
TELKOMNIKA Telecommunication, Computing, Electronics and Control

Vol. 18, No. 6, December 2020, pp. 2977~2982

ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, Decree No: 21/E/KPT/2018

DOI: 10.12928/TELKOMNIKA.v18i6.16743  2977

Journal homepage: http://journal.uad.ac.id/index.php/TELKOMNIKA

Harnessing deep learning algorithms to predict software

refactoring

Mamdouh Alenezi1, Mohammed Akour2, Osama Al Qasem3
1Computer Science Department, Prince Sultan University, Saudi Arabia

2,3Information Systems Department, Yarmouk University, Jordan

Article Info ABSTRACT

Article history:

Received May 19, 2020

Revised Jun 27, 2020

Accepted Jul 6, 2020

 During software maintenance, software systems need to be modified by adding

or modifying source code. These changes are required to fix errors or adopt

new requirements raised by stakeholders or market place. Identifying the

targeted piece of code for refactoring purposes is considered a real challenge

for software developers. The whole process of refactoring mainly relies on

software developers’ skills and intuition. In this paper, a deep learning

algorithm is used to develop a refactoring prediction model for highlighting

the classes that require refactoring. More specifically, the gated recurrent unit

algorithm is used with proposed pre-processing steps for refactoring prediction

at the class level. The effectiveness of the proposed model is evaluated using

a very common dataset of 7 open source java projects. The experiments are

conducted before and after balancing the dataset to investigate the influence of

data sampling on the performance of the prediction model. The experimental

analysis reveals a promising result in the field of code refactoring prediction.

Keywords:

Deep learning algorithms

Measurement

Software maintenance

Software refactoring

Source code analysis

This is an open access article under the CC BY-SA license.

Corresponding Author:

Mamdouh Alenezi,

Computer Science Department,

Prince Sultan University,

Riyadh 11586, Saudi Arabia.

Email: malenezi@psu.edu.sa

1. INTRODUCTION

Software applications are endlessly maintained and modify to add new requirements, fix errors, or

adapt new modules. Requirements continuously change as the market place is susceptible to stakeholders’

demands. Therefore, software applications should be evolved continuously to make sure the stakeholders are

satisfied. During software maintenance, programmers are asked to add a new feature, remove and/or modify

existing ones. The process of adapting these features needs to modify the software systems to meet the required

requirement, this process called refactoring [1]. Code refactoring plays an important role in enhancing software

quality by evolving the internal structure without affecting the intended behavior [2].

Extensive research has been conducted for addressing the relationship between refactoring software

systems and the quality measurements [3-10]. All experimental results show how refactoring has a direct

influence on improving software quality. Therefore, predicting refactoring promptly should be investigating,

and building an accurate model becomes mandatory. Software developers still face a real challenge to pick

the right time and software code for refactoring purposes as the operation needs time and budget [11].

Therefore, developers should be sure about which piece of code should be evolved before starting the process

of refactoring to adopt the new requirements. Although developer experience shapes the most successful factor

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 6, December 2020: 2977 - 2982

2978

in this process, still prediction algorithms might be a helpful tool in this matter. These algorithms can provide

the developers with some insights about which part of code should be refactored and when.

Different methodologies are designed and built to help developers in the refactoring process such as code

smells detection strategies [12], logic meta-programming [13], invariant mining [14] and search-based [15, 16].

Moreover, machine learning is harnessed in the area of prediction and shows noticeable performance in terms of

prediction in various fields as computer vision, defect prediction, natural language processing, code comprehension,

bioinformatics, speech recognition, and finance [17-24]. Several machine learning algorithms are utilized in code

refactoring prediction at class and method level as well [25, 26].

The main contribution of this work is investigating the effectiveness of deep learning algorithms in

building refactoring prediction models at the class-level. The implemented deep learning algorithm is gated

recurrent unit (GRU).To the best of our knowledge, this algorithm is used for the first time for refactoring

prediction at the class level. In this work 7 open-source Java-based projects are used to assess the effectiveness

of the studied algorithm.

