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 This paper presents the co-simulation of the self-adjusting fuzzy PI controller 

to control a two-axes system. Each axis was driven by a permanent magnet 

linear synchronous motor (PMLSM). The position and speed controller used 

the fuzzy PI algorithm with parameters adjusted by a radial basis function 

neural network (RBFNN). The vector control was applied to the decoupled 

effect of the PMLSM. The field programmable gate array (FPGA) was used to 

control both axes of the system. The very high-speed integrated circuit-

hardware description language (VHDL) was developed in the Quartus II 

software environment, provided by Altera, to analyze and synthesize designs. 

Firstly, the mathematical model of PMLSM and fuzzy PI was introduced. 

Secondly, the RBFNN adjusted the knowledge base of the fuzzy PI. Thirdly, 

the motion trajectory was introduced for testing the control algorithm. 

Fourthly, the implementation of the controller based on FPGA with the FSM 

method and the structure of co-simulation between Matlab/Simulink and 

ModelSim were set up. Finally, discussion about the results proved the 

effectiveness of the control system, determining the exact position and 

trajectory of the XY axis system. This research was successful in 

implementing a two-motor controller within one chip. 
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1. INTRODUCTION 

Nowadays, robots are increasingly used to replace people in repetitive work or dangerous jobs. Robots 

are operated on a particular trajectory. However, most robots have a limited operating space, which affects  

the flexibility and accuracy of their actions. Many types of research for the multi-axis controller were designed 

to resolve these problems. Typically for this control method are two XY axes, driven by permanent magnet 

linear synchronous motor (PMLSM). The design of a specialized IC to make the controller compact, flexible, 

and low-cost has been studied by many experts to control the two XY-axes system. The two-axis XY, each 

axis has a PMLSM, the moving mechanism uses a ball screw nut. The contact between screw and screw nut is 

a layer of steel balls bearings to minimize friction, which helps smooth movement and achieve high accuracy.  

Field programmable gate array (FPGA) technology has also been used in this case, with the hardware 

description programming feature, fast response time, short design cycles, embedded processors, low power 

consumption. The paper [1] designed the current vector control by Matlab/Simulink then convert it into Verilog 

hardware description language (HDL) code to speed up the calculation and attain a fast response. The vector 

https://creativecommons.org/licenses/by-sa/4.0/
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control for permanent magnet synchronous motor (PMSM) was coding by very high-speed integrated circuit-

hardware description language (VHDL) in this research [2]. The paper [3] is using pipeline and resource 

sharing methods of FPGA to implement the sensorless PMSM drives. The BLDC was controlled by fuzzy 

sliding mode based on FPGA of Xilinx [4]. There were many types of research on intelligent controllers such 

as fuzzy control, sliding fuzzy control, artificial intelligence, adaptive control to control the speed and position 

of the motor for improving precision in machining and assembly. The fuzzy controller was applied to control 

the tennis ball robot for better training [5], modified direct torque control gives better performance of surface-

mounted PMSM [6]. The scalar and field-oriented control techniques controlled the three-phase induction 

motor drive [7]. The fuzzy and sensorless methods were used to increase the exact speed of PMSM without 

encoder [8]. A sliding-mode fuzzy controller was used to strengthen the dynamic performance for the discrete-

time uncertain system [9]. The back-propagation and radial basis function networks were used for PMSM to 

get the quick parallel speed and high torque response [10]. The adaptive fuzzy controls the rotor field-oriented 

of surface mount PMSM, speedy and precise control can be achieved [11]. The adaptive controller with simple 

estimator equations and the absence of the voltage probe depends on direct and quadrature reference current 

only [12]. The paper [13] showed an adaptive fuzzy supervisor controller for the PMSM sensorless control. 

The fuzzy control method is an intelligent control system, with an inference mechanism from experts’ control 

experience, but obtaining fuzzy sets and the optimal membership functions are not easy. To resolve this 

problem, the PID gain or the fuzzy knowledge base were adjusted appropriately based on the feedback system 

parameter. In this paper, an adaptive fuzzy controller is implemented in DSP to cope with the dynamic 

uncertainty and external load effect to the PMLSM [14]. The neural network can perform real-time control of 

the back-propagation learning algorithm [15-17]. The adaptive filter and fuzzy logic controller are applied for 

torque ripple minimization [18]. The fuzzy logic controller and genetic algorithm are designed to reduce the 

selected time for the optimized error signal gain values and, as a result, enhance the controller and system 

performance [19]. This research designed a non-linear controller and observer for a PMSM drive [20]. The  

co-simulation work by electronic design automation (EDA) Simulator Link has been gradually applied to verify 

the effectiveness of the Verilog and VHDL code in the motor drive system [21-24]. The EDA Simulator Link 

[25] provides a co-simulation interface between MATLAB/Simulink and HDL simulators-ModelSim [26]. 

