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 During software maintenance, software systems need to be modified by adding 

or modifying source code. These changes are required to fix errors or adopt 

new requirements raised by stakeholders or market place. Identifying the 

targeted piece of code for refactoring purposes is considered a real challenge 

for software developers. The whole process of refactoring mainly relies on 

software developers’ skills and intuition. In this paper, a deep learning 

algorithm is used to develop a refactoring prediction model for highlighting 

the classes that require refactoring. More specifically, the gated recurrent unit 

algorithm is used with proposed pre-processing steps for refactoring prediction 

at the class level. The effectiveness of the proposed model is evaluated using 

a very common dataset of 7 open source java projects. The experiments are 

conducted before and after balancing the dataset to investigate the influence of 

data sampling on the performance of the prediction model. The experimental 

analysis reveals a promising result in the field of code refactoring prediction. 
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1. INTRODUCTION 

Software applications are endlessly maintained and modify to add new requirements, fix errors, or 

adapt new modules. Requirements continuously change as the market place is susceptible to stakeholders’ 

demands. Therefore, software applications should be evolved continuously to make sure the stakeholders are 

satisfied. During software maintenance, programmers are asked to add a new feature, remove and/or modify 

existing ones. The process of adapting these features needs to modify the software systems to meet the required 

requirement, this process called refactoring [1]. Code refactoring plays an important role in enhancing software 

quality by evolving the internal structure without affecting the intended behavior [2]. 

Extensive research has been conducted for addressing the relationship between refactoring software 

systems and the quality measurements [3-10]. All experimental results show how refactoring has a direct 

influence on improving software quality. Therefore, predicting refactoring promptly should be investigating, 

and building an accurate model becomes mandatory. Software developers still face a real challenge to pick  

the right time and software code for refactoring purposes as the operation needs time and budget [11]. 

Therefore, developers should be sure about which piece of code should be evolved before starting the process 

of refactoring to adopt the new requirements. Although developer experience shapes the most successful factor 

https://creativecommons.org/licenses/by-sa/4.0/
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in this process, still prediction algorithms might be a helpful tool in this matter. These algorithms can provide 

the developers with some insights about which part of code should be refactored and when.  

Different methodologies are designed and built to help developers in the refactoring process such as code 

smells detection strategies [12], logic meta-programming [13], invariant mining [14] and search-based [15, 16]. 

Moreover, machine learning is harnessed in the area of prediction and shows noticeable performance in terms of 

prediction in various fields as computer vision, defect prediction, natural language processing, code comprehension, 

bioinformatics, speech recognition, and finance [17-24 ]. Several machine learning algorithms are utilized in code 

refactoring prediction at class and method level as well [25, 26].  

The main contribution of this work is investigating the effectiveness of deep learning algorithms in 

building refactoring prediction models at the class-level. The implemented deep learning algorithm is gated 

recurrent unit (GRU).To the best of our knowledge, this algorithm is used for the first time for refactoring 

prediction at the class level. In this work 7 open-source Java-based projects are used to assess the effectiveness 

of the studied algorithm. 

 

 

2. LITERATURE REVIEW  

There are several attempts in the literature to use machine learning to predict and suggest refactoring. 

Amal et al. [27] used search-based software engineering for software refactoring. They used an artificial neural 

network (ANN) and genetic algorithms (GA) to choose between refactoring solutions. They used the opinion 

of 16 different software engineers to manually evaluate the refactoring solutions for training. They developed 

a predictive model to evaluate the refactoring solutions for the remaining iterations. The approach 

outperformed the manual refactoring approach. Kumar et al. [28] used 25 source code metrics at the method 

level to predict the need for refactoring. They used a publicly available dataset of five open-sourced software 

systems to investigate the performance of ten different machine learning classifiers. They used three different 

data sampling methods to tackle the unbalanced data issues. 

Al Dallal [29] discussed a measure and a model to predict whether the method(s) in a class needing 

move method refactoring and achieved a prediction accuracy of more than 90%. The author built the predictive 

model over seven object-oriented systems. Aniche et al. [30] investigated the effectiveness of six different 

machine learning algorithms (logistic regression, naive Bayes, support vector machine, decision trees, random 

forest, and neural network) in predicting software refactoring. They used a dataset consists of over two million 

refactorings from 11,149 real-world projects. Pantiuchina et al. [31] proposed an approach to prevent instead 

of fix code quality issues that predict code smells. The approach uses source code quality to predict whether  

a module is likely to be affected by code smells in the future. The topic at hand is still in its infancy. Several 

advances can be made to predict code smells and refactoring opportunities that would eventually improve 

software quality and maintenance. 
 

 

3. RESEARCH METHODOLOGY 

This section presents the proposed approach for Software refactoring prediction. The proposed 

approach is divided into two main stages. The first stage performs a set of necessary pre-processing procedures 

on datasets. In the second stage, the deep learning algorithm is applied to the datasets to predict the need for 

refactoring or not by using gated recurrent unit (GRU) algorithm. The structure of the proposed approach is 

outlined in Figure 1. More details of the approach are given in the next subsections. 
 

 

 
 

Figure 1. Proposed methodology 
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3.1.  Datasets 

In this paper, we used a public empirical dataset containing refactoring data for 7 open-source systems 

(antlr4, junit, mapdb, mcMMO, mct, oryx, titan) [32]. The experimental dataset used in our study is freely and 

publicly available at the PROMISE Repository. This makes our work easily reproducible. The dataset used in 

our experiments is manually validated by creating the source code metrics and the refactoring dataset for two 

subsequent releases of 7 well-known open-source software Java applications. The tools used to create this 

dataset are the RefFinder tool for identifying refactoring in the source code between two subsequent releases 

and the SourceMeter tool to compute source code metrics. These datasets used for empirical investigations on 

source code refactoring. The features include source code metrics, the refactoring types, and the relative 

maintainability index (RMI). There are 23 refactoring types at the class level. The dataset's characteristics are 

presented in Table 1. 