2. LITERATURE REVIEW

There are several attempts in the literature to use machine learning to predict and suggest refactoring.

Amal et al. [27] used search-based software engineering for software refactoring. They used an artificial neural

network (ANN) and genetic algorithms (GA) to choose between refactoring solutions. They used the opinion

of 16 different software engineers to manually evaluate the refactoring solutions for training. They developed

a predictive model to evaluate the refactoring solutions for the remaining iterations. The approach

outperformed the manual refactoring approach. Kumar et al. [28] used 25 source code metrics at the method

level to predict the need for refactoring. They used a publicly available dataset of five open-sourced software

systems to investigate the performance of ten different machine learning classifiers. They used three different

data sampling methods to tackle the unbalanced data issues.

Al Dallal [29] discussed a measure and a model to predict whether the method(s) in a class needing

move method refactoring and achieved a prediction accuracy of more than 90%. The author built the predictive

model over seven object-oriented systems. Aniche et al. [30] investigated the effectiveness of six different

machine learning algorithms (logistic regression, naive Bayes, support vector machine, decision trees, random

forest, and neural network) in predicting software refactoring. They used a dataset consists of over two million

refactorings from 11,149 real-world projects. Pantiuchina et al. [31] proposed an approach to prevent instead

of fix code quality issues that predict code smells. The approach uses source code quality to predict whether

a module is likely to be affected by code smells in the future. The topic at hand is still in its infancy. Several

advances can be made to predict code smells and refactoring opportunities that would eventually improve

software quality and maintenance.

3. RESEARCH METHODOLOGY

This section presents the proposed approach for Software refactoring prediction. The proposed

approach is divided into two main stages. The first stage performs a set of necessary pre-processing procedures

on datasets. In the second stage, the deep learning algorithm is applied to the datasets to predict the need for

refactoring or not by using gated recurrent unit (GRU) algorithm. The structure of the proposed approach is

outlined in Figure 1. More details of the approach are given in the next subsections.

Figure 1. Proposed methodology

TELKOMNIKA Telecommun Comput El Control 

Harnessing deep learning algorithms to predict software refactoring (Mamdouh Alenezi)

2979

3.1. Datasets

In this paper, we used a public empirical dataset containing refactoring data for 7 open-source systems

(antlr4, junit, mapdb, mcMMO, mct, oryx, titan) [32]. The experimental dataset used in our study is freely and

publicly available at the PROMISE Repository. This makes our work easily reproducible. The dataset used in

our experiments is manually validated by creating the source code metrics and the refactoring dataset for two

subsequent releases of 7 well-known open-source software Java applications. The tools used to create this

dataset are the RefFinder tool for identifying refactoring in the source code between two subsequent releases

and the SourceMeter tool to compute source code metrics. These datasets used for empirical investigations on

source code refactoring. The features include source code metrics, the refactoring types, and the relative

maintainability index (RMI). There are 23 refactoring types at the class level. The dataset's characteristics are

presented in Table 1.

Table 1. Datasets characteristics
Dataset No. of Attribute Instances No. refactoring Percentage

antlr4 134 436 23 5.2%

junit 134 657 9 1.3%
mapdb 134 439 4 0.9%

mcMMO 134 301 3 0.99%
mct 134 2162 15 0.69%

oryx 134 536 15 2.7%

titan 134 1486 13 0.87%

In the first stage, data preprocessing in this study can be summarized as follows:

− Deletion of unnecessary features: remove the following feature (name, path, LongName, Parent, Component)

− Delete refactoring type feature: 23 refactoring types at a class level have been deleted

− Replacement the summation of refactoring feature: We have modified the value of (summation of

refactoring types) in each instance to binary values and encoded the summation of refactoring types "more

than one" as (1) and "zero value" as (0). then use this feature as a class label.