Using it, you can verify a VHDL, Verilog, or mixed-language implementation against your Simulink model or 

MATLAB algorithm [25]. Therefore, EDA Simulator Link enables the use of MATLAB code and Simulink 

models as a test bench that generates stimulus for an HDL simulation and analyzes the simulation’s response [25]. 

This research focuses on improving the control method by using the self-adjusting fuzzy PI controller to 

control a two-axes system. The controller of both X and Y-axis is implemented on one chip. This research also 

presents a mixed-method with parallel and sequential processing to implement the self-adjusting fuzzy PI controller. 

The radial basis function neural network (RBFNN) has three neural networks; they are computed in an identical manner. 

The others are calculated in a sequential manner. The co-simulation method is applied to check the result. 
 

 

2. DESIGN OF THE SELF-ADJUSTING FUZZY PI CONTROLLER  

The control diagram for the XY system is shown in Figure 1. It consists of two loops, in which  

the current controller is an inner loop; the position and speed controller is an external loop. The external loop 

uses RBFNN to adjust the parameter for the fuzzy PI controller. The VHDL code programmed the whole 

structure of the controllers. RBFNN has three layers, the input layer, the hidden layer, which is a set of Gaussian 

functions, and the output layer is a set of total linear functions. There are two phases of network training. 

Firstly, the weight functions were calculated from the input layer to the hidden layer 𝑢(𝑘), 𝑥𝑝(𝑘 − 1), 𝑥𝑝(𝑘 − 2); 

then the weights from the hidden layer to the output layer were calculated to adjust the 𝑐𝑗,𝑖 values of the fuzzy PI 

controller to make the fuzzy PI controller more accurate. Each axis has a controller, so the system consists of two 

self-tuning controllers. 
 

2.1.  Mathematical model of PMLSM 

The torque of motor 𝐹𝑒 under the effect of field-oriented control (FOC) (𝑖𝑑 = 0) is: 
           

𝐹𝑒 = 𝐾𝑡𝑖𝑞  (1) 
 

motion equation of motor: 
 

𝐹𝑒 − 𝐹𝐿 = 𝑀𝑚

𝑑2𝑥𝑝

𝑑𝑡2
+ 𝐵𝑚

𝑑𝑥𝑝

𝑑𝑡
 (2) 

 

with 𝑖𝑑 and 𝑖𝑞  as the motor’s current on the d-q axis, 𝐾𝑡 , 𝑀𝑚, 𝐵𝑚 and 𝐹𝐿 are the motor’s coefficients, the total 

weight of the rotor, the coefficient of friction, and the load of the motor, respectively. 
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Figure 1. Block diagram of self-adjusting fuzzy PI controller to control the PMLSM of both X and Y-axes 
 

 

2.2.  Fuzzy PI controller design 

The fuzzy PI controller’s input has two values: the difference (E) between the desired position 𝑥𝑚 and 

current position 𝑥𝑝 of the motor on the X or Y-axis, which returned from the encoder and which is derivative 

by the time (dE): 
 

𝐸𝑥(𝑘) = 𝑥𝑚(𝑘) − 𝑥𝑝(𝑘) (3) 
  

𝑑𝐸𝑥(𝑘) = 𝑒(𝑘) − 𝑒(𝑘 − 1) (4) 
 

This equation controlled the position of the motor: 
 

𝑢𝑥(𝑘) = 𝑢𝑖𝑥(𝑘 − 1) + (𝑘𝑝𝑥 + 𝑘𝑖𝑥

𝑇

2
) 𝑢𝑓𝑥(𝑘) + 𝑘𝑖𝑥

𝑇

2
𝑢𝑓𝑥(𝑘 − 1) (5) 

