysis 

(LDA), and k-nearest neighbor (kNN). The experimental results are described in Figure 7 and Table 4.  

Figure 7 shows that RBF-ELM-R with the rejection threshold 1.0 attained the best accuracy of all classifiers 

across different class numbers. The accuracy of all classifiers decreased as the number of trained classes 

decreased while the number of untrained classes increased. No classifiers could cope with this situation, in 

particular in the 5-trained class experiment. 
 
 

 
 

Figure 7. Accuracy of RBF-ELM-R (with rejection threshold 1.0) compared  

with other well-known classifiers  

 

 

Table 4. Accuracy of the real-time experiment using 10 trained classes using majority vote 
# Trained  

Classes 

Accuracy (%) 

SVM LS-SVM LDA kNN RBF-ELM RBF-ELM-R 

5 23.36 23.43 23.53 23.59 23.64 25.20 

6 30.42 30.31 30.77 30.90 30.84 34.40 
7 39.26 39.06 39.82 39.95 40.07 44.70 

8 51.35 51.54 51.71 52.16 52.26 58.40 

9 66.85 67.06 67.20 67.84 68.07 75.20 
10 88.26 88.52 88.99 90.03 90.46 92.90 

 

 

This is the fact of the real-time application; the number of movements that are not involved in the 

training section is much larger than those that are participating in the training section. The advantage of  

RBF-ELM-R is highlighted in this situation. By varying the rejection threshold, the performance of the M-PR 

can be improved. Looking at Table 1 in the case of the 5-trained classes (first row), if the rejection threshold 

is decreased from 1.0 to 0.2, the accuracy of RBF-ELM can be enhanced from 25.4% to 60.1%. 
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4.2.  Online experiment 

The result of the offline experiments concludes that the system with rejection mechanism could 

enhance the classification performance, especially when the untrained movements are introduced in the testing 

stage. In this experiment, the result of the offline classification was applied to the real-time application to 

control the hand exoskeleton. In the online experiment, an able-bodied user wore the hand exoskeleton on the 

left hand. On the right hand, there were two EMG sensors placed on the forearm, as shown in Figure 8. This is 

done since many people may suffer from one side motor function deficiency of the body (hemiparesis).  

Figure 8 exhibits the example of the real-time experiments on the hand exoskeleton on the able-bodied 

subject. The figure only provides 6 movements. In the experiment, 10 movements were tested as well. In this 

experiment, the subject performed 10 subsequent movements from the thumb, index finger until the hand-close 

movement. The duration of each movement is 5 s with a rest state in between lasting 2.5 s. 
 

 

 
 

Figure 8. An example of the online experiment of myoelectric pattern recognition with motion rejection on 

the exoskeleton hand 
 

 

There are two scenarios involved. The first scenario is when all 10 movements are included in the 

training and testing sessions. As for the second scenario, 5 individual movements are involved in the training 

session. However, in the testing session, the trained system is tested with 10 finger movements: 5 individual 

fingers and 5 combined fingers. In addition, the subject repeated the experiment four times. The performance 

of the system is presented in Table 5. 

The experiment results in Table 5 show that the average accuracy of the real-time application across 

the four trials is 89.22% and 89.72% using RBF-ELM and RBF-ELM-R, respectively. In online experiment, 

the experiment on 5 trained classes and untrained classes was also conducted. The results are presented in 

Table 5 (on the right-hand side). Table 5 shows that the rejection mechanism could minimize the performance 

degradation of the real-time myoelectric pattern recognition (M-PR). The M-PR using RBF-ELM-R could 

achieve the accuracy of about 80% while the one using RBF-ELM attained the accuracy of about 59%. 
 
 

Table 5. Accuracy of the real-time experiment  

Trials 
10 Trained classes 5 Trained classes and 5 untrained classes 

RBF-ELM RBF-ELM-R RBF-ELM RBF-ELM-R 
1 89.06 90.46 59.38 82.01 
2 89.45 89.75 60.55 79.07 
3 90.23 90.06 60.29 81.45 
4 88.15 88.64 58.33 78.35 

Mean 89.22 89.73 59.64 80.22 
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The timing diagram of the online experiment on 5 trained classes and untrained classes is presented 

in Figure 9. The figure presents the outputs of myoelectric pattern recognition using three different scenarios. 