− Sampling datasets: To improve the prediction of the minority class should be correct the imbalance

problem. For that, we used the synthetic minority over-sampling technique (SMOTE). SMOTE deals with

the problem of imbalanced distribution, producing new instances based on K-nearest neighbor (KNN).

Computing the KNN value forms based on the similarity (we consider in this paper K = 5).

3.2. Gated recurrent unit algorithm

GRU model is a powerful deep learning model proposed by [33] also introduced in [34], GRU is one kind

of the gated RNNs which are used to solve the common problems of gradient vanishing of traditional RNN [35].

GRU contains two gates that use it to control the information flow from the through the network. First, the gate to

control the information flows into memory known as an update gate. Second, is to control the information that flows

out of memory known as reset gate unlike long short-term memory (LSTM), GRU hasn't had separate memory cell,

instead of that gating unit that controls the flow of information inside the unit [36].

3.4. Structural parameter selection for gated recurrent unit

To get an effective GRU model, we need to set key structural parameters, which are: 1) the number

of hidden layers, 2) the number of epoch, and 3) batch size. To simplify the GRU model, we choose three

hidden layers, which is a general configuration followed by [37], and we utilize for the number of the epoch

from 10 until 2500. For the batch size use it between 2 to 15.

3.5. Comparisons

The last step in the proposed methodology is the comparison study, where the balanced data set and

unbalanced dataset result are measured and compared.

4. EXPERIMENTAL RESULTS

In this section, we empirically evaluate the performance of the GRU model by using the 7 open-source

software systems. We optimized GRU with three hidden layers, with a sigmoid activation function for

the output layer. This study is carried out on 7 datasets that belong to different domains. The performance with

the unbalanced dataset (experimental scenario 1) and with balanced datasets (experimental scenarios 2) are

collected and compared in the next subsections. The performance of the GRU model is evaluated based on

  ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 6, December 2020: 2977 - 2982

2980

accuracy, F-measure, recall, and precision. First, we conducted experiments where the dataset is unbalanced;

we have evaluated the performance of the studied algorithm on 7 datasets. Then we repeat the same experiment

after applying SMOTE to produce a balanced dataset. Table two summarizes the obtained Performance Results

before and after applying SMOTE.

In this section, we report the comparison results of prediction performance on the balanced and

unbalanced datasets. The results of scenario 2 experiment that uses the balanced dataset show better results in

prediction. Our goal here is to investigate whether the balanced datasets can enhance the refactoring prediction

performance using the studied deep learning algorithm on these datasets. Table 2 shows the prediction results

with unbalanced data. Table 3 reveals how balancing the data can improve the prediction performance results.

Most measurement results are increased noticeably, especially for recall, precision, and F-measures. In

comparison between unbalanced and balanced data, the F-measure improves by at least double which is

very significant.

Table 2. The results with unbalanced data
Dataset Accuracy Recall Precision F-measure

Antlr4 84.1 40.0 19.04 25.8

Junit 98.61 33.33 50.0 40.0

MapDB 97.8 50.0 33.3 40.0
McMMO 96.0 50.0 25.0 33.3

MCT 98.4 20.0 12.5 15.3

Titan 99.3 33.3 50.0 40.0
Oryx 97.2 20.0 50.0 28.5

Table 3. The results with balanced data
Dataset Accuracy Recall Precision F-measure

Antlr4 91.9 100 86.1 92.5
Junit 98.6 100 97.2 98.6

MapDB 99.3 100 98.6 99.3

McMMO 99 100 98 99
MCT 99.8 100 97.8 98.8

Titan 99.3 100 98.7 99.3

Oryx 99.3 100 98.7 99.3

5. CONCLUSION AND FUTURE WORK

This work investigates the effectiveness of using deep learning algorithms in refactoring prediction.