 

where 𝑘𝑝𝑥  𝑎𝑛𝑑 𝑘𝑖𝑥 are the coefficients of the PI controller at the external loop, 𝑈𝑖𝑥 is the output of the integral 

controller (I), T is the sampling time, and 𝑢𝑓𝑥 is the output of the fuzzy PI controller. The fuzzy PI controller 

can be summarized as follows: 

The membership functions were the symmetrical triangles to calculate the input variables E and dEx. During 

each cycle, only two values of Ex and dEx were supplied to the system as shown in Figure 2. From the values of Ex 

and dEx, based on membership functions, we can calculate the values of 𝜇𝐴𝑖
(𝐸𝑥) 𝑎𝑛𝑑  𝜇𝐵𝑖

(𝑑𝐸𝑥) with: 
 

𝜇𝐴𝑖
(𝐸𝑥) =

𝐸𝑥,𝑖+1 − 𝐸𝑥

2
, (6) 

  

𝜇𝐴𝑖+1
(𝐸𝑥) = 1 − 𝜇𝐴𝑖

(𝐸𝑥) (7) 
  

𝜇𝐵𝑖
(𝑑𝐸𝑥) =

𝑑𝐸𝑥,𝑖+1 − 𝑑𝐸𝑥

2
, (8) 

  

𝜇𝐵𝑖+1
(𝑑𝐸𝑥) = 1 − 𝜇𝐵𝑖

(𝑑𝐸𝑥) (9) 
 

Where 𝐴𝑖 is the linguistic value of Ex, 𝐵𝑖  is the linguistic value of dEx. The fuzzy rules described as follows: 
 

IF Ex = 𝐴𝑖 and dEx = 𝐵𝑖  THEN 𝑢𝑓𝑥 = 𝑐𝑗,𝑖 (10) 
 

where 𝑐𝑗,𝑖 is real value; i, j values from 1-49 are the number of fuzzy rules. The RBFNN adjusted the value of 𝑐𝑗,𝑖. 

Now, there are only four fuzzy rules triggered. The fuzzy controller uses the product inference rule, singleton 

for fuzzifier, and central average method for defuzzification, the output signal can be calculated by: 
 

𝑢𝑓𝑥 =
∑ ∑ 𝑐𝑚,𝑛(𝜇𝐴𝑛

(𝐸𝑥)𝜇𝐵𝑚
(𝑑𝐸𝑥))

𝑗+1
𝑚=𝑗

𝑖+1
𝑛=𝑖

∑ ∑ (𝜇𝐴𝑛
(𝐸𝑥)𝜇𝐵𝑚

(𝑑𝐸𝑥))
𝑗+1
𝑚=𝑗

𝑖+1
𝑛=𝑖

≈ ∑ ∑ 𝑐𝑚,𝑛𝑑𝑛,𝑚

𝑗+1

𝑚=𝑗

𝑖+1

𝑛=𝑖

 (11) 

 

where 𝑑𝑛,𝑚 ≜ 𝜇𝐴𝑛
(𝐸𝑥)𝜇𝐵𝑚

(𝑑𝐸𝑥) and ∑ ∑ 𝑑𝑛,𝑚 = 1
𝑗+1
𝑚=𝑗

𝑖+1
𝑛=𝑖  
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Figure 2. Structure of fuzzy controller with two input variables E and dE 
 

 

2.3.  Using RBFNN to adjust parameters of the fuzzy controller 

During operation, the parameters of the system change, so it is necessary to adjust the 𝑐𝑗,𝑖 (knowledge 

base of the fuzzy controller) in order to get a better output response. 𝑐𝑗,𝑖 is adjusted according to the criterion 

of root mean square. The value function: 
 

𝐽𝑒𝑥 =
1

2
𝑒𝑥

2 =
1

2
(𝑥𝑚 − 𝑥𝑝)2 (12) 

 

Derivative (12) we get the minimum value: 
 

∆𝑐𝑚,𝑛 = −𝜑
𝜕𝐽𝑒𝑥

𝜕𝑐𝑚,𝑛

 (13) 

 

where 𝜑 > 0 shows the convergence rate of the value function. From (11) and (12) we have: 
 

𝜕𝐽𝑒𝑥

𝜕𝑐𝑚,𝑛

=
𝜕𝐽𝑒𝑥

𝜕𝑒

𝜕𝑒

𝜕𝑥𝑝

𝜕𝑥𝑝

𝜕𝑢𝑓𝑥

𝜕𝑢𝑓𝑥

𝜕𝑐𝑚,𝑛

= −𝑒𝑥𝑑𝑛,𝑚

𝜕𝑥𝑝

𝜕𝑢𝑓𝑥

 (14) 