The first scenario is the output of RBF-ELM, i.e. the system that does not use the rejection mechanism. It is 

shown in the figure by the letter A. The second scenario is the output of RBF-ELM-R with rejection threshold 

0.3, which is shown by the letter B in the figure. The last scenario, which is shown by the letter C, is the output 

of RBF-ELM-R with rejection threshold 0.3, but it employed different concepts of “no motion” from the 

previous RBF-ELM-R. The rejection motion in RBF-ELM-R could be applied in two ways depending on the 

implementation of “no motion.” First, “no motion” means that the output of the system was a rest state. 

Therefore, whenever the system rejects a motion, the system forced the output to the rest state by neglecting 

the current movement. As a result, the output changed from one state to a rest state back and forth frequently, 

as shown in Figure 9, part B. Unfortunately, this action will be inconvenient for the users. The second 

implementation of “no motion” was that, instead of the rest state, the output was the last movement produced 

before the implementation of the rejection mechanism. This scenario produced smoother output than the first 

scenario, as shown in Figure 9, part C. For this reason, the second scenario was a good choice for controlling 

the hand exoskeleton. However, there is a drawback when using the previous state as “no motion.” When the 

previous state is the wrong movement, then the “no motion” produces the wrong movement as well. For 

example, see Figure 9, part C, the thumb-index finger movement (TI) is a motion that was not included in the 

training stage. When it is imposed on the system, the system outputs the L movement. In fact, the correct output 

should be no movement. 
 

 

 
 

Figure 9. Real-time experiment results over time using threshold 0.3 using 5 trained classes  

and 5 untrained classes 

 

 

4.3.  Limitation of the work 

The work in this paper has some limitations. First, the experiments conducted in this paper worked on 

the movement at MVC. Actually, the non-pattern recognition method has been developed to measure the 

contraction level of the EMG signal. However, it was not discussed in detail. In future experiments, different 

levels of contraction of the movements should be considered to test the reliability of the proposed system in 

the real application. The second limitation of this work is the fact that the exoskeleton used in the experiment 

simply relies on the EMG sensor without any physical sensors. This situation is not good for the user’s safety 

because the EMG signal is dynamic and easy to change due to small movements. Therefore, physical sensors 
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should be incorporated to anticipate the inability of the system to handle the changes of the EMG signals. 

Lastly, the experiments in this paper were conducted in able-bodied subjects. In future, the proposed MCS 

should be tested in the patients with various levels of severity of disability. 

 

 

5. CONCLUSION 

This paper proposed a novel MCS consisting of a new myoelectric pattern recognition using  

rejection-based extreme learning machine to predict the intended movements. The proposed new myoelectric 

pattern recognition (M-PR) employed radial basis function extreme learning machine with a rejection 

mechanism named RBF-ELM-R. The existence of the motion rejection mechanism improved the performance 

of the recognition system in both offline and online experiments. In the offline experiment, the MP-R achieved 

the accuracy of around 90% and 92% using RBF-ELM and RBF-ELM-R, respectively. The one-way ANOVA 

test results (p = 0.034< 0.05) indicate that the improvement of RBF-ELM-R over RBF-ELM is significant. By 

selecting the proper rejection threshold, the accuracy of the M-PR using RBF-ELM-R can be improved. 

In real-time application, the experiments involved the M-PR using RBF-ELM and RBF-ELM-R.  

The accuracy of the M-PR was about 89.22% and 89.73% for RBF-ELM and RBF-ELM-R, respectively.  

The efficacy of RBF-ELM-R was more noticeable if the classes that were not included in the training stage 

were involved in the test stage. When using 5 classes in the training stage and then in the testing phase,  

the other 5 classes were included, the MCS attained the accuracy of about 59% and 80% for RBF-ELM and 

RBF-ELM-R, respectively.  
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