Gated recurrent unit (GRU) algorithm is used in this study and the performance is evaluated on 7 open-source

software products dataset. Moreover, balancing the data set as an enhancement preprocessing stage is addressed

in this study as well. The synthetic minority over-sampling technique (SMOTE) is used for balancing

the dataset. To the best of our knowledge, gated recurrent unit (GRU) algorithm is used for the first time for

refactoring prediction at the class level. The algorithm shows promising performance results. The experimental

results show how a balanced dataset enhances the prediction performance noticeably, where all used measures

in this study are increased after using a balanced data set in the experiments. As future work, authors will try

to predict the refactoring type at class or method level using a deep learning algorithm.

REFERENCES
[1] A. S. Nyamawe, H. Liu, N. Niu, Q. Umer and Z. Niu, "Automated Recommendation of Software Refactorings Based

on Feature Requests," 2019 IEEE 27th International Requirements Engineering Conference (RE), Jeju Island, Korea

(South), pp. 187-198, 2019.

[2] A. Qusef, M. O. Elish and D. Binkley, "An Exploratory Study of the Relationship Between Software Test Smells and

Fault-Proneness," IEEE Access, vol. 7, pp. 139526-139536, 2019.

[3] E. A. AlOmar, M. W. Mkaouer, A. Ouni, and M. Kessentini, “Do design metrics capture developers perception of

quality? an empirical study on self-affirmed refactoring activities,” Proceedings of the 13th ACM/IEEE International

Symposium on Empirical Software Engineering and Measurement (ESEM 2019), pp. 300-311, 2019.

[4] Y. Kataoka, T. Imai, H. Andou, and T. Fukaya, “A quantitative evaluation of maintainability enhancement by

refactoring,” International Conference on Software Maintenance, Proceedings, pp. 576-585, 2002.

[5] E. A. AlOmar, M. W. Mkaouer, A. Ouni and M. Kessentini, "On the Impact of Refactoring on the Relationship

between Quality Attributes and Design Metrics," 2019 ACM/IEEE International Symposium on Empirical Software

Engineering and Measurement (ESEM), Porto de Galinhas, Recife, Brazil, pp. 1-11, 2019.

TELKOMNIKA Telecommun Comput El Control 

Harnessing deep learning algorithms to predict software refactoring (Mamdouh Alenezi)

2981

[6] M. Iammarino, F. Zampetti, L. Aversano and M. Di Penta, "Self-Admitted Technical Debt Removal and Refactoring

Actions: Co-Occurrence or More?," 2019 IEEE International Conference on Software Maintenance and Evolution

(ICSME), Cleveland, OH, USA, pp. 186-190, 2019.

[7] T. Mens and T. Tourwé, “A survey of software refactoring,” IEEE Transactions on software engineering, vol. 30,

no. 2, pp. 126-139, 2004.

[8] M. Akour, and M. Alenezi. "Test suites effectiveness evolution in open source systems: empirical study," Indonesian

Journal of Electrical Engineering and Computer Science, vol. 19, no. 2, pp. 1085-1092, 2020.

[9] M. Alenezi,, M. Akour, & H. Al Sghaier, “The Impact of Co-evolution of Code Production and Test Suites through

Software Releases in Open Source Software Systems,” International Journal of Innovative Technology and

Exploring Engineering, vol. 9, no. 1, pp. 2737-2739, 2019.

[10] M. Alenezi,, M. Akour, A.Hussien, and M. Z. Al-Saad, "Test suite effectiveness: an indicator for open source

software quality," 2016 2nd International Conference on Open Source Software Computing, pp. 1-5, 2016.

[11] M. Kim, T. Zimmermann, and N. Nagappan, “A field study of refactoring challenges and benefits,” Proceedings of

the ACM SIGSOFT 20th International Symposium on the Foundations of Software Engineering, pp. 50, 2012.

[12] R. Marinescu, “Detection strategies: Metrics-based rules for detecting design flaws,” 20th IEEE International

Conference on Software Maintenance, Proceedings IEEE, pp. 350-359, 2004.