 

RBFNN was used to adjust the parameters of the fuzzy controller (𝑐𝑗,𝑖). RBFNN has one input layer, one hidden 

layer, and one output layer. Figure 3 (a) shows the diagram of RBFNN. The input signal of RBFNN: 

 

𝑋 = [𝑢(𝑘), 𝑥𝑝(𝑘 − 1), 𝑥𝑝(𝑘 − 2)]𝑇 (15) 
 

The output of RBFNN is: 
 

𝑥𝑟𝑏𝑓 = ∑ 𝑤𝑟𝑏𝑓ℎ𝑟𝑏𝑓

𝑞

𝑟𝑏𝑓=1

 (16) 

 

where 𝑤𝑟𝑏𝑓 is the weight function, and ℎ𝑟𝑏𝑓 is the activation function in the hidden layer of the neural network. 

The activation function is the Gaussian: 
 

ℎ𝑟𝑏𝑓 = exp (−
‖𝑋 − 𝑐𝑟𝑏𝑓‖

2

2𝛿𝑟𝑏𝑓
2 ), rbf = 1, 2, … . q (17) 

 

where 𝑐𝑟𝑏𝑓 = [𝑐𝑟1𝑐𝑟2𝑐𝑟3]𝑇 and 𝜎𝑟𝑏𝑓 are respectively central and spread. To adjust the system parameters, the 

instantaneous value function is defined: 
 

𝐽𝑛 =
1

2
(𝑥𝑝 − 𝑥𝑟𝑏𝑓)

2
=

1

2
𝑒𝑛𝑛

2  (18) 
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From (18) the weight, central, and spread function were updated: 
 

𝑤𝑟𝑏𝑓(𝑘+1) = 𝑤𝑟𝑏𝑓(𝑘) + 𝜂𝑒𝑛𝑛(𝑘)ℎ𝑟𝑏𝑓(𝑘) (19) 
  

𝑐𝑟𝑠(𝑘 + 1) = 𝑐𝑟𝑠(𝑘) + 𝜂𝑒𝑛𝑛(𝑘)𝑤𝑟𝑏𝑓(𝑘)ℎ𝑟𝑏𝑓(𝑘)
𝑋𝑠(𝑘) − 𝑐𝑟𝑠(𝑘)

𝜎𝑟𝑏𝑓
2 (𝑘)

 (20) 

  

𝜎𝑟𝑏𝑓(𝑘 + 1) = 𝜎𝑟𝑏𝑓(𝑘) + 𝜂𝑒𝑛𝑛(𝑘)𝑤𝑟𝑏𝑓(𝑘)ℎ𝑟𝑏𝑓(𝑘)
‖𝑋(𝑘) − 𝑐𝑟𝑏𝑓(𝑘)‖

2

𝜎𝑟𝑏𝑓
2 (𝑘)

 (21) 

 

where s=1, 2, 3 and 𝜂 > 0 is a learning rate of RBFNN. In (5) is transformed as follows: 
 

𝜕𝑥𝑝

𝜕𝑢𝑓

=
𝜕𝑥𝑝

𝜕𝑢

𝜕𝑢

𝜕𝑢𝑓

=̂ (𝑘𝑝 + 𝑘𝑖𝑇)
𝜕𝑥𝑝

𝜕𝑢

 (22) 

 

where the Jacobian 
𝜕𝑥𝑝

𝜕𝑢
 was calculated from (17) and through the relationship 𝑒𝑛𝑛 = 𝑥𝑝 − 𝑥𝑟𝑏𝑓 of RBFNN on 

Figure 3 (a): 
 

𝜕𝑥𝑝

𝜕𝑢

=
𝜕𝑥𝑟𝑏𝑓

𝜕𝑢

= ∑ 𝑤𝑟𝑏𝑓ℎ𝑟𝑏𝑓

𝑐𝑟1 − 𝑢(𝑘)

𝜎𝑟𝑏𝑓
2

𝑞

𝑟𝑏𝑓=1

 (23) 

 

From (13), (14), (22), and (23) the parameter 𝑐𝑚,𝑛 of the fuzzy PI controller was updated as follows: 
 