 

 

Table 1. Datasets characteristics 
Dataset No. of Attribute Instances No. refactoring Percentage 

antlr4 134 436 23 5.2% 

junit 134 657 9 1.3% 
mapdb 134 439 4 0.9% 

mcMMO 134 301 3 0.99% 
mct 134 2162 15 0.69% 

oryx 134 536 15 2.7% 

titan 134 1486 13 0.87% 

 

 

In the first stage, data preprocessing in this study can be summarized as follows: 

− Deletion of unnecessary features: remove the following feature (name, path, LongName, Parent, Component) 

− Delete refactoring type feature: 23 refactoring types at a class level have been deleted 

− Replacement the summation of refactoring feature: We have modified the value of (summation of 

refactoring types) in each instance to binary values and encoded the summation of refactoring types "more 

than one" as (1) and "zero value" as (0). then use this feature as a class label. 

− Sampling datasets: To improve the prediction of the minority class should be correct the imbalance 

problem. For that, we used the synthetic minority over-sampling technique (SMOTE). SMOTE deals with 

the problem of imbalanced distribution, producing new instances based on K-nearest neighbor (KNN). 

Computing the KNN value forms based on the similarity (we consider in this paper K = 5). 

 

 

3.2.  Gated recurrent unit algorithm 

GRU model is a powerful deep learning model proposed by [33] also introduced in [34], GRU is one kind 

of the gated RNNs which are used to solve the common problems of gradient vanishing of traditional RNN [35]. 

GRU contains two gates that use it to control the information flow from the through the network. First, the gate to 

control the information flows into memory known as an update gate. Second, is to control the information that flows 

out of memory known as reset gate unlike long short-term memory (LSTM), GRU hasn't had separate memory cell, 

instead of that gating unit that controls the flow of information inside the unit [36]. 

 

3.4.  Structural parameter selection for gated recurrent unit 

To get an effective GRU model, we need to set key structural parameters, which are: 1) the number 

of hidden layers, 2) the number of epoch, and 3) batch size. To simplify the GRU model, we choose three 

hidden layers, which is a general configuration followed by [37], and we utilize for the number of the epoch 

from 10 until 2500. For the batch size use it between 2 to 15. 

 

3.5.  Comparisons 

The last step in the proposed methodology is the comparison study, where the balanced data set and 

unbalanced dataset result are measured and compared.  

 

 

4. EXPERIMENTAL RESULTS 

In this section, we empirically evaluate the performance of the GRU model by using the 7 open-source 

software systems. We optimized GRU with three hidden layers, with a sigmoid activation function for  

the output layer. This study is carried out on 7 datasets that belong to different domains. The performance with 

the unbalanced dataset (experimental scenario 1) and with balanced datasets (experimental scenarios 2) are 

collected and compared in the next subsections. The performance of the GRU model is evaluated based on 
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accuracy, F-measure, recall, and precision. First, we conducted experiments where the dataset is unbalanced; 

we have evaluated the performance of the studied algorithm on 7 datasets. Then we repeat the same experiment 

after applying SMOTE to produce a balanced dataset. Table two summarizes the obtained Performance Results 

before and after applying SMOTE. 

In this section, we report the comparison results of prediction performance on the balanced and 

unbalanced datasets. The results of scenario 2 experiment that uses the balanced dataset show better results in 

prediction. Our goal here is to investigate whether the balanced datasets can enhance the refactoring prediction 

performance using the studied deep learning algorithm on these datasets. Table 2 shows the prediction results 

with unbalanced data. Table 3 reveals how balancing the data can improve the prediction performance results. 

Most measurement results are increased noticeably, especially for recall, precision, and F-measures. In 

comparison between unbalanced and balanced data, the F-measure improves by at least double which is  

very significant.  

 

 

Table 2. The results with unbalanced data 
Dataset Accuracy Recall Precision F-measure 

Antlr4 84.1 40.0 19.04 25.8 

Junit 98.61 33.33 50.0 40.0 

MapDB 97.8 50.0 33.3 40.0 
McMMO 96.0 50.0 25.0 33.3 

MCT 98.4 20.0 12.5 15.3 

Titan 99.3 33.3 50.0 40.0 
Oryx 97.2 20.0 50.0 28.5 

 

 

Table 3. The results with balanced data 
Dataset Accuracy Recall Precision F-measure 

Antlr4 91.9 100 86.1 92.5 
Junit 98.6 100 97.2 98.6 

MapDB 99.3 100 98.6 99.3 

McMMO 99 100 98 99 
MCT 99.8 100 97.8 98.8 

Titan 99.3 100 98.7 99.3 

Oryx 99.3 100 98.7 99.3 

 

 

5. CONCLUSION AND FUTURE WORK  

This work investigates the effectiveness of using deep learning algorithms in refactoring prediction. 

Gated recurrent unit (GRU) algorithm is used in this study and the performance is evaluated on 7 open-source 

software products dataset. Moreover, balancing the data set as an enhancement preprocessing stage is addressed 

in this study as well. The synthetic minority over-sampling technique (SMOTE) is used for balancing  

the dataset. To the best of our knowledge, gated recurrent unit (GRU) algorithm is used for the first time for 

refactoring prediction at the class level. The algorithm shows promising performance results. The experimental 

results show how a balanced dataset enhances the prediction performance noticeably, where all used measures 

in this study are increased after using a balanced data set in the experiments. As future work, authors will try 

to predict the refactoring type at class or method level using a deep learning algorithm.  
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