[13] T. Tourw´e and T. Mens, “Identifying refactoring opportunities using logic meta programming,” Seventh European

Conference onSoftware Maintenance and Reengineering, pp. 91-100, 2003.

[14] Y. Kataoka, T. Imai, H. Andou, and T. Fukaya, “A quantitative evaluation of maintainability enhancement by

refactoring,” International Conference on Software Maintenance, Proceedings, pp. 576-585, 2002.

[15] T. Mariani and S. R. Vergilio, “A systematic review on search-based refactoring,” Information and Software

Technology, vol. 83, pp. 14-34, 2017.

[16] M. O’Keeffe and M. O. Cinn´eide, “Search-based refactoring for software maintenance,” Journal of Systems and

Software, vol. 81, no. 4, pp. 502-516, 2008.

[17] O. Al Qasem, M.Akour, "Software Fault Prediction Using Deep Learning Algorithms," International Journal of

Open Source Software and Processes, vol. 10, pp. 1-19, 2019.

[18] J. Jiarpakdee, C. Tantithamthavorn, H. K. Dam and J. Grundy, "An Empirical Study of Model-Agnostic Techniques

for Defect Prediction Models," IEEE Transactions on Software Engineering, pp. 1-1, 2020.

[19] K. Liu, D. Kim, T. F. Bissyand´e, T. Kim, K. Kim, A. Koyuncu, S. Kim, and Y. L. Traon, “Learning to spot and refactor

inconsistent method names,” Proceedings of the 41st International Conference on Software Engineering, pp. 1-12, 2019.

[20] H. Alsghaier, M. Akour, “Software fault prediction using particle swarm algorithm with genetic algorithm and

support vector machine classifier,” Software: Practice and Experience, vol. 50, no. 4, pp. 407-27.2020.

[21] M. Akour, H. Alsghaier, and O. Al Qasem, “The effectiveness of using deep learning algorithms in predicting students

achievements,” Indonesian J. Elect. Eng. Comput. Sci., vol. 19, no. 1, pp. 387-393.2020.

[22] M. Akour, & O. Al Qasem, H. Al Sghaier, and K. Al-Radaideh, "The effectiveness of using deep learning algorithms in

predicting daily activities," International Journal of Advanced Trends in Computer Science and Engineering, vol. 8, no. 5,

pp. 2231-35, 2019.

[23] M. Akour, and W. Yahya Melhem, "Software Defect Prediction Using Genetic Programming and Neural

Networks," International Journal of Open Source Software and Processes, vol. 8, no. 4, pp. 32-51, 2017.

[24] M. Akour, S. Banitaan, H. Al Sghaier, and K. Al-Radaideh, "Predicting Daily Activities Effectiveness Using Base-

level and Meta level Classifiers," 2019 7th International Symposium on Digital Forensics and Security, pp. 1-7, 2019.

[25] M. Aniche, E. Maziero, R. Durelli, and V. Durelli, "The Effectiveness of Supervised Machine Learning Algorithms

in Predicting Software Refactoring," arXiv preprint arXiv:2001.03338, 2020.

[26] L. Kumar and A. Sureka, “Application of LSSVM and SMOTE on Seven Open Source Projects for Predicting

Refactoring at Class Level,” 2017 24th Asia-Pacific Software Engineering Conference (APSEC), pp. 90-99, 2017.

[27] A. Boukhdhir, M. Kessentini, S. Bechikh, J. Dea, and L. Ben Said, "On the use of machine learning and search-based

software engineering for ill-defined fitness function: a case study on software refactoring," International Symposium

on Search Based Software Engineering, pp. 31-45, 2014.

[28] K. Lov, S.Mouli Satapathy, and L. Bhanu Murthy, "Method Level Refactoring Prediction on Five Open Source Java

Projects using Machine Learning Techniques," Proceedings of the 12th Innovations on Software Engineering

Conference (formerly known as India Software Engineering Conference), pp. 1-10. 2019.