∆𝑐𝑚,𝑛(𝑘) =∝ 𝑒(𝑘)(𝑘𝑝 + 𝑘𝑖𝑇)𝑑𝑛,𝑚 ∑ 𝑤𝑟𝑏𝑓ℎ𝑟𝑏𝑓

𝑐𝑟1 − 𝑢(𝑘)

𝜎𝑟𝑏𝑓
2

𝑞

𝑟𝑏𝑓=1

 (24) 

 

with m = j, j+1 and n = i, i+1 
 

2.4.  The motion trajectory of the system 

A reference equation generated the motion trajectory of the system with 𝑥𝑚(𝑘) and 𝑦𝑚(𝑘) on both axes. 

The motion trajectory is a star shape as shown in Figure 3 (b). It has five segments from a to e. The equation for 

each segment is described as follows. Where S , ix , iy  are respectively moving positions, coordinates on the X 

and Y-axis. 
 

Segment a: 𝑥𝑖 = 𝑆 + 𝑥𝑖−1, 𝑦𝑖 = 𝑦𝑖−1 (25) 
  

Segment b: 𝑥𝑖 = −𝑆 ∗ 𝑠𝑖𝑛540 + 𝑥𝑖−1, 𝑦𝑖 = −𝑆 ∗ 𝑠𝑖𝑛540 + 𝑦𝑖−1 (26) 
  

Segment c: 𝑥𝑖 = 𝑆 ∗ 𝑠𝑖𝑛180 + 𝑥𝑖−1, 𝑦𝑖 = 𝑆 ∗ 𝑠𝑖𝑛720 + 𝑦𝑖−1 (27) 
  

Segment d: 𝑥𝑖 = 𝑆 ∗ 𝑠𝑖𝑛180 + 𝑥𝑖−1, 𝑦𝑖 = −𝑆 ∗ 𝑠𝑖𝑛720 + 𝑦𝑖−1 (28) 
  

Segment e: 𝑥𝑖 = −𝑆 ∗ 𝑠𝑖𝑛540 + 𝑥𝑖−1, 𝑦𝑖 = 𝑆 ∗ 𝑠𝑖𝑛360 + 𝑦𝑖−1 (29) 
 

 

 
(a) 

 
(b) 

 

Figure 3. (a) RBFNN adjusts the parameters of the fuzzy PI controller, (b) The motion trajectory of the XY axes 
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3. IMPLEMENT THE CONTROLLER BASED ON FPGA AND USING 

MATLAB/SIMULINK/MODELSIM FOR SIMULATIONS 

3.1.  FPGA controller structure and Matlab simulation 

FPGA technology was used to implement the control algorithm of this paper. One of the crucial 

advantages of FPGA is that it allows the completion of the product quickly and makes it easy to use design 

tools. This research used Altera Cyclone II EP2C115 to implement all algorithms of this research. Altera 

Cyclone II EP2C115 has 114,480 logical Elements (LEs) and 3.9 Mbits of RAM.  With the co-simulation of 

Simulink/ModelSim, the evaluation task of the VHDL code becomes more convenient. We can also change 

the input signal for examining VHDL code behavior, which is a challenging job in some VHDL development 

tools, such as Quartus II. The Simulink/ModelSim model for evaluation of the proposed algorithm is shown in 

Figure 4. The two motors, two IGBT inverters, are executed by the function of Simulink. The four ModelSim 

models execute the VHDL code of whole proposed algorithms. In Figure 4, the ModelSim model named 

ModelSim_1 and ModelSim_3 performs the function of position and speed controller of the X- and Y-axis. 

The ModelSim model named ModelSim_2 and ModelSim_4 performs the function of the current vector 

controller of the X- and Y-axis. The rotor speed of the two motors was fed back to ModelSim_1 and 

ModelSim_3. The rotor position, three-phase stator currents of two motors, were fed back to ModelSim_2 and 

ModelSim_4. The m-file is applied to develop the program of star shape motion trajectory. The following 

simulation will test the result of the proposed algorithm. Firstly, the decoupled system is tested. Secondly, self-

adjusting is tested. The single-axis speed response was checked and compared between typical fuzzy PI and 

self-adjusting fuzzy PI controllers. Finally, the two axes simultaneous motion within  

the star trajectory was checked. Figure 5 shows the architecture of the proposed algorithm. It implements FPGA 

technology for the PMLSM position and speed controller. The CLK and CLK_40ns are the input clocks 50MHz 

and 25MHz to supply all modules of the proposed algorithm. The command speed and rotor speed xm, xp are 

the input of the self-adjusting fuzzy PI controller for the X-axis. The three-phase currents (Iax, Ibx, Icx) and 

rotor flux angle θex are the input of the vector control for the X-axis. The 6 PWMs are the output of SVPWM 

on the X-axis. Similar for the Y-axis. 
 