[29] J. Al Dallal, "Predicting move method refactoring opportunities in object-oriented code," Information and Software

Technology, vol. 92, pp. 105-120, 2017.

[30] M. Aniche, E. Maziero, R. Durelli, and V. Durelli, "The Effectiveness of Supervised Machine Learning Algorithms

in Predicting Software Refactoring," arXiv preprint arXiv:2001.03338, 2020.

[31] P. Jevgenija, G. Bavota, M. Tufano, and D. Poshyvanyk, "Towards just-in-time refactoring recommenders,"

Proceedings of the 26th Conference on Program Comprehension, pp. 312-315, 2018.

[32] P. Hegedűs, I. Kádár, R. Ferenc, and T. Gyimóthy, “Empirical evaluation of software maintainability based on

a manually validated refactoring dataset,” Information and Software Technology, vol. 95, pp. 313-327, 2018.

[33] B. cho, D. van Merrienboer, and Y. Bengio, “On the properties of neural machine translation: Encoder-decoder

approaches,” arXiv preprint arXiv:1409.1259, 2014.

[34] J. Chung, C. Gulcehre, K. Cho, Y. Bengio, Empirical evaluation of gated recurrent neural networks on sequence

modeling,” arXiv preprint arXiv:1412.3555, 2014.

[35] G. Shen, Q. Tan, H. Zhang, P. Zeng, J. Xu, “Deep Learning with Gated Recur rent Unit Networks for Financial

Sequence Predi,” Procedia Computer Science, vol. 131, pp. 895-903, 2018.

[36] Y. Gao, and D. Glowacka, “Deep Gate Recurrent Neural Network,” ArXiv, abs/1604.02910, 2016.

  ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 6, December 2020: 2977 - 2982

2982

[37] O. Alqasem,, M. Akour, and M. Alenezi, “The Influence of Deep Learning Algorithms Factors in Software Fault

Prediction,” IEEE Access, vol. 8, pp. 63945-63960, 2020.

BIOGRAPHIES OF AUTHORS

Mamdouh Alenezi is currently the Dean of Educational Services at Prince Sultan University.

Dr. Alenezi received his MS and Ph.D. degrees from DePaul University and North Dakota State

University in 2011 and 2014, respectively. He has extensive experience in data mining and

machine learning where he applied several data mining techniques to solve several Software

Engineering problems. He conducted several research areas and development of predictive

models using machine learning to predict fault-prone classes, comprehend source code, and

predict the appropriate developer to be assigned to a new bug.

Mohammed Akour is an associate Professor of Software Engineering at Al Yamamah

University (YU). He got his Bachelor’s (2006) and Master’s (2008) degree from Yarmouk

University in Computer Information Systems with Honor. He joined Yarmouk University as

a Lecturer in August 2008 after graduating with his master’s in Computer Information Systems.

In August 2009, He left Yarmouk University to pursue his Ph.D. in Software Engineering at

North Dakota State University (NDSU). He joined Yarmouk University again in April 2013

after graduating with his Ph.D. in Software Engineering from NDSU with Honor. He serves as

Keynote Speaker, Organizer, a Co-chair and publicity Chair for several IEEE conferences, and

as ERB for more than 10 ISI indexed prestigious journals. He is a member of the International

Association of Engineers (IAENG). Dr. Akour at Yarmouk University served as Head of

accreditation and Quality assurance and then was hired as director of computer and Information

Center. In 2018, Dr. Akour has been hired as Vice Dean of Student Affairs at Yarmouk

University.

Osama Al Qasem got his Master’s degree in Computer Information Systems from the Faculty

of Information Technology and Computer Sciences, Yarmouk University. Al Qasem has few

publications in the fields of software engineering, big data analytics, and software fault

prediction and currently he is working on building strong research in the area of big data.