 

 
 

Figure 4. The Simulink/ModelSim model for evaluation of the proposed algorithm 
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Figure 5. The FPGA based a speed and position controller for PMLSM drive 
 

 

3.2.  Implementation of the control algorithms 

The transfer function in the discrete domain of the motion equation was described as follows: 
 

𝑥𝑝(𝑧−1)

𝑖𝑞
∗ (𝑧−1)

=
𝜃𝑧−1

(1 − ∅𝑧−1)(1 − 𝑧−1)
 (30) 

 

where ∅ = exp (−
𝐵𝑚𝑇

𝑀𝑚
) , 𝜃 =

𝐾𝑡(1−∅)

𝐵𝑚
 . Hence the control equation at the output is: 

 

𝑥𝑝(𝑘) = 𝜃𝑖𝑞
∗ (𝑘 − 1) + (1 + ∅)𝑥𝑝(𝑘 − 1) − ∅𝑥𝑝(𝑘 − 2) (31) 

 

 

4. RESULTS AND DISCUSSION 

The speed and position controller of both X and Y-axes have been embedded in one FPGA chip.  

The proposed algorithms in the main block diagram are shown in Figure 6. The FSM sequential programming 

technique was used to describe control algorithms. The FSM method with one multiplier, one adder, one look-

up table, has been used to implement the proposed algorithm. In the speed and position control loop, the fuzzy 

PI controller is applied. The RBFNN adjusted the knowledge base of the fuzzy PI controller. The internal 

circuit of the main proposed algorithm, included one circuit of position and speed fuzzy PI controller, one 

circuit of RBFNN, one circuit of the current controller, and coordinate transformation. 

In Figure 6 (a), there are 85 steps to carry out the fuzzy PI controller. The steps s0-s1 compute the rotor 

speed error and error change. The steps s2-s5 compute the fuzzification. Step s6 looks up the fuzzy table to select 

four values of cmn based-on i and j obtained from s5. The steps s7-s15 compute the defuzzification function; 

those are (6-11). The steps s16-s18 compute the current command, and it is the PI function. The steps s19-s70 and 

s71-s73 calculate three neural networks; the FPGA is parallel processing; Therefore, it needs only 52 steps for 

completion. The steps s74-s84 turn the fuzzy rule parameters. To compute one neural takes 52 steps as shown in 

Figure 6 (b). The steps s0-s5 compute the norm value. The steps s6-s33 calculate the exponential function (17). 

The steps s34-s35 compute the output of neural and Jacobian at rth neural. The steps s36-s51 update the weight, 

variance, and node center value of the neural network.  

The data type in vector control and SVPWM for PMLSM are 12-bits. The data type is designed with  

a 16-bits length for the self-adjusting fuzzy PI controller. Each clock pulse in the FPGA is 40ns to complete  

a command. There are 85 steps (3.4μs), 52 steps (2.08μs) to implement the fuzzy PI and one neural network, 

respectively. It does not lose any performance because the operation time of the self-adjusting fuzzy PI with 3.4μs 

is much less than the sampling time of the position and speed controller (2 kHz). Although the control algorithm 

of this research in using RBFNN to adjust the parameters of the fuzzy PI controller is quite complicated, using 

the FSM description in step-by-step order, it simplified the coding. The simulation was performed on 

Matlab/Simulink/ModelSim for adjusting and verifying the controller’s parameters and checking the accuracy of 

the proposed algorithm. The ModelSim software was embedded in Matlab/Simulink for simulating the whole 

system. Motion trajectories, feedback signals, PMLSM engine models were designed on Simulink. VHDL codes 

of position control and speed control algorithms for XY axes were embedded in ModelSim.  

The sampling frequency of the position and speed controllers was 2 kHz; the vector control was 16 kHz. 

The FPGA resources used for the whole algorithm are 73,402 LEs and 348,947 RAM bits. Firstly, the step response 

is set up, the step signal with period of 0.5s and magnitude variation from 0 => 500 rpm => 0rpm => 1000 rpm => 
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1500 rpm => 2000 rpm => 1500 rpm => 2000 rpm => 1500 rpm => 2000 rpm were adopted as test conditions.  

The simulation results are presented in Figures 7-9. It presents a good speed response as shown in Figure 7 and the 

id, iq currents complete decoupled effect as shown in Figure 8, the id current approached zero. The PMLSM can 

control as DC motor, and the speed is dependent on the iq current. The speed response in Figure 7 without overshoot,  

the rising time is about 0.2 s, and steady-state value is zero. The three-phase stator currents in Figure 9 are balanced.  
 

 

 

 
 

Figure 6. The detail of the internal circuit design of the main proposed algorithm, (a) There are 85 steps to 

carry out the fuzzy PI controller, (b) There are 52 steps to compute one neural network 
 

 

 
 

Figure 7. The speed response of the motor for checking the decoupled effect of the PMLSM, the rotor speed 

can follow the desired speed at the input. 
 

 

After checking the system’s decoupling, the load condition is changed to evaluate the system’s 

effectiveness. The load of the motor is in light-load (𝐽 = 0.000036, 𝐹 = 0.00043) and heavy-load  

(𝐽 = 0.000324, 𝐹 = 0.0039) condition. The heavy-load is nine times heavier than the light-load. The reference 

model was applied to check the load condition. The simulation result of the heavy-load condition is shown in 
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Figure 10. In the beginning, the fuzzy controller was used to control the speed of the motor. The speed response 

has lag and overshoot. After one second, the self-adjusting fuzzy PI affects the 𝑐𝑚,𝑛 which is turning to reduce 

the error speed between rotor speed and reference model. The result shows that with the proposed algorithm, 

the rotor speed can track the reference model well. Similar to the light-load condition shown in Figure 11. 
 
 

 
 

Figure 8. The iq and id of the motor, decoupled effect, helps to control the servo motor as to control the DC motor 
 

 

 
 

Figure 9. The three phase-currents of the motor are balance 
 

 

 
 

Figure 10. The rotor speed of the motor at the fuzzy controller and self-adjusting fuzzy PI controller are 

compared at the heavy-load condition 
 
 

 
 

Figure 11. The rotor speed of the motor at the fuzzy controller and self-adjusting fuzzy PI controller are 

compared at the light-load condition 
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X-axis is a maximum of about 3.5mm; the error in the Y-axis is a maximum of approximately 10mm. Figure 13 

shows the performance of the self-adjusting fuzzy PI, the output motion of the X and Y-axis can draw the star shape 

well. The position output response followed the motion star trajectory very well. The error in X-axis is less than  

2 mm; the error in the Y-axis is less than 8mm. It still has a different error between the two axes. However, objective 

control has been achieved. The self-adjusting fuzzy PI controllers with the knowledge base are turned by RBFNN; 

the results proposed algorithm are better than the fuzzy PI controller. 
 

 

 
 

Figure 12. (a) The combination of two axes motion in case fuzzy PI controller, (b) the X-axis position,  

(c) the Y-axis position, (d) The error on X-axis is a maximum of about 3.5mm, (e) The error on Y-axis is  

a maximum of approximately 10mm 
 

 

 
 

Figure 13. The output position response faithfully follows the input star trajectory signal in the case of  

a self-adjusting fuzzy PI controller; (a) the combination of two axes motion, (b) the X-axis position is less 

than 2 mm, (c) the Y-axis position is less than 8 mm, (d) The error on X-axis, (e) The error on Y-axis 
 

 

5. CONCLUSION 

This paper successfully applied FPGA technology to control the movement of the two-axes XY 

system. The proposed structure includes motion trajectory, position, and speed self-adjusting fuzzy PI 

controller. The RBFNN adjusted the fuzzy PI controller during the operation. The controller of both X and  

Y-axis was implemented on only one chip. The RBFNN is computed in a parallel method; it gets the fast 

response to adjust the fuzzy parameter when the system changes. Besides, the FSM method can help to control 

the implementation of the exact whole system. The system has been successfully simulated in Matlab/Simulink 
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and ModelSim environments. The simulation results show that the proposed algorithm’s tracking performance 

is better than the fuzzy PI controller. The motion controller is sufficient and correct. 
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